lineage_kernel_xcoverpro/fs/sdfat/mpage.c

727 lines
20 KiB
C
Executable File

/*
* fs/mpage.c
*
* Copyright (C) 2002, Linus Torvalds.
*
* Contains functions related to preparing and submitting BIOs which contain
* multiple pagecache pages.
*
* 15May2002 Andrew Morton
* Initial version
* 27Jun2002 axboe@suse.de
* use bio_add_page() to build bio's just the right size
*/
/*
* Copyright (C) 2012-2013 Samsung Electronics Co., Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/************************************************************************/
/* */
/* PROJECT : exFAT & FAT12/16/32 File System */
/* FILE : core.c */
/* PURPOSE : sdFAT glue layer for supporting VFS */
/* */
/*----------------------------------------------------------------------*/
/* NOTES */
/* */
/* */
/************************************************************************/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/buffer_head.h>
#include <linux/exportfs.h>
#include <linux/mount.h>
#include <linux/vfs.h>
#include <linux/parser.h>
#include <linux/uio.h>
#include <linux/writeback.h>
#include <linux/log2.h>
#include <linux/hash.h>
#include <linux/backing-dev.h>
#include <linux/sched.h>
#include <linux/fs_struct.h>
#include <linux/namei.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/swap.h> /* for mark_page_accessed() */
#include <asm/current.h>
#include <asm/unaligned.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0)
#include <linux/aio.h>
#endif
#include "sdfat.h"
#ifdef CONFIG_SDFAT_ALIGNED_MPAGE_WRITE
#define MIN_ALIGNED_SIZE (PAGE_SIZE)
#define MIN_ALIGNED_SIZE_MASK (MIN_ALIGNED_SIZE - 1)
/*************************************************************************
* INNER FUNCTIONS FOR FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY
*************************************************************************/
static void __mpage_write_end_io(struct bio *bio, int err);
/*************************************************************************
* FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY
*************************************************************************/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)
/* EMPTY */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 14, 0) */
static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
{
bio->bi_bdev = bdev;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)
static inline void __sdfat_clean_bdev_aliases(struct block_device *bdev, sector_t block)
{
clean_bdev_aliases(bdev, block, 1);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4,10,0) */
static inline void __sdfat_clean_bdev_aliases(struct block_device *bdev, sector_t block)
{
unmap_underlying_metadata(bdev, block);
}
static inline int wbc_to_write_flags(struct writeback_control *wbc)
{
if (wbc->sync_mode == WB_SYNC_ALL)
return WRITE_SYNC;
return 0;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0)
static inline void __sdfat_submit_bio_write2(int flags, struct bio *bio)
{
bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
submit_bio(bio);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4,8,0) */
static inline void __sdfat_submit_bio_write2(int flags, struct bio *bio)
{
submit_bio(WRITE | flags, bio);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
static inline int bio_get_nr_vecs(struct block_device *bdev)
{
return BIO_MAX_PAGES;
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4,1,0) */
/* EMPTY */
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
static inline sector_t __sdfat_bio_sector(struct bio *bio)
{
return bio->bi_iter.bi_sector;
}
static inline void __sdfat_set_bio_sector(struct bio *bio, sector_t sector)
{
bio->bi_iter.bi_sector = sector;
}
