lineage_kernel_xcoverpro/drivers/net/ethernet/chelsio/cxgb3/ael1002.c

942 lines
23 KiB
C
Executable File

/*
* Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "common.h"
#include "regs.h"
enum {
AEL100X_TX_CONFIG1 = 0xc002,
AEL1002_PWR_DOWN_HI = 0xc011,
AEL1002_PWR_DOWN_LO = 0xc012,
AEL1002_XFI_EQL = 0xc015,
AEL1002_LB_EN = 0xc017,
AEL_OPT_SETTINGS = 0xc017,
AEL_I2C_CTRL = 0xc30a,
AEL_I2C_DATA = 0xc30b,
AEL_I2C_STAT = 0xc30c,
AEL2005_GPIO_CTRL = 0xc214,
AEL2005_GPIO_STAT = 0xc215,
AEL2020_GPIO_INTR = 0xc103, /* Latch High (LH) */
AEL2020_GPIO_CTRL = 0xc108, /* Store Clear (SC) */
AEL2020_GPIO_STAT = 0xc10c, /* Read Only (RO) */
AEL2020_GPIO_CFG = 0xc110, /* Read Write (RW) */
AEL2020_GPIO_SDA = 0, /* IN: i2c serial data */
AEL2020_GPIO_MODDET = 1, /* IN: Module Detect */
AEL2020_GPIO_0 = 3, /* IN: unassigned */
AEL2020_GPIO_1 = 2, /* OUT: unassigned */
AEL2020_GPIO_LSTAT = AEL2020_GPIO_1, /* wired to link status LED */
};
enum { edc_none, edc_sr, edc_twinax };
/* PHY module I2C device address */
enum {
MODULE_DEV_ADDR = 0xa0,
SFF_DEV_ADDR = 0xa2,
};
/* PHY transceiver type */
enum {
phy_transtype_unknown = 0,
phy_transtype_sfp = 3,
phy_transtype_xfp = 6,
};
#define AEL2005_MODDET_IRQ 4
struct reg_val {
unsigned short mmd_addr;
unsigned short reg_addr;
unsigned short clear_bits;
unsigned short set_bits;
};
static int set_phy_regs(struct cphy *phy, const struct reg_val *rv)
{
int err;
for (err = 0; rv->mmd_addr && !err; rv++) {
if (rv->clear_bits == 0xffff)
err = t3_mdio_write(phy, rv->mmd_addr, rv->reg_addr,
rv->set_bits);
else
err = t3_mdio_change_bits(phy, rv->mmd_addr,
rv->reg_addr, rv->clear_bits,
rv->set_bits);
}
return err;
}
static void ael100x_txon(struct cphy *phy)
{
int tx_on_gpio =
phy->mdio.prtad == 0 ? F_GPIO7_OUT_VAL : F_GPIO2_OUT_VAL;
msleep(100);
t3_set_reg_field(phy->adapter, A_T3DBG_GPIO_EN, 0, tx_on_gpio);
msleep(30);
}
/*
* Read an 8-bit word from a device attached to the PHY's i2c bus.
*/
static int ael_i2c_rd(struct cphy *phy, int dev_addr, int word_addr)
{
int i, err;
unsigned int stat, data;
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL_I2C_CTRL,
(dev_addr << 8) | (1 << 8) | word_addr);
if (err)
return err;
for (i = 0; i < 200; i++) {
msleep(1);
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_STAT, &stat);
if (err)
return err;
if ((stat & 3) == 1) {
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_DATA,
&data);
if (err)
return err;
return data >> 8;
}
}
CH_WARN(phy->adapter, "PHY %u i2c read of dev.addr %#x.%#x timed out\n",
phy->mdio.prtad, dev_addr, word_addr);
return -ETIMEDOUT;
}
static int ael1002_power_down(struct cphy *phy, int enable)
{
int err;
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_TXDIS, !!enable);
if (!err)
err = mdio_set_flag(&phy->mdio, phy->mdio.prtad,
MDIO_MMD_PMAPMD, MDIO_CTRL1,
MDIO_CTRL1_LPOWER, enable);
return err;
}
static int ael1002_reset(struct cphy *phy, int wait)
{
int err;
if ((err = ael1002_power_down(phy, 0)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL100X_TX_CONFIG1, 1)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_HI, 0)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_LO, 0)) ||
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_XFI_EQL, 0x18)) ||
(err = t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL1002_LB_EN,
0, 1 << 5)))
return err;
return 0;
}
static int ael1002_intr_noop(struct cphy *phy)
{
return 0;
}
/*
* Get link status for a 10GBASE-R device.
