lineage_kernel_xcoverpro/drivers/pnp/pnpacpi/rsparser.c

957 lines
26 KiB
C
Executable File

/*
* pnpacpi -- PnP ACPI driver
*
* Copyright (c) 2004 Matthieu Castet <castet.matthieu@free.fr>
* Copyright (c) 2004 Li Shaohua <shaohua.li@intel.com>
* Copyright (C) 2008 Hewlett-Packard Development Company, L.P.
* Bjorn Helgaas <bjorn.helgaas@hp.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include <linux/pnp.h>
#include <linux/slab.h>
#include "../base.h"
#include "pnpacpi.h"
static void decode_irq_flags(struct pnp_dev *dev, int flags, u8 *triggering,
u8 *polarity, u8 *shareable)
{
switch (flags & (IORESOURCE_IRQ_LOWLEVEL | IORESOURCE_IRQ_HIGHLEVEL |
IORESOURCE_IRQ_LOWEDGE | IORESOURCE_IRQ_HIGHEDGE)) {
case IORESOURCE_IRQ_LOWLEVEL:
*triggering = ACPI_LEVEL_SENSITIVE;
*polarity = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHLEVEL:
*triggering = ACPI_LEVEL_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
case IORESOURCE_IRQ_LOWEDGE:
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHEDGE:
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
default:
dev_err(&dev->dev, "can't encode invalid IRQ mode %#x\n",
flags);
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
}
if (flags & IORESOURCE_IRQ_SHAREABLE)
*shareable = ACPI_SHARED;
else
*shareable = ACPI_EXCLUSIVE;
}
static int dma_flags(struct pnp_dev *dev, int type, int bus_master,
int transfer)
{
int flags = 0;
if (bus_master)
flags |= IORESOURCE_DMA_MASTER;
switch (type) {
case ACPI_COMPATIBILITY:
flags |= IORESOURCE_DMA_COMPATIBLE;
break;
case ACPI_TYPE_A:
flags |= IORESOURCE_DMA_TYPEA;
break;
case ACPI_TYPE_B:
flags |= IORESOURCE_DMA_TYPEB;
break;
case ACPI_TYPE_F:
flags |= IORESOURCE_DMA_TYPEF;
break;
default:
/* Set a default value ? */
flags |= IORESOURCE_DMA_COMPATIBLE;
dev_err(&dev->dev, "invalid DMA type %d\n", type);
}
switch (transfer) {
case ACPI_TRANSFER_8:
flags |= IORESOURCE_DMA_8BIT;
break;
case ACPI_TRANSFER_8_16:
flags |= IORESOURCE_DMA_8AND16BIT;
break;
case ACPI_TRANSFER_16:
flags |= IORESOURCE_DMA_16BIT;
break;
default:
/* Set a default value ? */
flags |= IORESOURCE_DMA_8AND16BIT;
dev_err(&dev->dev, "invalid DMA transfer type %d\n", transfer);
}
return flags;
}
/*
* Allocated Resources
*/
static void pnpacpi_add_irqresource(struct pnp_dev *dev, struct resource *r)
{
if (!(r->flags & IORESOURCE_DISABLED))
pcibios_penalize_isa_irq(r->start, 1);
pnp_add_resource(dev, r);
}
/*
* Device CSRs that do not appear in PCI config space should be described
* via ACPI. This would normally be done with Address Space Descriptors
* marked as "consumer-only," but old versions of Windows and Linux ignore
* the producer/consumer flag, so HP invented a vendor-defined resource to
* describe the location and size of CSR space.
