lineage_kernel_xcoverpro/security/samsung/defex_lsm/cert/defex_sign.c

276 lines
7.6 KiB
C
Executable File

/*
* Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*/
#include <linux/cred.h>
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/key.h>
#include <linux/kobject.h>
#include <linux/string.h>
#include <linux/version.h>
#include <crypto/hash.h>
#include "include/defex_debug.h"
#include "include/defex_sign.h"
#ifdef DEFEX_KUNIT_ENABLED
#include <kunit/mock.h>
#endif
#define SIGN_SIZE 256
#define SHA256_DIGEST_SIZE 32
#define MAX_DATA_LEN 300
extern char defex_public_key_start[];
extern char defex_public_key_end[];
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0)
__visible_for_testing int __init defex_public_key_verify_signature(unsigned char *pub_key,
int pub_key_size,
unsigned char *signature,
unsigned char *hash_sha256)
{
(void)pub_key;
(void)pub_key_size;
(void)signature;
(void)hash_sha256;
/* Skip signarue check at kernel version < 3.7.0 */
printk("[DEFEX] Skip signature check in current kernel version\n");
return 0;
}
#else
#include <crypto/public_key.h>
static struct key *defex_keyring;
__visible_for_testing struct key* __init defex_keyring_alloc(const char *description,
kuid_t uid, kgid_t gid,
const struct cred *cred,
unsigned long flags)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0)
return keyring_alloc(description, uid, gid, cred, flags, NULL)
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 7, 0)
key_perm_t perm = ((KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH);
return keyring_alloc(description, uid, gid, cred, perm, flags, NULL);
#else
key_perm_t perm = ((KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH);
return keyring_alloc(description, uid, gid, cred, perm, flags, NULL, NULL);
#endif
}
__visible_for_testing int __init defex_keyring_init(void)
{
int err = 0;
const struct cred *cred = current_cred();
static const char keyring_name[] = "defex_keyring";
defex_keyring = defex_keyring_alloc(keyring_name, KUIDT_INIT(0), KGIDT_INIT(0),
cred, KEY_ALLOC_NOT_IN_QUOTA);
if (!defex_keyring) {
err = -1;
pr_info("Can't allocate %s keyring (NULL)\n", keyring_name);
} else if (IS_ERR(defex_keyring)) {
err = PTR_ERR(defex_keyring);
pr_info("Can't allocate %s keyring, err=%d\n", keyring_name, err);
defex_keyring = NULL;
}
return err;
}
__visible_for_testing int __init defex_public_key_verify_signature(unsigned char *pub_key,
int pub_key_size,
unsigned char *signature,
unsigned char *hash_sha256)
{
int ret = -1;
key_ref_t key_ref;
struct key *key;
struct public_key_signature pks;
if (defex_keyring_init() != 0)
return ret;
key_ref = key_create_or_update(make_key_ref(defex_keyring, 1),
"asymmetric",
NULL,
pub_key,
pub_key_size,
((KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ),
KEY_ALLOC_NOT_IN_QUOTA);
if (IS_ERR(key_ref)) {
printk(KERN_INFO "Invalid key reference\n");
return ret;
}
key = key_ref_to_ptr(key_ref);
memset(&pks, 0, sizeof(pks));
pks.digest = hash_sha256;
pks.digest_size = SHA256_DIGEST_SIZE;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
pks.pkey_algo = PKEY_ALGO_RSA;
#endif
pks.pkey_hash_algo = HASH_ALGO_SHA256;
pks.nr_mpi = 1;
pks.rsa.s = mpi_read_raw_data(signature, SIGN_SIZE);
if (pks.rsa.s)
ret = verify_signature(key, &pks);
mpi_free(pks.rsa.s);
#else
pks.pkey_algo = "rsa";
pks.hash_algo = "sha256";
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
pks.encoding = "pkcs1";
#endif
pks.s = signature;
pks.s_size = SIGN_SIZE;
ret = verify_signature(key, &pks);
#endif
key_ref_put(key_ref);
keyring_clear(defex_keyring);
return ret;
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0) */