*/
static int get_link_status_r(struct cphy *phy, int *link_ok, int *speed,
int *duplex, int *fc)
{
if (link_ok) {
unsigned int stat0, stat1, stat2;
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
MDIO_PMA_RXDET, &stat0);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PCS,
MDIO_PCS_10GBRT_STAT1, &stat1);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
MDIO_PHYXS_LNSTAT, &stat2);
if (err)
return err;
*link_ok = (stat0 & stat1 & (stat2 >> 12)) & 1;
}
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
return 0;
}
static const struct cphy_ops ael1002_ops = {
.reset = ael1002_reset,
.intr_enable = ael1002_intr_noop,
.intr_disable = ael1002_intr_noop,
.intr_clear = ael1002_intr_noop,
.intr_handler = ael1002_intr_noop,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &ael1002_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
"10GBASE-R");
ael100x_txon(phy);
return 0;
}
static int ael1006_reset(struct cphy *phy, int wait)
{
return t3_phy_reset(phy, MDIO_MMD_PMAPMD, wait);
}
static const struct cphy_ops ael1006_ops = {
.reset = ael1006_reset,
.intr_enable = t3_phy_lasi_intr_enable,
.intr_disable = t3_phy_lasi_intr_disable,
.intr_clear = t3_phy_lasi_intr_clear,
.intr_handler = t3_phy_lasi_intr_handler,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &ael1006_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
"10GBASE-SR");
ael100x_txon(phy);
return 0;
}
/*
* Decode our module type.
*/
static int ael2xxx_get_module_type(struct cphy *phy, int delay_ms)
{
int v;
if (delay_ms)
msleep(delay_ms);
/* see SFF-8472 for below */
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 3);
if (v < 0)
return v;
if (v == 0x10)
return phy_modtype_sr;
if (v == 0x20)
return phy_modtype_lr;
if (v == 0x40)
return phy_modtype_lrm;
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 6);
if (v < 0)
return v;
if (v != 4)
goto unknown;
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 10);
if (v < 0)
return v;
if (v & 0x80) {
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 0x12);
if (v < 0)
return v;
return v > 10 ? phy_modtype_twinax_long : phy_modtype_twinax;
}
unknown:
return phy_modtype_unknown;
}
/*
* Code to support the Aeluros/NetLogic 2005 10Gb PHY.