static inline unsigned int __sdfat_bio_size(struct bio *bio)
{
return bio->bi_iter.bi_size;
}
static inline void __sdfat_set_bio_size(struct bio *bio, unsigned int size)
{
bio->bi_iter.bi_size = size;
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 14, 0) */
static inline sector_t __sdfat_bio_sector(struct bio *bio)
{
return bio->bi_sector;
}
static inline void __sdfat_set_bio_sector(struct bio *bio, sector_t sector)
{
bio->bi_sector = sector;
}
static inline unsigned int __sdfat_bio_size(struct bio *bio)
{
return bio->bi_size;
}
static inline void __sdfat_set_bio_size(struct bio *bio, unsigned int size)
{
bio->bi_size = size;
}
#endif
/*************************************************************************
* MORE FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY
*************************************************************************/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 13, 0)
static void mpage_write_end_io(struct bio *bio)
{
__mpage_write_end_io(bio, blk_status_to_errno(bio->bi_status));
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 3, 0)
static void mpage_write_end_io(struct bio *bio)
{
__mpage_write_end_io(bio, bio->bi_error);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4,3,0) */
static void mpage_write_end_io(struct bio *bio, int err)
{
if (test_bit(BIO_UPTODATE, &bio->bi_flags))
err = 0;
__mpage_write_end_io(bio, err);
}
#endif
/* __check_dfr_on() and __dfr_writepage_end_io() functions
* are copied from sdfat.c
* Each function should be same perfectly
*/
static inline int __check_dfr_on(struct inode *inode, loff_t start, loff_t end, const char *fname)
{
#ifdef CONFIG_SDFAT_DFR
struct defrag_info *ino_dfr = &(SDFAT_I(inode)->dfr_info);
if ((atomic_read(&ino_dfr->stat) == DFR_INO_STAT_REQ) &&
fsapi_dfr_check_dfr_on(inode, start, end, 0, fname))
return 1;
#endif
return 0;
}
static inline int __dfr_writepage_end_io(struct page *page)
{
#ifdef CONFIG_SDFAT_DFR
struct defrag_info *ino_dfr = &(SDFAT_I(page->mapping->host)->dfr_info);
if (atomic_read(&ino_dfr->stat) == DFR_INO_STAT_REQ)
fsapi_dfr_writepage_endio(page);
#endif
return 0;
}
static inline unsigned int __calc_size_to_align(struct super_block *sb)
{
struct block_device *bdev = sb->s_bdev;
struct gendisk *disk;
struct request_queue *queue;
struct queue_limits *limit;
unsigned int max_sectors;
unsigned int aligned = 0;
disk = bdev->bd_disk;
if (!disk)
goto out;
queue = disk->queue;
if (!queue)
goto out;
limit = &queue->limits;
max_sectors = limit->max_sectors;
aligned = 1 << ilog2(max_sectors);
if (aligned && (max_sectors & (aligned - 1)))
aligned = 0;
if (aligned && aligned < (MIN_ALIGNED_SIZE >> SECTOR_SIZE_BITS))
aligned = 0;
out:
return aligned;
}
struct mpage_data {
struct bio *bio;
sector_t last_block_in_bio;
get_block_t *get_block;
unsigned int use_writepage;
unsigned int size_to_align;
};
/*
* After completing I/O on a page, call this routine to update the page
* flags appropriately
*/
static void __page_write_endio(struct page *page, int err)
{
if (err) {
struct address_space *mapping;
SetPageError(page);
mapping = page_mapping(page);
if (mapping)
mapping_set_error(mapping, err);
}
__dfr_writepage_end_io(page);
end_page_writeback(page);
}
/*
* I/O completion handler for multipage BIOs.
*
* The mpage code never puts partial pages into a BIO (except for end-of-file).
* If a page does not map to a contiguous run of blocks then it simply falls
* back to block_read_full_page().
*
* Why is this? If a page's completion depends on a number of different BIOs
* which can complete in any order (or at the same time) then determining the
* status of that page is hard. See end_buffer_async_read() for the details.
* There is no point in duplicating all that complexity.