*/
static struct acpi_vendor_uuid hp_ccsr_uuid = {
.subtype = 2,
.data = { 0xf9, 0xad, 0xe9, 0x69, 0x4f, 0x92, 0x5f, 0xab, 0xf6, 0x4a,
0x24, 0xd2, 0x01, 0x37, 0x0e, 0xad },
};
static int vendor_resource_matches(struct pnp_dev *dev,
struct acpi_resource_vendor_typed *vendor,
struct acpi_vendor_uuid *match,
int expected_len)
{
int uuid_len = sizeof(vendor->uuid);
u8 uuid_subtype = vendor->uuid_subtype;
u8 *uuid = vendor->uuid;
int actual_len;
/* byte_length includes uuid_subtype and uuid */
actual_len = vendor->byte_length - uuid_len - 1;
if (uuid_subtype == match->subtype &&
uuid_len == sizeof(match->data) &&
memcmp(uuid, match->data, uuid_len) == 0) {
if (expected_len && expected_len != actual_len) {
dev_err(&dev->dev,
"wrong vendor descriptor size; expected %d, found %d bytes\n",
expected_len, actual_len);
return 0;
}
return 1;
}
return 0;
}
static void pnpacpi_parse_allocated_vendor(struct pnp_dev *dev,
struct acpi_resource_vendor_typed *vendor)
{
if (vendor_resource_matches(dev, vendor, &hp_ccsr_uuid, 16)) {
u64 start, length;
memcpy(&start, vendor->byte_data, sizeof(start));
memcpy(&length, vendor->byte_data + 8, sizeof(length));
pnp_add_mem_resource(dev, start, start + length - 1, 0);
}
}
static acpi_status pnpacpi_allocated_resource(struct acpi_resource *res,
void *data)
{
struct pnp_dev *dev = data;
struct acpi_resource_dma *dma;
struct acpi_resource_vendor_typed *vendor_typed;
struct acpi_resource_gpio *gpio;
struct resource_win win = {{0}, 0};
struct resource *r = &win.res;
int i, flags;
if (acpi_dev_resource_address_space(res, &win)
|| acpi_dev_resource_ext_address_space(res, &win)) {
pnp_add_resource(dev, &win.res);
return AE_OK;
}
r->flags = 0;
if (acpi_dev_resource_interrupt(res, 0, r)) {
pnpacpi_add_irqresource(dev, r);
for (i = 1; acpi_dev_resource_interrupt(res, i, r); i++)
pnpacpi_add_irqresource(dev, r);
if (i > 1) {
/*
* The IRQ encoder puts a single interrupt in each
* descriptor, so if a _CRS descriptor has more than
* one interrupt, we won't be able to re-encode it.
*/
if (pnp_can_write(dev)) {
dev_warn(&dev->dev,
"multiple interrupts in _CRS descriptor; configuration can't be changed\n");
dev->capabilities &= ~PNP_WRITE;
}
}
return AE_OK;
} else if (acpi_gpio_get_irq_resource(res, &gpio)) {
/*
* If the resource is GpioInt() type then extract the IRQ
* from GPIO resource and fill it into IRQ resource type.
*/
i = acpi_dev_gpio_irq_get(dev->data, 0);
if (i >= 0) {
flags = acpi_dev_irq_flags(gpio->triggering,
gpio->polarity,
gpio->sharable);
} else {
flags = IORESOURCE_DISABLED;
}
pnp_add_irq_resource(dev, i, flags);
return AE_OK;
} else if (r->flags & IORESOURCE_DISABLED) {
pnp_add_irq_resource(dev, 0, IORESOURCE_DISABLED);
return AE_OK;
}
switch (res->type) {
case ACPI_RESOURCE_TYPE_MEMORY24:
case ACPI_RESOURCE_TYPE_MEMORY32:
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
if (acpi_dev_resource_memory(res, r))
pnp_add_resource(dev, r);
break;
case ACPI_RESOURCE_TYPE_IO:
case ACPI_RESOURCE_TYPE_FIXED_IO:
if (acpi_dev_resource_io(res, r))
pnp_add_resource(dev, r);
break;
case ACPI_RESOURCE_TYPE_DMA:
dma = &res->data.dma;
if (dma->channel_count > 0 && dma->channels[0] != (u8) -1)
flags = dma_flags(dev, dma->type, dma->bus_master,
dma->transfer);
else
flags = IORESOURCE_DISABLED;
pnp_add_dma_resource(dev, dma->channels[0], flags);
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
break;
case ACPI_RESOURCE_TYPE_VENDOR:
vendor_typed = &res->data.vendor_typed;
pnpacpi_parse_allocated_vendor(dev, vendor_typed);
break;
case ACPI_RESOURCE_TYPE_END_TAG:
break;
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
break;
case ACPI_RESOURCE_TYPE_SERIAL_BUS:
/* serial bus connections (I2C/SPI/UART) are not pnp */
break;
default:
dev_warn(&dev->dev, "unknown resource type %d in _CRS\n",
res->type);
return AE_ERROR;
}
return AE_OK;
}
int pnpacpi_parse_allocated_resource(struct pnp_dev *dev)
{
struct acpi_device *acpi_dev = dev->data;