*/
static int ael2005_setup_sr_edc(struct cphy *phy)
{
static const struct reg_val regs[] = {
{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x181 },
{ MDIO_MMD_PMAPMD, 0xc010, 0xffff, 0x448a },
{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5200 },
{ 0, 0, 0, 0 }
};
int i, err;
err = set_phy_regs(phy, regs);
if (err)
return err;
msleep(50);
if (phy->priv != edc_sr)
err = t3_get_edc_fw(phy, EDC_OPT_AEL2005,
EDC_OPT_AEL2005_SIZE);
if (err)
return err;
for (i = 0; i < EDC_OPT_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
phy->phy_cache[i],
phy->phy_cache[i + 1]);
if (!err)
phy->priv = edc_sr;
return err;
}
static int ael2005_setup_twinax_edc(struct cphy *phy, int modtype)
{
static const struct reg_val regs[] = {
{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5a00 },
{ 0, 0, 0, 0 }
};
static const struct reg_val preemphasis[] = {
{ MDIO_MMD_PMAPMD, 0xc014, 0xffff, 0xfe16 },
{ MDIO_MMD_PMAPMD, 0xc015, 0xffff, 0xa000 },
{ 0, 0, 0, 0 }
};
int i, err;
err = set_phy_regs(phy, regs);
if (!err && modtype == phy_modtype_twinax_long)
err = set_phy_regs(phy, preemphasis);
if (err)
return err;
msleep(50);
if (phy->priv != edc_twinax)
err = t3_get_edc_fw(phy, EDC_TWX_AEL2005,
EDC_TWX_AEL2005_SIZE);
if (err)
return err;
for (i = 0; i < EDC_TWX_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
phy->phy_cache[i],
phy->phy_cache[i + 1]);
if (!err)
phy->priv = edc_twinax;
return err;
}
static int ael2005_get_module_type(struct cphy *phy, int delay_ms)
{
int v;
unsigned int stat;
v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, &stat);
if (v)
return v;
if (stat & (1 << 8)) /* module absent */
return phy_modtype_none;
return ael2xxx_get_module_type(phy, delay_ms);
}
static int ael2005_intr_enable(struct cphy *phy)
{
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x200);
return err ? err : t3_phy_lasi_intr_enable(phy);
}
static int ael2005_intr_disable(struct cphy *phy)
{
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x100);
return err ? err : t3_phy_lasi_intr_disable(phy);
}
static int ael2005_intr_clear(struct cphy *phy)
{
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0xd00);
return err ? err : t3_phy_lasi_intr_clear(phy);
}
static int ael2005_reset(struct cphy *phy, int wait)
{
static const struct reg_val regs0[] = {
{ MDIO_MMD_PMAPMD, 0xc001, 0, 1 << 5 },
{ MDIO_MMD_PMAPMD, 0xc017, 0, 1 << 5 },
{ MDIO_MMD_PMAPMD, 0xc013, 0xffff, 0xf341 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8100 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0 },
{ 0, 0, 0, 0 }
};
static const struct reg_val regs1[] = {
{ MDIO_MMD_PMAPMD, 0xca00, 0xffff, 0x0080 },
{ MDIO_MMD_PMAPMD, 0xca12, 0xffff, 0 },
{ 0, 0, 0, 0 }
};
int err;
unsigned int lasi_ctrl;
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
&lasi_ctrl);
if (err)
return err;
err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 0);
if (err)
return err;
msleep(125);
phy->priv = edc_none;
err = set_phy_regs(phy, regs0);
if (err)
return err;
msleep(50);
err = ael2005_get_module_type(phy, 0);
if (err < 0)
return err;
phy->modtype = err;
if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
err = ael2005_setup_twinax_edc(phy, err);
else
err = ael2005_setup_sr_edc(phy);
if (err)
return err;
err = set_phy_regs(phy, regs1);
if (err)
return err;
/* reset wipes out interrupts, reenable them if they were on */
if (lasi_ctrl & 1)
err = ael2005_intr_enable(phy);
return err;
}
static int ael2005_intr_handler(struct cphy *phy)
{
unsigned int stat;
int ret, edc_needed, cause = 0;
ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_STAT, &stat);
if (ret)
return ret;
if (stat & AEL2005_MODDET_IRQ) {
ret = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL,
0xd00);
if (ret)
return ret;
/* modules have max 300 ms init time after hot plug */
ret = ael2005_get_module_type(phy, 300);
if (ret < 0)
return ret;
phy->modtype = ret;
if (ret == phy_modtype_none)
edc_needed = phy->priv; /* on unplug retain EDC */
else if (ret == phy_modtype_twinax ||
ret == phy_modtype_twinax_long)
edc_needed = edc_twinax;
else
edc_needed = edc_sr;
if (edc_needed != phy->priv) {
ret = ael2005_reset(phy, 0);
return ret ? ret : cphy_cause_module_change;
}
cause = cphy_cause_module_change;
}
ret = t3_phy_lasi_intr_handler(phy);
if (ret < 0)
return ret;
ret |= cause;
return ret ? ret : cphy_cause_link_change;
}
static const struct cphy_ops ael2005_ops = {
.reset = ael2005_reset,
.intr_enable = ael2005_intr_enable,
.intr_disable = ael2005_intr_disable,
.intr_clear = ael2005_intr_clear,
.intr_handler = ael2005_intr_handler,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael2005_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &ael2005_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
SUPPORTED_IRQ, "10GBASE-R");
msleep(125);
return t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL_OPT_SETTINGS, 0,
1 << 5);
}
/*
* Setup EDC and other parameters for operation with an optical module.