#ifdef DEFEX_DEBUG_ENABLE
void __init blob(const char *buffer, const size_t bufLen, const int lineSize)
{
size_t i = 0, line;
size_t j = 0, len = bufLen;
int offset = 0;
char c, stringToPrint[MAX_DATA_LEN];
do {
line = (len > lineSize)?lineSize:len;
offset = 0;
offset += snprintf(stringToPrint + offset, MAX_DATA_LEN - offset, "| 0x%0*zx | ", PR_HEX(i));
for(j = 0; j < line; j++)
offset += snprintf(stringToPrint + offset, MAX_DATA_LEN - offset, "%02X ", (unsigned char)buffer[i + j]);
if (line < lineSize) {
for(j = 0; j < lineSize - line; j++)
offset += snprintf(stringToPrint + offset, MAX_DATA_LEN - offset, " ");
}
offset += snprintf(stringToPrint + offset, MAX_DATA_LEN - offset, "| ");
for(j = 0; j < line; j++) {
c = buffer[i + j];
c = (c < 0x20)||(c >= 0x7F)?'.':c;
offset += snprintf(stringToPrint + offset, MAX_DATA_LEN - offset, "%c", c);
}
if (line < lineSize) {
for(j = 0; j < lineSize - line; j++)
offset += snprintf(stringToPrint + offset, MAX_DATA_LEN - offset, " ");
}
offset += snprintf(stringToPrint + offset, MAX_DATA_LEN - offset, " |");
printk(KERN_INFO "%s\n", stringToPrint);
memset(stringToPrint, 0, MAX_DATA_LEN);
i += line;
len -= line;
} while(len);
}
#endif
int __init defex_calc_hash(const char *data, unsigned int size, unsigned char *hash)
{
struct crypto_shash *handle;
struct shash_desc* shash;
int err = -1;
handle = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR_OR_NULL(handle)) {
pr_err("[DEFEX] Can't alloc sha256");
return err;
}
shash = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(handle), GFP_KERNEL);
if (!shash)
goto clean_handle;
shash->tfm = handle;
do {
err = crypto_shash_init(shash);
if (err < 0)
break;
err = crypto_shash_update(shash, data, size);
if (err < 0)
break;
err = crypto_shash_final(shash, hash);
if (err < 0)
break;
} while(0);
kfree(shash);
clean_handle:
crypto_free_shash(handle);
return err;
}
int __init defex_rules_signature_check(const char *rules_buffer, unsigned int rules_data_size, unsigned int *rules_size)
{
int res = -1;
unsigned int defex_public_key_size = (unsigned int)((defex_public_key_end - defex_public_key_start) & 0xffffffff);
unsigned char *hash_sha256;
unsigned char *hash_sha256_first;
unsigned char *signature;
unsigned char *pub_key;
if (rules_data_size < SIGN_SIZE)
return res;
hash_sha256_first = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
if (!hash_sha256_first)
return res;
hash_sha256 = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
if (!hash_sha256)
goto clean_hash_sha256_first;
signature = kmalloc(SIGN_SIZE, GFP_KERNEL);
if (!signature)
goto clean_hash_sha256;
pub_key = kmalloc(defex_public_key_size, GFP_KERNEL);
if (!pub_key)
goto clean_signature;
memcpy(pub_key, defex_public_key_start, defex_public_key_size);
memcpy(signature, (u8*)(rules_buffer + rules_data_size - SIGN_SIZE), SIGN_SIZE);
defex_calc_hash(rules_buffer, rules_data_size - SIGN_SIZE, hash_sha256_first);
defex_calc_hash(hash_sha256_first, SHA256_DIGEST_SIZE, hash_sha256);
#ifdef DEFEX_DEBUG_ENABLE
printk("[DEFEX] Rules signature size = %d\n", SIGN_SIZE);
blob(signature, SIGN_SIZE, 16);
printk("[DEFEX] Key size = %d\n", defex_public_key_size);
blob(pub_key, defex_public_key_size, 16);
printk("[DEFEX] Final Hash:\n");
blob(hash_sha256, SHA256_DIGEST_SIZE, 16);
#endif
res = defex_public_key_verify_signature(pub_key, defex_public_key_size, signature, hash_sha256);
if (rules_size && !res)
*rules_size = rules_data_size - SIGN_SIZE;
kfree(pub_key);
clean_signature:
kfree(signature);
clean_hash_sha256:
kfree(hash_sha256);
clean_hash_sha256_first:
kfree(hash_sha256_first);
return res;
}