acpi_handle handle = acpi_dev->handle;
acpi_status status;
pnp_dbg(&dev->dev, "parse allocated resources\n");
pnp_init_resources(dev);
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_allocated_resource, dev);
if (ACPI_FAILURE(status)) {
if (status != AE_NOT_FOUND)
dev_err(&dev->dev, "can't evaluate _CRS: %d", status);
return -EPERM;
}
return 0;
}
static __init void pnpacpi_parse_dma_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_dma *p)
{
int i;
unsigned char map = 0, flags;
for (i = 0; i < p->channel_count; i++)
map |= 1 << p->channels[i];
flags = dma_flags(dev, p->type, p->bus_master, p->transfer);
pnp_register_dma_resource(dev, option_flags, map, flags);
}
static __init void pnpacpi_parse_irq_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_irq *p)
{
int i;
pnp_irq_mask_t map;
unsigned char flags;
bitmap_zero(map.bits, PNP_IRQ_NR);
for (i = 0; i < p->interrupt_count; i++)
if (p->interrupts[i])
__set_bit(p->interrupts[i], map.bits);
flags = acpi_dev_irq_flags(p->triggering, p->polarity, p->sharable);
pnp_register_irq_resource(dev, option_flags, &map, flags);
}
static __init void pnpacpi_parse_ext_irq_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_extended_irq *p)
{
int i;
pnp_irq_mask_t map;
unsigned char flags;
bitmap_zero(map.bits, PNP_IRQ_NR);
for (i = 0; i < p->interrupt_count; i++) {
if (p->interrupts[i]) {
if (p->interrupts[i] < PNP_IRQ_NR)
__set_bit(p->interrupts[i], map.bits);
else
dev_err(&dev->dev,
"ignoring IRQ %d option (too large for %d entry bitmap)\n",
p->interrupts[i], PNP_IRQ_NR);
}
}
flags = acpi_dev_irq_flags(p->triggering, p->polarity, p->sharable);
pnp_register_irq_resource(dev, option_flags, &map, flags);
}
static __init void pnpacpi_parse_port_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_io *io)
{
unsigned char flags = 0;
if (io->io_decode == ACPI_DECODE_16)
flags = IORESOURCE_IO_16BIT_ADDR;
pnp_register_port_resource(dev, option_flags, io->minimum, io->maximum,
io->alignment, io->address_length, flags);
}
static __init void pnpacpi_parse_fixed_port_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_fixed_io *io)
{
pnp_register_port_resource(dev, option_flags, io->address, io->address,
0, io->address_length, IORESOURCE_IO_FIXED);
}
static __init void pnpacpi_parse_mem24_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_memory24 *p)
{
unsigned char flags = 0;
if (p->write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum,
p->alignment, p->address_length, flags);
}
static __init void pnpacpi_parse_mem32_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_memory32 *p)
{
unsigned char flags = 0;
if (p->write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum,
p->alignment, p->address_length, flags);
}
static __init void pnpacpi_parse_fixed_mem32_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_fixed_memory32 *p)
{
unsigned char flags = 0;
if (p->write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->address, p->address,
0, p->address_length, flags);
}
static __init void pnpacpi_parse_address_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource *r)
{
struct acpi_resource_address64 addr, *p = &addr;
acpi_status status;
unsigned char flags = 0;
status = acpi_resource_to_address64(r, p);
if (ACPI_FAILURE(status)) {
dev_warn(&dev->dev, "can't convert resource type %d\n",
r->type);
return;
}
if (p->resource_type == ACPI_MEMORY_RANGE) {
if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
flags);
} else if (p->resource_type == ACPI_IO_RANGE)
pnp_register_port_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
IORESOURCE_IO_FIXED);
}
static __init void pnpacpi_parse_ext_address_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource *r)
{
struct acpi_resource_extended_address64 *p = &r->data.ext_address64;
unsigned char flags = 0;
if (p->resource_type == ACPI_MEMORY_RANGE) {
if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
flags);
} else if (p->resource_type == ACPI_IO_RANGE)