*/
static int ael2020_setup_sr_edc(struct cphy *phy)
{
static const struct reg_val regs[] = {
/* set CDR offset to 10 */
{ MDIO_MMD_PMAPMD, 0xcc01, 0xffff, 0x488a },
/* adjust 10G RX bias current */
{ MDIO_MMD_PMAPMD, 0xcb1b, 0xffff, 0x0200 },
{ MDIO_MMD_PMAPMD, 0xcb1c, 0xffff, 0x00f0 },
{ MDIO_MMD_PMAPMD, 0xcc06, 0xffff, 0x00e0 },
/* end */
{ 0, 0, 0, 0 }
};
int err;
err = set_phy_regs(phy, regs);
msleep(50);
if (err)
return err;
phy->priv = edc_sr;
return 0;
}
/*
* Setup EDC and other parameters for operation with an TWINAX module.
*/
static int ael2020_setup_twinax_edc(struct cphy *phy, int modtype)
{
/* set uC to 40MHz */
static const struct reg_val uCclock40MHz[] = {
{ MDIO_MMD_PMAPMD, 0xff28, 0xffff, 0x4001 },
{ MDIO_MMD_PMAPMD, 0xff2a, 0xffff, 0x0002 },
{ 0, 0, 0, 0 }
};
/* activate uC clock */
static const struct reg_val uCclockActivate[] = {
{ MDIO_MMD_PMAPMD, 0xd000, 0xffff, 0x5200 },
{ 0, 0, 0, 0 }
};
/* set PC to start of SRAM and activate uC */
static const struct reg_val uCactivate[] = {
{ MDIO_MMD_PMAPMD, 0xd080, 0xffff, 0x0100 },
{ MDIO_MMD_PMAPMD, 0xd092, 0xffff, 0x0000 },
{ 0, 0, 0, 0 }
};
int i, err;
/* set uC clock and activate it */
err = set_phy_regs(phy, uCclock40MHz);
msleep(500);
if (err)
return err;
err = set_phy_regs(phy, uCclockActivate);
msleep(500);
if (err)
return err;
if (phy->priv != edc_twinax)
err = t3_get_edc_fw(phy, EDC_TWX_AEL2020,
EDC_TWX_AEL2020_SIZE);
if (err)
return err;
for (i = 0; i < EDC_TWX_AEL2020_SIZE / sizeof(u16) && !err; i += 2)
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
phy->phy_cache[i],
phy->phy_cache[i + 1]);
/* activate uC */
err = set_phy_regs(phy, uCactivate);
if (!err)
phy->priv = edc_twinax;
return err;
}
/*
* Return Module Type.
*/
static int ael2020_get_module_type(struct cphy *phy, int delay_ms)
{
int v;
unsigned int stat;
v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_STAT, &stat);
if (v)
return v;
if (stat & (0x1 << (AEL2020_GPIO_MODDET*4))) {
/* module absent */
return phy_modtype_none;
}
return ael2xxx_get_module_type(phy, delay_ms);
}
/*
* Enable PHY interrupts. We enable "Module Detection" interrupts (on any
* state transition) and then generic Link Alarm Status Interrupt (LASI).