*/
static void __mpage_write_end_io(struct bio *bio, int err)
{
struct bio_vec *bv;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 2, 0)
struct bvec_iter_all iter_all;
ASSERT(bio_data_dir(bio) == WRITE); /* only write */
/* Use bio_for_each_segemnt_all() to support multi-page bvec */
bio_for_each_segment_all(bv, bio, iter_all)
__page_write_endio(bv->bv_page, err);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(5, 1, 0)
struct bvec_iter_all iter_all;
int i;
ASSERT(bio_data_dir(bio) == WRITE); /* only write */
/* Use bio_for_each_segemnt_all() to support multi-page bvec */
bio_for_each_segment_all(bv, bio, i, iter_all)
__page_write_endio(bv->bv_page, err);
#else
ASSERT(bio_data_dir(bio) == WRITE); /* only write */
bv = bio->bi_io_vec + bio->bi_vcnt - 1;
do {
struct page *page = bv->bv_page;
if (--bv >= bio->bi_io_vec)
prefetchw(&bv->bv_page->flags);
__page_write_endio(page, err);
} while (bv >= bio->bi_io_vec);
#endif
bio_put(bio);
}
static struct bio *mpage_bio_submit_write(int flags, struct bio *bio)
{
bio->bi_end_io = mpage_write_end_io;
__sdfat_submit_bio_write2(flags, bio);
return NULL;
}
static struct bio *
mpage_alloc(struct block_device *bdev,
sector_t first_sector, int nr_vecs,
gfp_t gfp_flags)
{
struct bio *bio;
bio = bio_alloc(gfp_flags, nr_vecs);
if (bio == NULL && (current->flags & PF_MEMALLOC)) {
while (!bio && (nr_vecs /= 2))
bio = bio_alloc(gfp_flags, nr_vecs);
}
if (bio) {
bio_set_dev(bio, bdev);
__sdfat_set_bio_sector(bio, first_sector);
}
return bio;
}
#if IS_BUILTIN(CONFIG_SDFAT_FS)
#define __write_boundary_block write_boundary_block
#define sdfat_buffer_heads_over_limit buffer_heads_over_limit
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
/*
* Called when we've recently written block `bblock', and it is known that
* `bblock' was for a buffer_boundary() buffer. This means that the block at
* `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
* dirty, schedule it for IO. So that indirects merge nicely with their data.
*/
static void __write_boundary_block(struct block_device *bdev,
sector_t bblock, unsigned int blocksize)
{
struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
if (bh) {
if (buffer_dirty(bh))
ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
put_bh(bh);
}
}
#else
#warning "Need an alternative of write_boundary_block function"
#define __write_boundary_block write_boundary_block
#endif
#warning "sdfat could not check buffer_heads_over_limit on module. Assumed zero"
#define sdfat_buffer_heads_over_limit (0)
#endif
static void clean_buffers(struct page *page, unsigned int first_unmapped)
{
unsigned int buffer_counter = 0;
struct buffer_head *bh, *head;
if (!page_has_buffers(page))
return;
head = page_buffers(page);
bh = head;
do {
if (buffer_counter++ == first_unmapped)
break;
clear_buffer_dirty(bh);
bh = bh->b_this_page;
} while (bh != head);
/*
* we cannot drop the bh if the page is not uptodate or a concurrent
* readpage would fail to serialize with the bh and it would read from
* disk before we reach the platter.
*/
if (sdfat_buffer_heads_over_limit && PageUptodate(page))
try_to_free_buffers(page);
}
static int sdfat_mpage_writepage(struct page *page,
struct writeback_control *wbc, void *data)
{
struct mpage_data *mpd = data;
struct bio *bio = mpd->bio;
struct address_space *mapping = page->mapping;
struct inode *inode = page->mapping->host;
const unsigned int blkbits = inode->i_blkbits;
const unsigned int blocks_per_page = PAGE_SIZE >> blkbits;
sector_t last_block;
sector_t block_in_file;
sector_t blocks[MAX_BUF_PER_PAGE];
unsigned int page_block;
unsigned int first_unmapped = blocks_per_page;
struct block_device *bdev = NULL;
int boundary = 0;
sector_t boundary_block = 0;
struct block_device *boundary_bdev = NULL;
