lineage_kernel_xcoverpro/drivers/thermal/intel_soc_dts_iosf.c

479 lines
12 KiB
C
Executable File

/*
* intel_soc_dts_iosf.c
* Copyright (c) 2015, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <asm/iosf_mbi.h>
#include "intel_soc_dts_iosf.h"
#define SOC_DTS_OFFSET_ENABLE 0xB0
#define SOC_DTS_OFFSET_TEMP 0xB1
#define SOC_DTS_OFFSET_PTPS 0xB2
#define SOC_DTS_OFFSET_PTTS 0xB3
#define SOC_DTS_OFFSET_PTTSS 0xB4
#define SOC_DTS_OFFSET_PTMC 0x80
#define SOC_DTS_TE_AUX0 0xB5
#define SOC_DTS_TE_AUX1 0xB6
#define SOC_DTS_AUX0_ENABLE_BIT BIT(0)
#define SOC_DTS_AUX1_ENABLE_BIT BIT(1)
#define SOC_DTS_CPU_MODULE0_ENABLE_BIT BIT(16)
#define SOC_DTS_CPU_MODULE1_ENABLE_BIT BIT(17)
#define SOC_DTS_TE_SCI_ENABLE BIT(9)
#define SOC_DTS_TE_SMI_ENABLE BIT(10)
#define SOC_DTS_TE_MSI_ENABLE BIT(11)
#define SOC_DTS_TE_APICA_ENABLE BIT(14)
#define SOC_DTS_PTMC_APIC_DEASSERT_BIT BIT(4)
/* DTS encoding for TJ MAX temperature */
#define SOC_DTS_TJMAX_ENCODING 0x7F
/* Only 2 out of 4 is allowed for OSPM */
#define SOC_MAX_DTS_TRIPS 2
/* Mask for two trips in status bits */
#define SOC_DTS_TRIP_MASK 0x03
/* DTS0 and DTS 1 */
#define SOC_MAX_DTS_SENSORS 2
static int get_tj_max(u32 *tj_max)
{
u32 eax, edx;
u32 val;
int err;
err = rdmsr_safe(MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
if (err)
goto err_ret;
else {
val = (eax >> 16) & 0xff;
if (val)
*tj_max = val * 1000;
else {
err = -EINVAL;
goto err_ret;
}
}
return 0;
err_ret:
*tj_max = 0;
return err;
}
static int sys_get_trip_temp(struct thermal_zone_device *tzd, int trip,
int *temp)
{
int status;
u32 out;
struct intel_soc_dts_sensor_entry *dts;
struct intel_soc_dts_sensors *sensors;
dts = tzd->devdata;
sensors = dts->sensors;
mutex_lock(&sensors->dts_update_lock);
status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_PTPS, &out);
mutex_unlock(&sensors->dts_update_lock);
if (status)
return status;
out = (out >> (trip * 8)) & SOC_DTS_TJMAX_ENCODING;
if (!out)
*temp = 0;
else
*temp = sensors->tj_max - out * 1000;
return 0;
}
static int update_trip_temp(struct intel_soc_dts_sensor_entry *dts,
int thres_index, int temp,
enum thermal_trip_type trip_type)
{
int status;
u32 temp_out;
u32 out;
u32 store_ptps;
u32 store_ptmc;
u32 store_te_out;
u32 te_out;
u32 int_enable_bit = SOC_DTS_TE_APICA_ENABLE;
struct intel_soc_dts_sensors *sensors = dts->sensors;
if (sensors->intr_type == INTEL_SOC_DTS_INTERRUPT_MSI)
int_enable_bit |= SOC_DTS_TE_MSI_ENABLE;
temp_out = (sensors->tj_max - temp) / 1000;
status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_PTPS, &store_ptps);
if (status)
return status;
out = (store_ptps & ~(0xFF << (thres_index * 8)));
out |= (temp_out & 0xFF) << (thres_index * 8);
status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_PTPS, out);
if (status)
return status;
pr_debug("update_trip_temp PTPS = %x\n", out);
status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_PTMC, &out);
if (status)
goto err_restore_ptps;
store_ptmc = out;
status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_TE_AUX0 + thres_index,
&te_out);
if (status)
goto err_restore_ptmc;
store_te_out = te_out;
/* Enable for CPU module 0 and module 1 */
out |= (SOC_DTS_CPU_MODULE0_ENABLE_BIT |
SOC_DTS_CPU_MODULE1_ENABLE_BIT);
if (temp) {
if (thres_index)
out |= SOC_DTS_AUX1_ENABLE_BIT;
else
out |= SOC_DTS_AUX0_ENABLE_BIT;
te_out |= int_enable_bit;
} else {
if (thres_index)
out &= ~SOC_DTS_AUX1_ENABLE_BIT;
else
out &= ~SOC_DTS_AUX0_ENABLE_BIT;
te_out &= ~int_enable_bit;
}
status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_PTMC, out);