*/
static int ael2020_intr_enable(struct cphy *phy)
{
static const struct reg_val regs[] = {
/* output Module's Loss Of Signal (LOS) to LED */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CFG+AEL2020_GPIO_LSTAT,
0xffff, 0x4 },
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0x8 << (AEL2020_GPIO_LSTAT*4) },
/* enable module detect status change interrupts */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0x2 << (AEL2020_GPIO_MODDET*4) },
/* end */
{ 0, 0, 0, 0 }
};
int err, link_ok = 0;
/* set up "link status" LED and enable module change interrupts */
err = set_phy_regs(phy, regs);
if (err)
return err;
err = get_link_status_r(phy, &link_ok, NULL, NULL, NULL);
if (err)
return err;
if (link_ok)
t3_link_changed(phy->adapter,
phy2portid(phy));
err = t3_phy_lasi_intr_enable(phy);
if (err)
return err;
return 0;
}
/*
* Disable PHY interrupts. The mirror of the above ...
*/
static int ael2020_intr_disable(struct cphy *phy)
{
static const struct reg_val regs[] = {
/* reset "link status" LED to "off" */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0xb << (AEL2020_GPIO_LSTAT*4) },
/* disable module detect status change interrupts */
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
0xffff, 0x1 << (AEL2020_GPIO_MODDET*4) },
/* end */
{ 0, 0, 0, 0 }
};
int err;
/* turn off "link status" LED and disable module change interrupts */
err = set_phy_regs(phy, regs);
if (err)
return err;
return t3_phy_lasi_intr_disable(phy);
}
/*
* Clear PHY interrupt state.
*/
static int ael2020_intr_clear(struct cphy *phy)
{
/*
* The GPIO Interrupt register on the AEL2020 is a "Latching High"
* (LH) register which is cleared to the current state when it's read.
* Thus, we simply read the register and discard the result.
*/
unsigned int stat;
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
return err ? err : t3_phy_lasi_intr_clear(phy);
}
static const struct reg_val ael2020_reset_regs[] = {
/* Erratum #2: CDRLOL asserted, causing PMA link down status */
{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x3101 },
/* force XAUI to send LF when RX_LOS is asserted */
{ MDIO_MMD_PMAPMD, 0xcd40, 0xffff, 0x0001 },
/* allow writes to transceiver module EEPROM on i2c bus */
{ MDIO_MMD_PMAPMD, 0xff02, 0xffff, 0x0023 },
{ MDIO_MMD_PMAPMD, 0xff03, 0xffff, 0x0000 },
{ MDIO_MMD_PMAPMD, 0xff04, 0xffff, 0x0000 },
/* end */
{ 0, 0, 0, 0 }
};
/*
* Reset the PHY and put it into a canonical operating state.
*/
static int ael2020_reset(struct cphy *phy, int wait)
{
int err;
unsigned int lasi_ctrl;
/* grab current interrupt state */
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
&lasi_ctrl);
if (err)
return err;
err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 125);
if (err)
return err;
msleep(100);
/* basic initialization for all module types */
phy->priv = edc_none;
err = set_phy_regs(phy, ael2020_reset_regs);
if (err)
return err;
/* determine module type and perform appropriate initialization */
err = ael2020_get_module_type(phy, 0);
if (err < 0)
return err;
phy->modtype = (u8)err;
if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
err = ael2020_setup_twinax_edc(phy, err);
else
err = ael2020_setup_sr_edc(phy);
if (err)
return err;
/* reset wipes out interrupts, reenable them if they were on */
if (lasi_ctrl & 1)
err = ael2005_intr_enable(phy);
return err;
}
/*
* Handle a PHY interrupt.
