lineage_kernel_xcoverpro/arch/mn10300/include/asm/pgtable.h

495 lines
16 KiB
C
Executable File

/* MN10300 Page table manipulators and constants
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*
*
* The Linux memory management assumes a three-level page table setup. On
* the i386, we use that, but "fold" the mid level into the top-level page
* table, so that we physically have the same two-level page table as the
* i386 mmu expects.
*
* This file contains the functions and defines necessary to modify and use
* the i386 page table tree for the purposes of the MN10300 TLB handler
* functions.
*/
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H
#include <asm/cpu-regs.h>
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <asm/cache.h>
#include <linux/threads.h>
#include <asm/bitops.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
extern unsigned long empty_zero_page[1024];
extern spinlock_t pgd_lock;
extern struct page *pgd_list;
extern void pmd_ctor(void *, struct kmem_cache *, unsigned long);
extern void pgtable_cache_init(void);
extern void paging_init(void);
#endif /* !__ASSEMBLY__ */
/*
* The Linux mn10300 paging architecture only implements both the traditional
* 2-level page tables
*/
#define PGDIR_SHIFT 22
#define PTRS_PER_PGD 1024
#define PTRS_PER_PUD 1 /* we don't really have any PUD physically */
#define __PAGETABLE_PUD_FOLDED
#define PTRS_PER_PMD 1 /* we don't really have any PMD physically */
#define __PAGETABLE_PMD_FOLDED
#define PTRS_PER_PTE 1024
#define PGD_SIZE PAGE_SIZE
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE - 1))
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#define FIRST_USER_ADDRESS 0UL
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
#define TWOLEVEL_PGDIR_SHIFT 22
#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
#define BOOT_KERNEL_PGD_PTRS (1024 - BOOT_USER_PGD_PTRS)
#ifndef __ASSEMBLY__
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
#endif
/*
* Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM
* area has to be in the lower half of the virtual address range (the upper
* half is not translated through the TLB).
*
* So in this case, the vmalloc area goes at the bottom of the address map
* (leaving a hole at the very bottom to catch addressing errors), and
* userspace starts immediately above.
*
* The vmalloc() routines also leaves a hole of 4kB between each vmalloced
* area to catch addressing errors.
*/
#ifndef __ASSEMBLY__
#define VMALLOC_OFFSET (8UL * 1024 * 1024)
#define VMALLOC_START (0x70000000UL)
#define VMALLOC_END (0x7C000000UL)
#else
#define VMALLOC_OFFSET (8 * 1024 * 1024)
#define VMALLOC_START (0x70000000)
#define VMALLOC_END (0x7C000000)
#endif
#ifndef __ASSEMBLY__
extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE];
#endif
/* IPTEL2/DPTEL2 bit assignments */
#define _PAGE_BIT_VALID xPTEL2_V_BIT
#define _PAGE_BIT_CACHE xPTEL2_C_BIT
#define _PAGE_BIT_PRESENT xPTEL2_PV_BIT
#define _PAGE_BIT_DIRTY xPTEL2_D_BIT
#define _PAGE_BIT_GLOBAL xPTEL2_G_BIT
#define _PAGE_BIT_ACCESSED xPTEL2_UNUSED1_BIT /* mustn't be loaded into IPTEL2/DPTEL2 */
#define _PAGE_VALID xPTEL2_V
#define _PAGE_CACHE xPTEL2_C
#define _PAGE_PRESENT xPTEL2_PV
#define _PAGE_DIRTY xPTEL2_D
#define _PAGE_PROT xPTEL2_PR
#define _PAGE_PROT_RKNU xPTEL2_PR_ROK