int length;
struct buffer_head map_bh;
loff_t i_size = i_size_read(inode);
unsigned long end_index = i_size >> PAGE_SHIFT;
int ret = 0;
int op_flags = wbc_to_write_flags(wbc);
if (page_has_buffers(page)) {
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh = head;
/* If they're all mapped and dirty, do it */
page_block = 0;
do {
BUG_ON(buffer_locked(bh));
if (!buffer_mapped(bh)) {
/*
* unmapped dirty buffers are created by
* __set_page_dirty_buffers -> mmapped data
*/
if (buffer_dirty(bh))
goto confused;
if (first_unmapped == blocks_per_page)
first_unmapped = page_block;
continue;
}
if (first_unmapped != blocks_per_page)
goto confused; /* hole -> non-hole */
if (!buffer_dirty(bh) || !buffer_uptodate(bh))
goto confused;
/* bh should be mapped if delay is set */
if (buffer_delay(bh)) {
sector_t blk_in_file =
(sector_t)(page->index << (PAGE_SHIFT - blkbits)) + page_block;
BUG_ON(bh->b_size != (1 << blkbits));
if (page->index > end_index) {
MMSG("%s(inode:%p) "
"over end with delayed buffer"
"(page_idx:%u, end_idx:%u)\n",
__func__, inode,
(u32)page->index,
(u32)end_index);
goto confused;
}
ret = mpd->get_block(inode, blk_in_file, bh, 1);
if (ret) {
MMSG("%s(inode:%p) "
"failed to getblk(ret:%d)\n",
__func__, inode, ret);
goto confused;
}
BUG_ON(buffer_delay(bh));
if (buffer_new(bh)) {
clear_buffer_new(bh);
__sdfat_clean_bdev_aliases(bh->b_bdev, bh->b_blocknr);
}
}
if (page_block) {
if (bh->b_blocknr != blocks[page_block-1] + 1) {
MMSG("%s(inode:%p) pblk(%d) "
"no_seq(prev:%lld, new:%lld)\n",
__func__, inode, page_block,
(u64)blocks[page_block-1],
(u64)bh->b_blocknr);
goto confused;
}
}
blocks[page_block++] = bh->b_blocknr;
boundary = buffer_boundary(bh);
if (boundary) {
boundary_block = bh->b_blocknr;
boundary_bdev = bh->b_bdev;
}
bdev = bh->b_bdev;
} while ((bh = bh->b_this_page) != head);
if (first_unmapped)
goto page_is_mapped;
/*
* Page has buffers, but they are all unmapped. The page was
* created by pagein or read over a hole which was handled by
* block_read_full_page(). If this address_space is also
* using mpage_readpages then this can rarely happen.
*/
goto confused;
}
/*
* The page has no buffers: map it to disk
*/
BUG_ON(!PageUptodate(page));
block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
last_block = (i_size - 1) >> blkbits;
map_bh.b_page = page;
for (page_block = 0; page_block < blocks_per_page; ) {
map_bh.b_state = 0;
map_bh.b_size = 1 << blkbits;
if (mpd->get_block(inode, block_in_file, &map_bh, 1))
goto confused;
if (buffer_new(&map_bh))
__sdfat_clean_bdev_aliases(map_bh.b_bdev, map_bh.b_blocknr);
if (buffer_boundary(&map_bh)) {
boundary_block = map_bh.b_blocknr;
boundary_bdev = map_bh.b_bdev;
}
if (page_block) {
if (map_bh.b_blocknr != blocks[page_block-1] + 1)
goto confused;
}
blocks[page_block++] = map_bh.b_blocknr;
boundary = buffer_boundary(&map_bh);
bdev = map_bh.b_bdev;
if (block_in_file == last_block)
break;
block_in_file++;
}
BUG_ON(page_block == 0);
first_unmapped = page_block;
page_is_mapped:
if (page->index >= end_index) {
/*
* The page straddles i_size. It must be zeroed out on each
* and every writepage invocation because it may be mmapped.
* "A file is mapped in multiples of the page size. For a file
* that is not a multiple of the page size, the remaining memory
* is zeroed when mapped, and writes to that region are not
* written out to the file."
*/
unsigned int offset = i_size & (PAGE_SIZE - 1);
if (page->index > end_index || !offset) {
MMSG("%s(inode:%p) over end "
"(page_idx:%u, end_idx:%u off:%u)\n",
__func__, inode, (u32)page->index,
(u32)end_index, (u32)offset);
goto confused;
}
zero_user_segment(page, offset, PAGE_SIZE);
}
/*
* This page will go to BIO. Do we need to send this BIO off first?