pnp_register_port_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
IORESOURCE_IO_FIXED);
}
struct acpipnp_parse_option_s {
struct pnp_dev *dev;
unsigned int option_flags;
};
static __init acpi_status pnpacpi_option_resource(struct acpi_resource *res,
void *data)
{
int priority;
struct acpipnp_parse_option_s *parse_data = data;
struct pnp_dev *dev = parse_data->dev;
unsigned int option_flags = parse_data->option_flags;
switch (res->type) {
case ACPI_RESOURCE_TYPE_IRQ:
pnpacpi_parse_irq_option(dev, option_flags, &res->data.irq);
break;
case ACPI_RESOURCE_TYPE_DMA:
pnpacpi_parse_dma_option(dev, option_flags, &res->data.dma);
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
switch (res->data.start_dpf.compatibility_priority) {
case ACPI_GOOD_CONFIGURATION:
priority = PNP_RES_PRIORITY_PREFERRED;
break;
case ACPI_ACCEPTABLE_CONFIGURATION:
priority = PNP_RES_PRIORITY_ACCEPTABLE;
break;
case ACPI_SUB_OPTIMAL_CONFIGURATION:
priority = PNP_RES_PRIORITY_FUNCTIONAL;
break;
default:
priority = PNP_RES_PRIORITY_INVALID;
break;
}
parse_data->option_flags = pnp_new_dependent_set(dev, priority);
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
parse_data->option_flags = 0;
break;
case ACPI_RESOURCE_TYPE_IO:
pnpacpi_parse_port_option(dev, option_flags, &res->data.io);
break;
case ACPI_RESOURCE_TYPE_FIXED_IO:
pnpacpi_parse_fixed_port_option(dev, option_flags,
&res->data.fixed_io);
break;
case ACPI_RESOURCE_TYPE_VENDOR:
case ACPI_RESOURCE_TYPE_END_TAG:
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
pnpacpi_parse_mem24_option(dev, option_flags,
&res->data.memory24);
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
pnpacpi_parse_mem32_option(dev, option_flags,
&res->data.memory32);
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
pnpacpi_parse_fixed_mem32_option(dev, option_flags,
&res->data.fixed_memory32);
break;
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
pnpacpi_parse_address_option(dev, option_flags, res);
break;
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
pnpacpi_parse_ext_address_option(dev, option_flags, res);
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
pnpacpi_parse_ext_irq_option(dev, option_flags,
&res->data.extended_irq);
break;
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
break;
default:
dev_warn(&dev->dev, "unknown resource type %d in _PRS\n",
res->type);
return AE_ERROR;
}
return AE_OK;
}
int __init pnpacpi_parse_resource_option_data(struct pnp_dev *dev)
{
struct acpi_device *acpi_dev = dev->data;
acpi_handle handle = acpi_dev->handle;
acpi_status status;
struct acpipnp_parse_option_s parse_data;
pnp_dbg(&dev->dev, "parse resource options\n");
parse_data.dev = dev;
parse_data.option_flags = 0;
status = acpi_walk_resources(handle, METHOD_NAME__PRS,
pnpacpi_option_resource, &parse_data);
if (ACPI_FAILURE(status)) {
if (status != AE_NOT_FOUND)
dev_err(&dev->dev, "can't evaluate _PRS: %d", status);
return -EPERM;
}
return 0;
}
static int pnpacpi_supported_resource(struct acpi_resource *res)
{
switch (res->type) {
case ACPI_RESOURCE_TYPE_IRQ:
case ACPI_RESOURCE_TYPE_DMA:
case ACPI_RESOURCE_TYPE_IO:
case ACPI_RESOURCE_TYPE_FIXED_IO:
case ACPI_RESOURCE_TYPE_MEMORY24:
case ACPI_RESOURCE_TYPE_MEMORY32:
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
return 1;
}
return 0;
}
/*
* Set resource
*/
static acpi_status pnpacpi_count_resources(struct acpi_resource *res,
void *data)
{
int *res_cnt = data;
if (pnpacpi_supported_resource(res))
(*res_cnt)++;
return AE_OK;
}
static acpi_status pnpacpi_type_resources(struct acpi_resource *res, void *data)
{
struct acpi_resource **resource = data;
if (pnpacpi_supported_resource(res)) {
(*resource)->type = res->type;
(*resource)->length = sizeof(struct acpi_resource);
if (res->type == ACPI_RESOURCE_TYPE_IRQ)
(*resource)->data.irq.descriptor_length =
res->data.irq.descriptor_length;
(*resource)++;
}
return AE_OK;
}
int pnpacpi_build_resource_template(struct pnp_dev *dev,
struct acpi_buffer *buffer)
