398 lines
8.9 KiB
C
Executable File
398 lines
8.9 KiB
C
Executable File
/*
|
|
* Copyright (C) STMicroelectronics 2016
|
|
*
|
|
* Author: Gerald Baeza <gerald.baeza@st.com>
|
|
*
|
|
* License terms: GNU General Public License (GPL), version 2
|
|
*
|
|
* Inspired by timer-stm32.c from Maxime Coquelin
|
|
* pwm-atmel.c from Bo Shen
|
|
*/
|
|
|
|
#include <linux/mfd/stm32-timers.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pwm.h>
|
|
|
|
#define CCMR_CHANNEL_SHIFT 8
|
|
#define CCMR_CHANNEL_MASK 0xFF
|
|
#define MAX_BREAKINPUT 2
|
|
|
|
struct stm32_pwm {
|
|
struct pwm_chip chip;
|
|
struct device *dev;
|
|
struct clk *clk;
|
|
struct regmap *regmap;
|
|
u32 max_arr;
|
|
bool have_complementary_output;
|
|
};
|
|
|
|
struct stm32_breakinput {
|
|
u32 index;
|
|
u32 level;
|
|
u32 filter;
|
|
};
|
|
|
|
static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
|
|
{
|
|
return container_of(chip, struct stm32_pwm, chip);
|
|
}
|
|
|
|
static u32 active_channels(struct stm32_pwm *dev)
|
|
{
|
|
u32 ccer;
|
|
|
|
regmap_read(dev->regmap, TIM_CCER, &ccer);
|
|
|
|
return ccer & TIM_CCER_CCXE;
|
|
}
|
|
|
|
static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
|
|
{
|
|
switch (ch) {
|
|
case 0:
|
|
return regmap_write(dev->regmap, TIM_CCR1, value);
|
|
case 1:
|
|
return regmap_write(dev->regmap, TIM_CCR2, value);
|
|
case 2:
|
|
return regmap_write(dev->regmap, TIM_CCR3, value);
|
|
case 3:
|
|
return regmap_write(dev->regmap, TIM_CCR4, value);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
|
|
int duty_ns, int period_ns)
|
|
{
|
|
unsigned long long prd, div, dty;
|
|
unsigned int prescaler = 0;
|
|
u32 ccmr, mask, shift;
|
|
|
|
/* Period and prescaler values depends on clock rate */
|
|
div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
|
|
|
|
do_div(div, NSEC_PER_SEC);
|
|
prd = div;
|
|
|
|
while (div > priv->max_arr) {
|
|
prescaler++;
|
|
div = prd;
|
|
do_div(div, prescaler + 1);
|
|
}
|
|
|
|
prd = div;
|
|
|
|
if (prescaler > MAX_TIM_PSC)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* All channels share the same prescaler and counter so when two
|
|
* channels are active at the same time we can't change them
|
|
*/
|
|
if (active_channels(priv) & ~(1 << ch * 4)) {
|
|
u32 psc, arr;
|
|
|
|
regmap_read(priv->regmap, TIM_PSC, &psc);
|
|
regmap_read(priv->regmap, TIM_ARR, &arr);
|
|
|
|
if ((psc != prescaler) || (arr != prd - 1))
|
|
return -EBUSY;
|
|
}
|
|
|
|
regmap_write(priv->regmap, TIM_PSC, prescaler);
|
|
regmap_write(priv->regmap, TIM_ARR, prd - 1);
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
|
|
|
|
/* Calculate the duty cycles */
|
|
dty = prd * duty_ns;
|
|
do_div(dty, period_ns);
|
|
|
|
write_ccrx(priv, ch, dty);
|
|
|
|
/* Configure output mode */
|
|
shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
|
|
ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
|
|
mask = CCMR_CHANNEL_MASK << shift;
|
|
|
|
if (ch < 2)
|
|
regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
|
|
else
|
|
regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
|
|
|
|
regmap_update_bits(priv->regmap, TIM_BDTR,
|
|
TIM_BDTR_MOE | TIM_BDTR_AOE,
|
|
TIM_BDTR_MOE | TIM_BDTR_AOE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
|
|
enum pwm_polarity polarity)
|
|
{
|
|
u32 mask;
|
|
|
|
mask = TIM_CCER_CC1P << (ch * 4);
|
|
if (priv->have_complementary_output)
|
|
mask |= TIM_CCER_CC1NP << (ch * 4);
|
|
|
|
regmap_update_bits(priv->regmap, TIM_CCER, mask,
|
|
polarity == PWM_POLARITY_NORMAL ? 0 : mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
|
|
{
|
|
u32 mask;
|
|
int ret;
|
|
|
|
ret = clk_enable(priv->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Enable channel */
|
|
mask = TIM_CCER_CC1E << (ch * 4);
|
|
if (priv->have_complementary_output)
|
|
mask |= TIM_CCER_CC1NE << (ch * 4);
|
|
|
|
regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
|
|
|
|
/* Make sure that registers are updated */
|
|
regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
|
|
|
|
/* Enable controller */
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
|
|
{
|
|
u32 mask;
|
|
|
|
/* Disable channel */
|
|
mask = TIM_CCER_CC1E << (ch * 4);
|
|
if (priv->have_complementary_output)
|
|
mask |= TIM_CCER_CC1NE << (ch * 4);
|
|
|
|
regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
|
|
|
|
/* When all channels are disabled, we can disable the controller */
|
|
if (!active_channels(priv))
|
|
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
|
|
|
|
clk_disable(priv->clk);
|
|
}
|
|
|
|
static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
struct pwm_state *state)
|
|
{
|
|
bool enabled;
|
|
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
int ret;
|
|
|
|
enabled = pwm->state.enabled;
|
|
|
|
if (enabled && !state->enabled) {
|
|
stm32_pwm_disable(priv, pwm->hwpwm);
|
|
return 0;
|
|
}
|
|
|
|
if (state->polarity != pwm->state.polarity)
|
|
stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
|
|
|
|
ret = stm32_pwm_config(priv, pwm->hwpwm,
|
|
state->duty_cycle, state->period);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!enabled && state->enabled)
|
|
ret = stm32_pwm_enable(priv, pwm->hwpwm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct pwm_ops stm32pwm_ops = {
|
|
.owner = THIS_MODULE,
|
|
.apply = stm32_pwm_apply,
|
|
};
|
|
|
|
static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
|
|
int index, int level, int filter)
|
|
{
|
|
u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
|
|
int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
|
|
u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
|
|
: TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
|
|
u32 bdtr = bke;
|
|
|
|
/*
|
|
* The both bits could be set since only one will be wrote
|
|
* due to mask value.