if (status)
goto err_restore_te_out;
status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_TE_AUX0 + thres_index,
te_out);
if (status)
goto err_restore_te_out;
dts->trip_types[thres_index] = trip_type;
return 0;
err_restore_te_out:
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_PTMC, store_te_out);
err_restore_ptmc:
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_PTMC, store_ptmc);
err_restore_ptps:
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_PTPS, store_ptps);
/* Nothing we can do if restore fails */
return status;
}
static int sys_set_trip_temp(struct thermal_zone_device *tzd, int trip,
int temp)
{
struct intel_soc_dts_sensor_entry *dts = tzd->devdata;
struct intel_soc_dts_sensors *sensors = dts->sensors;
int status;
if (temp > sensors->tj_max)
return -EINVAL;
mutex_lock(&sensors->dts_update_lock);
status = update_trip_temp(tzd->devdata, trip, temp,
dts->trip_types[trip]);
mutex_unlock(&sensors->dts_update_lock);
return status;
}
static int sys_get_trip_type(struct thermal_zone_device *tzd,
int trip, enum thermal_trip_type *type)
{
struct intel_soc_dts_sensor_entry *dts;
dts = tzd->devdata;
*type = dts->trip_types[trip];
return 0;
}
static int sys_get_curr_temp(struct thermal_zone_device *tzd,
int *temp)
{
int status;
u32 out;
struct intel_soc_dts_sensor_entry *dts;
struct intel_soc_dts_sensors *sensors;
dts = tzd->devdata;
sensors = dts->sensors;
status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_TEMP, &out);
if (status)
return status;
out = (out & dts->temp_mask) >> dts->temp_shift;
out -= SOC_DTS_TJMAX_ENCODING;
*temp = sensors->tj_max - out * 1000;
return 0;
}
static struct thermal_zone_device_ops tzone_ops = {
.get_temp = sys_get_curr_temp,
.get_trip_temp = sys_get_trip_temp,
.get_trip_type = sys_get_trip_type,
.set_trip_temp = sys_set_trip_temp,
};
static int soc_dts_enable(int id)
{
u32 out;
int ret;
ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_ENABLE, &out);
if (ret)
return ret;
if (!(out & BIT(id))) {
out |= BIT(id);
ret = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_ENABLE, out);
if (ret)
return ret;
}
return ret;
}
static void remove_dts_thermal_zone(struct intel_soc_dts_sensor_entry *dts)
{
if (dts) {
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_ENABLE, dts->store_status);
thermal_zone_device_unregister(dts->tzone);
}
}
static int add_dts_thermal_zone(int id, struct intel_soc_dts_sensor_entry *dts,
bool notification_support, int trip_cnt,
int read_only_trip_cnt)
{
char name[10];
int trip_count = 0;
int trip_mask = 0;
u32 store_ptps;
int ret;
int i;
/* Store status to restor on exit */
ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_ENABLE, &dts->store_status);
if (ret)
goto err_ret;
dts->id = id;
dts->temp_mask = 0x00FF << (id * 8);
dts->temp_shift = id * 8;
if (notification_support) {
trip_count = min(SOC_MAX_DTS_TRIPS, trip_cnt);
trip_mask = BIT(trip_count - read_only_trip_cnt) - 1;
}
/* Check if the writable trip we provide is not used by BIOS */
ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_PTPS, &store_ptps);
if (ret)
trip_mask = 0;
else {
for (i = 0; i < trip_count; ++i) {
if (trip_mask & BIT(i))
if (store_ptps & (0xff << (i * 8)))
trip_mask &= ~BIT(i);
}
}
dts->trip_mask = trip_mask;
dts->trip_count = trip_count;
snprintf(name, sizeof(name), "soc_dts%d", id);
dts->tzone = thermal_zone_device_register(name,
trip_count,
trip_mask,
dts, &tzone_ops,
NULL, 0, 0);
if (IS_ERR(dts->tzone)) {
ret = PTR_ERR(dts->tzone);
goto err_ret;
}