{
struct acpi_device *acpi_dev = dev->data;
acpi_handle handle = acpi_dev->handle;
struct acpi_resource *resource;
int res_cnt = 0;
acpi_status status;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_count_resources, &res_cnt);
if (ACPI_FAILURE(status)) {
dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status);
return -EINVAL;
}
if (!res_cnt)
return -EINVAL;
buffer->length = sizeof(struct acpi_resource) * (res_cnt + 1) + 1;
buffer->pointer = kzalloc(buffer->length - 1, GFP_KERNEL);
if (!buffer->pointer)
return -ENOMEM;
resource = (struct acpi_resource *)buffer->pointer;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_type_resources, &resource);
if (ACPI_FAILURE(status)) {
kfree(buffer->pointer);
dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status);
return -EINVAL;
}
/* resource will pointer the end resource now */
resource->type = ACPI_RESOURCE_TYPE_END_TAG;
resource->length = sizeof(struct acpi_resource);
return 0;
}
static void pnpacpi_encode_irq(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_irq *irq = &resource->data.irq;
u8 triggering, polarity, shareable;
if (!pnp_resource_enabled(p)) {
irq->interrupt_count = 0;
pnp_dbg(&dev->dev, " encode irq (%s)\n",
p ? "disabled" : "missing");
return;
}
decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable);
irq->triggering = triggering;
irq->polarity = polarity;
irq->sharable = shareable;
irq->interrupt_count = 1;
irq->interrupts[0] = p->start;
pnp_dbg(&dev->dev, " encode irq %d %s %s %s (%d-byte descriptor)\n",
(int) p->start,
triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge",
polarity == ACPI_ACTIVE_LOW ? "low" : "high",
irq->sharable == ACPI_SHARED ? "shared" : "exclusive",
irq->descriptor_length);
}
static void pnpacpi_encode_ext_irq(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_extended_irq *extended_irq = &resource->data.extended_irq;
u8 triggering, polarity, shareable;
if (!pnp_resource_enabled(p)) {
extended_irq->interrupt_count = 0;
pnp_dbg(&dev->dev, " encode extended irq (%s)\n",
p ? "disabled" : "missing");
return;
}
decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable);
extended_irq->producer_consumer = ACPI_CONSUMER;
extended_irq->triggering = triggering;
extended_irq->polarity = polarity;
extended_irq->sharable = shareable;
extended_irq->interrupt_count = 1;
extended_irq->interrupts[0] = p->start;
pnp_dbg(&dev->dev, " encode irq %d %s %s %s\n", (int) p->start,
triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge",
polarity == ACPI_ACTIVE_LOW ? "low" : "high",
extended_irq->sharable == ACPI_SHARED ? "shared" : "exclusive");
}
static void pnpacpi_encode_dma(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_dma *dma = &resource->data.dma;
if (!pnp_resource_enabled(p)) {
dma->channel_count = 0;
pnp_dbg(&dev->dev, " encode dma (%s)\n",
p ? "disabled" : "missing");
return;
}
/* Note: pnp_assign_dma will copy pnp_dma->flags into p->flags */
switch (p->flags & IORESOURCE_DMA_SPEED_MASK) {
case IORESOURCE_DMA_TYPEA:
dma->type = ACPI_TYPE_A;
break;
case IORESOURCE_DMA_TYPEB:
dma->type = ACPI_TYPE_B;
break;
case IORESOURCE_DMA_TYPEF:
dma->type = ACPI_TYPE_F;
break;
default:
dma->type = ACPI_COMPATIBILITY;
}
switch (p->flags & IORESOURCE_DMA_TYPE_MASK) {
case IORESOURCE_DMA_8BIT:
dma->transfer = ACPI_TRANSFER_8;
break;
case IORESOURCE_DMA_8AND16BIT:
dma->transfer = ACPI_TRANSFER_8_16;
break;
default:
dma->transfer = ACPI_TRANSFER_16;
}
dma->bus_master = !!(p->flags & IORESOURCE_DMA_MASTER);
dma->channel_count = 1;
dma->channels[0] = p->start;
pnp_dbg(&dev->dev, " encode dma %d "
"type %#x transfer %#x master %d\n",
(int) p->start, dma->type, dma->transfer, dma->bus_master);
}
static void pnpacpi_encode_io(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_io *io = &resource->data.io;
if (pnp_resource_enabled(p)) {
/* Note: pnp_assign_port copies pnp_port->flags into p->flags */
io->io_decode = (p->flags & IORESOURCE_IO_16BIT_ADDR) ?