|
|
*/
|
|
if (level)
|
|
bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
|
|
|
|
bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
|
|
|
|
regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
|
|
|
|
regmap_read(priv->regmap, TIM_BDTR, &bdtr);
|
|
|
|
return (bdtr & bke) ? 0 : -EINVAL;
|
|
}
|
|
|
|
static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
|
|
struct device_node *np)
|
|
{
|
|
struct stm32_breakinput breakinput[MAX_BREAKINPUT];
|
|
int nb, ret, i, array_size;
|
|
|
|
nb = of_property_count_elems_of_size(np, "st,breakinput",
|
|
sizeof(struct stm32_breakinput));
|
|
|
|
/*
|
|
* Because "st,breakinput" parameter is optional do not make probe
|
|
* failed if it doesn't exist.
|
|
*/
|
|
if (nb <= 0)
|
|
return 0;
|
|
|
|
if (nb > MAX_BREAKINPUT)
|
|
return -EINVAL;
|
|
|
|
array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
|
|
ret = of_property_read_u32_array(np, "st,breakinput",
|
|
(u32 *)breakinput, array_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < nb && !ret; i++) {
|
|
ret = stm32_pwm_set_breakinput(priv,
|
|
breakinput[i].index,
|
|
breakinput[i].level,
|
|
breakinput[i].filter);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
|
|
{
|
|
u32 ccer;
|
|
|
|
/*
|
|
* If complementary bit doesn't exist writing 1 will have no
|
|
* effect so we can detect it.
|
|
*/
|
|
regmap_update_bits(priv->regmap,
|
|
TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
|
|
regmap_read(priv->regmap, TIM_CCER, &ccer);
|
|
regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
|
|
|
|
priv->have_complementary_output = (ccer != 0);
|
|
}
|
|
|
|
static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
|
|
{
|
|
u32 ccer;
|
|
int npwm = 0;
|
|
|
|
/*
|
|
* If channels enable bits don't exist writing 1 will have no
|
|
* effect so we can detect and count them.
|
|
*/
|
|
regmap_update_bits(priv->regmap,
|
|
TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
|
|
regmap_read(priv->regmap, TIM_CCER, &ccer);
|
|
regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
|
|
|
|
if (ccer & TIM_CCER_CC1E)
|
|
npwm++;
|
|
|
|
if (ccer & TIM_CCER_CC2E)
|
|
npwm++;
|
|
|
|
if (ccer & TIM_CCER_CC3E)
|
|
npwm++;
|
|
|
|
if (ccer & TIM_CCER_CC4E)
|
|
npwm++;
|
|
|
|
return npwm;
|
|
}
|
|
|
|
static int stm32_pwm_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
|
|
struct stm32_pwm *priv;
|
|
int ret;
|
|
|
|
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
priv->regmap = ddata->regmap;
|
|
priv->clk = ddata->clk;
|
|
priv->max_arr = ddata->max_arr;
|
|
|
|
if (!priv->regmap || !priv->clk)
|
|
return -EINVAL;
|
|
|
|
ret = stm32_pwm_apply_breakinputs(priv, np);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stm32_pwm_detect_complementary(priv);
|
|
|
|
priv->chip.base = -1;
|
|
priv->chip.dev = dev;
|
|
priv->chip.ops = &stm32pwm_ops;
|
|
priv->chip.npwm = stm32_pwm_detect_channels(priv);
|
|
|
|
ret = pwmchip_add(&priv->chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
platform_set_drvdata(pdev, priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_pwm_remove(struct platform_device *pdev)
|
|
{
|
|
struct stm32_pwm *priv = platform_get_drvdata(pdev);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < priv->chip.npwm; i++)
|
|
pwm_disable(&priv->chip.pwms[i]);
|
|
|
|
pwmchip_remove(&priv->chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id stm32_pwm_of_match[] = {
|
|
{ .compatible = "st,stm32-pwm", },
|
|
{ /* end node */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
|
|
|
|
static struct platform_driver stm32_pwm_driver = {
|
|
.probe = stm32_pwm_probe,
|
|
.remove = stm32_pwm_remove,
|
|
.driver = {
|
|
.name = "stm32-pwm",
|
|
.of_match_table = stm32_pwm_of_match,
|
|
},
|
|
};
|
|
module_platform_driver(stm32_pwm_driver);
|
|
|
|
MODULE_ALIAS("platform:stm32-pwm");
|
|
MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
|
|
MODULE_LICENSE("GPL v2");
|