ret = soc_dts_enable(id);
if (ret)
goto err_enable;
return 0;
err_enable:
thermal_zone_device_unregister(dts->tzone);
err_ret:
return ret;
}
int intel_soc_dts_iosf_add_read_only_critical_trip(
struct intel_soc_dts_sensors *sensors, int critical_offset)
{
int i, j;
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
for (j = 0; j < sensors->soc_dts[i].trip_count; ++j) {
if (!(sensors->soc_dts[i].trip_mask & BIT(j))) {
return update_trip_temp(&sensors->soc_dts[i], j,
sensors->tj_max - critical_offset,
THERMAL_TRIP_CRITICAL);
}
}
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_add_read_only_critical_trip);
void intel_soc_dts_iosf_interrupt_handler(struct intel_soc_dts_sensors *sensors)
{
u32 sticky_out;
int status;
u32 ptmc_out;
unsigned long flags;
spin_lock_irqsave(&sensors->intr_notify_lock, flags);
status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_PTMC, &ptmc_out);
ptmc_out |= SOC_DTS_PTMC_APIC_DEASSERT_BIT;
status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_PTMC, ptmc_out);
status = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
SOC_DTS_OFFSET_PTTSS, &sticky_out);
pr_debug("status %d PTTSS %x\n", status, sticky_out);
if (sticky_out & SOC_DTS_TRIP_MASK) {
int i;
/* reset sticky bit */
status = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
SOC_DTS_OFFSET_PTTSS, sticky_out);
spin_unlock_irqrestore(&sensors->intr_notify_lock, flags);
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
pr_debug("TZD update for zone %d\n", i);
thermal_zone_device_update(sensors->soc_dts[i].tzone,
THERMAL_EVENT_UNSPECIFIED);
}
} else
spin_unlock_irqrestore(&sensors->intr_notify_lock, flags);
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_interrupt_handler);
struct intel_soc_dts_sensors *intel_soc_dts_iosf_init(
enum intel_soc_dts_interrupt_type intr_type, int trip_count,
int read_only_trip_count)
{
struct intel_soc_dts_sensors *sensors;
bool notification;
u32 tj_max;
int ret;
int i;
if (!iosf_mbi_available())
return ERR_PTR(-ENODEV);
if (!trip_count || read_only_trip_count > trip_count)
return ERR_PTR(-EINVAL);
if (get_tj_max(&tj_max))
return ERR_PTR(-EINVAL);
sensors = kzalloc(sizeof(*sensors), GFP_KERNEL);
if (!sensors)
return ERR_PTR(-ENOMEM);
spin_lock_init(&sensors->intr_notify_lock);
mutex_init(&sensors->dts_update_lock);
sensors->intr_type = intr_type;
sensors->tj_max = tj_max;
if (intr_type == INTEL_SOC_DTS_INTERRUPT_NONE)
notification = false;
else
notification = true;
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
sensors->soc_dts[i].sensors = sensors;
ret = add_dts_thermal_zone(i, &sensors->soc_dts[i],
notification, trip_count,
read_only_trip_count);
if (ret)
goto err_free;
}
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
ret = update_trip_temp(&sensors->soc_dts[i], 0, 0,
THERMAL_TRIP_PASSIVE);
if (ret)
goto err_remove_zone;
ret = update_trip_temp(&sensors->soc_dts[i], 1, 0,
THERMAL_TRIP_PASSIVE);
if (ret)
goto err_remove_zone;
}
return sensors;
err_remove_zone:
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i)
remove_dts_thermal_zone(&sensors->soc_dts[i]);
err_free:
kfree(sensors);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_init);
void intel_soc_dts_iosf_exit(struct intel_soc_dts_sensors *sensors)
{
int i;
for (i = 0; i < SOC_MAX_DTS_SENSORS; ++i) {
update_trip_temp(&sensors->soc_dts[i], 0, 0, 0);
update_trip_temp(&sensors->soc_dts[i], 1, 0, 0);
remove_dts_thermal_zone(&sensors->soc_dts[i]);
}
kfree(sensors);
}
EXPORT_SYMBOL_GPL(intel_soc_dts_iosf_exit);
MODULE_LICENSE("GPL v2");