*
* REMARK : added ELSE_IF for ALIGNMENT_MPAGE_WRITE of SDFAT
*/
if (bio) {
if (mpd->last_block_in_bio != blocks[0] - 1) {
bio = mpage_bio_submit_write(op_flags, bio);
} else if (mpd->size_to_align) {
unsigned int mask = mpd->size_to_align - 1;
sector_t max_end_block =
(__sdfat_bio_sector(bio) & ~(mask)) + mask;
if ((__sdfat_bio_size(bio) & MIN_ALIGNED_SIZE_MASK) &&
(mpd->last_block_in_bio == max_end_block)) {
int op_nomerge = op_flags | REQ_NOMERGE;
MMSG("%s(inode:%p) alignment mpage_bio_submit"
"(start:%u, len:%u size:%u aligned:%u)\n",
__func__, inode,
(unsigned int)__sdfat_bio_sector(bio),
(unsigned int)(mpd->last_block_in_bio -
__sdfat_bio_sector(bio) + 1),
(unsigned int)__sdfat_bio_size(bio),
(unsigned int)mpd->size_to_align);
bio = mpage_bio_submit_write(op_nomerge, bio);
}
}
}
alloc_new:
if (!bio) {
bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
if (!bio)
goto confused;
}
/*
* Must try to add the page before marking the buffer clean or
* the confused fail path above (OOM) will be very confused when
* it finds all bh marked clean (i.e. it will not write anything)
*/
length = first_unmapped << blkbits;
if (bio_add_page(bio, page, length, 0) < length) {
bio = mpage_bio_submit_write(op_flags, bio);
goto alloc_new;
}
/*
* OK, we have our BIO, so we can now mark the buffers clean. Make
* sure to only clean buffers which we know we'll be writing.
*/
clean_buffers(page, first_unmapped);
BUG_ON(PageWriteback(page));
set_page_writeback(page);
/*
* FIXME FOR DEFRAGMENTATION : CODE REVIEW IS REQUIRED
*
* Turn off MAPPED flag in victim's bh if defrag on.
* Another write_begin can starts after get_block for defrag victims
* called.
* In this case, write_begin calls get_block and get original block
* number and previous defrag will be canceled.
*/
if (unlikely(__check_dfr_on(inode, (loff_t)(page->index << PAGE_SHIFT),
(loff_t)((page->index + 1) << PAGE_SHIFT), __func__))) {
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh = head;
do {
clear_buffer_mapped(bh);
bh = bh->b_this_page;
} while (bh != head);
}
unlock_page(page);
if (boundary || (first_unmapped != blocks_per_page)) {
bio = mpage_bio_submit_write(op_flags, bio);
if (boundary_block) {
__write_boundary_block(boundary_bdev,
boundary_block, 1 << blkbits);
}
} else {
mpd->last_block_in_bio = blocks[blocks_per_page - 1];
}
goto out;
confused:
if (bio)
bio = mpage_bio_submit_write(op_flags, bio);
if (mpd->use_writepage) {
ret = mapping->a_ops->writepage(page, wbc);
} else {
ret = -EAGAIN;
goto out;
}
/*
* The caller has a ref on the inode, so *mapping is stable
*/
mapping_set_error(mapping, ret);
out:
mpd->bio = bio;
return ret;
}
int sdfat_mpage_writepages(struct address_space *mapping,
struct writeback_control *wbc, get_block_t *get_block)
{
struct blk_plug plug;
int ret;
struct mpage_data mpd = {
.bio = NULL,
.last_block_in_bio = 0,
.get_block = get_block,
.use_writepage = 1,
.size_to_align = __calc_size_to_align(mapping->host->i_sb),
};
BUG_ON(!get_block);
blk_start_plug(&plug);
ret = write_cache_pages(mapping, wbc, sdfat_mpage_writepage, &mpd);
if (mpd.bio) {
int op_flags = wbc_to_write_flags(wbc);
mpage_bio_submit_write(op_flags, mpd.bio);
}
blk_finish_plug(&plug);
return ret;
}
#endif /* CONFIG_SDFAT_ALIGNED_MPAGE_WRITE */