ACPI_DECODE_16 : ACPI_DECODE_10;
io->minimum = p->start;
io->maximum = p->end;
io->alignment = 0; /* Correct? */
io->address_length = resource_size(p);
} else {
io->minimum = 0;
io->address_length = 0;
}
pnp_dbg(&dev->dev, " encode io %#x-%#x decode %#x\n", io->minimum,
io->minimum + io->address_length - 1, io->io_decode);
}
static void pnpacpi_encode_fixed_io(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_fixed_io *fixed_io = &resource->data.fixed_io;
if (pnp_resource_enabled(p)) {
fixed_io->address = p->start;
fixed_io->address_length = resource_size(p);
} else {
fixed_io->address = 0;
fixed_io->address_length = 0;
}
pnp_dbg(&dev->dev, " encode fixed_io %#x-%#x\n", fixed_io->address,
fixed_io->address + fixed_io->address_length - 1);
}
static void pnpacpi_encode_mem24(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_memory24 *memory24 = &resource->data.memory24;
if (pnp_resource_enabled(p)) {
/* Note: pnp_assign_mem copies pnp_mem->flags into p->flags */
memory24->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
memory24->minimum = p->start;
memory24->maximum = p->end;
memory24->alignment = 0;
memory24->address_length = resource_size(p);
} else {
memory24->minimum = 0;
memory24->address_length = 0;
}
pnp_dbg(&dev->dev, " encode mem24 %#x-%#x write_protect %#x\n",
memory24->minimum,
memory24->minimum + memory24->address_length - 1,
memory24->write_protect);
}
static void pnpacpi_encode_mem32(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_memory32 *memory32 = &resource->data.memory32;
if (pnp_resource_enabled(p)) {
memory32->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
memory32->minimum = p->start;
memory32->maximum = p->end;
memory32->alignment = 0;
memory32->address_length = resource_size(p);
} else {
memory32->minimum = 0;
memory32->alignment = 0;
}
pnp_dbg(&dev->dev, " encode mem32 %#x-%#x write_protect %#x\n",
memory32->minimum,
memory32->minimum + memory32->address_length - 1,
memory32->write_protect);
}
static void pnpacpi_encode_fixed_mem32(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_fixed_memory32 *fixed_memory32 = &resource->data.fixed_memory32;
if (pnp_resource_enabled(p)) {
fixed_memory32->write_protect =
p->flags & IORESOURCE_MEM_WRITEABLE ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
fixed_memory32->address = p->start;
fixed_memory32->address_length = resource_size(p);
} else {
fixed_memory32->address = 0;
fixed_memory32->address_length = 0;
}
pnp_dbg(&dev->dev, " encode fixed_mem32 %#x-%#x write_protect %#x\n",
fixed_memory32->address,
fixed_memory32->address + fixed_memory32->address_length - 1,
fixed_memory32->write_protect);
}
int pnpacpi_encode_resources(struct pnp_dev *dev, struct acpi_buffer *buffer)
{
int i = 0;
/* pnpacpi_build_resource_template allocates extra mem */
int res_cnt = (buffer->length - 1) / sizeof(struct acpi_resource) - 1;
struct acpi_resource *resource = buffer->pointer;
unsigned int port = 0, irq = 0, dma = 0, mem = 0;
pnp_dbg(&dev->dev, "encode %d resources\n", res_cnt);
while (i < res_cnt) {
switch (resource->type) {
case ACPI_RESOURCE_TYPE_IRQ:
pnpacpi_encode_irq(dev, resource,
pnp_get_resource(dev, IORESOURCE_IRQ, irq));
irq++;
break;
case ACPI_RESOURCE_TYPE_DMA:
pnpacpi_encode_dma(dev, resource,
pnp_get_resource(dev, IORESOURCE_DMA, dma));
dma++;
break;
case ACPI_RESOURCE_TYPE_IO:
pnpacpi_encode_io(dev, resource,
pnp_get_resource(dev, IORESOURCE_IO, port));
port++;
break;
case ACPI_RESOURCE_TYPE_FIXED_IO:
pnpacpi_encode_fixed_io(dev, resource,
pnp_get_resource(dev, IORESOURCE_IO, port));
port++;
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
pnpacpi_encode_mem24(dev, resource,
pnp_get_resource(dev, IORESOURCE_MEM, mem));
mem++;
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
pnpacpi_encode_mem32(dev, resource,
pnp_get_resource(dev, IORESOURCE_MEM, mem));
mem++;
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
pnpacpi_encode_fixed_mem32(dev, resource,
pnp_get_resource(dev, IORESOURCE_MEM, mem));
mem++;
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
pnpacpi_encode_ext_irq(dev, resource,
pnp_get_resource(dev, IORESOURCE_IRQ, irq));
irq++;
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
case ACPI_RESOURCE_TYPE_VENDOR:
case ACPI_RESOURCE_TYPE_END_TAG:
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
default: /* other type */
dev_warn(&dev->dev,
"can't encode unknown resource type %d\n",
resource->type);
return -EINVAL;
}
resource++;
i++;
}
return 0;
}