*/
static int ael2020_intr_handler(struct cphy *phy)
{
unsigned int stat;
int ret, edc_needed, cause = 0;
ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
if (ret)
return ret;
if (stat & (0x1 << AEL2020_GPIO_MODDET)) {
/* modules have max 300 ms init time after hot plug */
ret = ael2020_get_module_type(phy, 300);
if (ret < 0)
return ret;
phy->modtype = (u8)ret;
if (ret == phy_modtype_none)
edc_needed = phy->priv; /* on unplug retain EDC */
else if (ret == phy_modtype_twinax ||
ret == phy_modtype_twinax_long)
edc_needed = edc_twinax;
else
edc_needed = edc_sr;
if (edc_needed != phy->priv) {
ret = ael2020_reset(phy, 0);
return ret ? ret : cphy_cause_module_change;
}
cause = cphy_cause_module_change;
}
ret = t3_phy_lasi_intr_handler(phy);
if (ret < 0)
return ret;
ret |= cause;
return ret ? ret : cphy_cause_link_change;
}
static const struct cphy_ops ael2020_ops = {
.reset = ael2020_reset,
.intr_enable = ael2020_intr_enable,
.intr_disable = ael2020_intr_disable,
.intr_clear = ael2020_intr_clear,
.intr_handler = ael2020_intr_handler,
.get_link_status = get_link_status_r,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_ael2020_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr,
const struct mdio_ops *mdio_ops)
{
int err;
cphy_init(phy, adapter, phy_addr, &ael2020_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
SUPPORTED_IRQ, "10GBASE-R");
msleep(125);
err = set_phy_regs(phy, ael2020_reset_regs);
if (err)
return err;
return 0;
}
/*
* Get link status for a 10GBASE-X device.
*/
static int get_link_status_x(struct cphy *phy, int *link_ok, int *speed,
int *duplex, int *fc)
{
if (link_ok) {
unsigned int stat0, stat1, stat2;
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
MDIO_PMA_RXDET, &stat0);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PCS,
MDIO_PCS_10GBX_STAT1, &stat1);
if (!err)
err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
MDIO_PHYXS_LNSTAT, &stat2);
if (err)
return err;
*link_ok = (stat0 & (stat1 >> 12) & (stat2 >> 12)) & 1;
}
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
return 0;
}
static const struct cphy_ops qt2045_ops = {
.reset = ael1006_reset,
.intr_enable = t3_phy_lasi_intr_enable,
.intr_disable = t3_phy_lasi_intr_disable,
.intr_clear = t3_phy_lasi_intr_clear,
.intr_handler = t3_phy_lasi_intr_handler,
.get_link_status = get_link_status_x,
.power_down = ael1002_power_down,
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
};
int t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
unsigned int stat;
cphy_init(phy, adapter, phy_addr, &qt2045_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
"10GBASE-CX4");
/*
* Some cards where the PHY is supposed to be at address 0 actually
* have it at 1.
*/
if (!phy_addr &&
!t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_STAT1, &stat) &&
stat == 0xffff)
phy->mdio.prtad = 1;
return 0;
}
static int xaui_direct_reset(struct cphy *phy, int wait)
{
return 0;
}
static int xaui_direct_get_link_status(struct cphy *phy, int *link_ok,
int *speed, int *duplex, int *fc)
{
if (link_ok) {
unsigned int status;
int prtad = phy->mdio.prtad;
status = t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT0, prtad)) |
t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT1, prtad)) |
t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT2, prtad)) |
t3_read_reg(phy->adapter,
XGM_REG(A_XGM_SERDES_STAT3, prtad));
*link_ok = !(status & F_LOWSIG0);
}
if (speed)
*speed = SPEED_10000;
if (duplex)
*duplex = DUPLEX_FULL;
return 0;
}
static int xaui_direct_power_down(struct cphy *phy, int enable)
{
return 0;
}
static const struct cphy_ops xaui_direct_ops = {
.reset = xaui_direct_reset,
.intr_enable = ael1002_intr_noop,
.intr_disable = ael1002_intr_noop,
.intr_clear = ael1002_intr_noop,
.intr_handler = ael1002_intr_noop,
.get_link_status = xaui_direct_get_link_status,
.power_down = xaui_direct_power_down,
};
int t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter,
int phy_addr, const struct mdio_ops *mdio_ops)
{
cphy_init(phy, adapter, phy_addr, &xaui_direct_ops, mdio_ops,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
"10GBASE-CX4");
return 0;
}