#define _PAGE_PROT_WKNU xPTEL2_PR_RWK
#define _PAGE_PROT_RKRU xPTEL2_PR_ROK_ROU
#define _PAGE_PROT_WKRU xPTEL2_PR_RWK_ROU
#define _PAGE_PROT_WKWU xPTEL2_PR_RWK_RWU
#define _PAGE_GLOBAL xPTEL2_G
#define _PAGE_PS_MASK xPTEL2_PS
#define _PAGE_PS_4Kb xPTEL2_PS_4Kb
#define _PAGE_PS_128Kb xPTEL2_PS_128Kb
#define _PAGE_PS_1Kb xPTEL2_PS_1Kb
#define _PAGE_PS_4Mb xPTEL2_PS_4Mb
#define _PAGE_PSE xPTEL2_PS_4Mb /* 4MB page */
#define _PAGE_CACHE_WT xPTEL2_CWT
#define _PAGE_ACCESSED xPTEL2_UNUSED1
#define _PAGE_NX 0 /* no-execute bit */
/* If _PAGE_VALID is clear, we use these: */
#define _PAGE_PROTNONE 0x000 /* If not present */
#define __PAGE_PROT_UWAUX 0x010
#define __PAGE_PROT_USER 0x020
#define __PAGE_PROT_WRITE 0x040
#define _PAGE_PRESENTV (_PAGE_PRESENT|_PAGE_VALID)
#ifndef __ASSEMBLY__
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define _PAGE_TABLE (_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define __PAGE_NONE (_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE)
#define __PAGE_SHARED (_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE)
#define __PAGE_COPY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
#define __PAGE_READONLY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
#define PAGE_NONE __pgprot(__PAGE_NONE | _PAGE_NX)
#define PAGE_SHARED_NOEXEC __pgprot(__PAGE_SHARED | _PAGE_NX)
#define PAGE_COPY_NOEXEC __pgprot(__PAGE_COPY | _PAGE_NX)
#define PAGE_READONLY_NOEXEC __pgprot(__PAGE_READONLY | _PAGE_NX)
#define PAGE_SHARED_EXEC __pgprot(__PAGE_SHARED)
#define PAGE_COPY_EXEC __pgprot(__PAGE_COPY)
#define PAGE_READONLY_EXEC __pgprot(__PAGE_READONLY)
#define PAGE_COPY PAGE_COPY_NOEXEC
#define PAGE_READONLY PAGE_READONLY_NOEXEC
#define PAGE_SHARED PAGE_SHARED_EXEC
#define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
#define __PAGE_KERNEL (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX)
#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX)
#define __PAGE_KERNEL_EXEC (__PAGE_KERNEL & ~_PAGE_NX)
#define __PAGE_KERNEL_RO (__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX)
#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
#define __PAGE_USERIO (__PAGE_KERNEL_BASE | _PAGE_PROT_WKWU | _PAGE_NX)
#define PAGE_USERIO __pgprot(__PAGE_USERIO)
/*
* Whilst the MN10300 can do page protection for execute (given separate data
* and insn TLBs), we are not supporting it at the moment. Write permission,
* however, always implies read permission (but not execute permission).
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY_NOEXEC
#define __P010 PAGE_COPY_NOEXEC
#define __P011 PAGE_COPY_NOEXEC
#define __P100 PAGE_READONLY_EXEC
#define __P101 PAGE_READONLY_EXEC
#define __P110 PAGE_COPY_EXEC
#define __P111 PAGE_COPY_EXEC
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY_NOEXEC
#define __S010 PAGE_SHARED_NOEXEC
#define __S011 PAGE_SHARED_NOEXEC
#define __S100 PAGE_READONLY_EXEC
#define __S101 PAGE_READONLY_EXEC
#define __S110 PAGE_SHARED_EXEC
#define __S111 PAGE_SHARED_EXEC
/*
* Define this to warn about kernel memory accesses that are
* done without a 'verify_area(VERIFY_WRITE,..)'
*/
#undef TEST_VERIFY_AREA
#define pte_present(x) (pte_val(x) & _PAGE_VALID)
#define pte_clear(mm, addr, xp) \
do { \
set_pte_at((mm), (addr), (xp), __pte(0)); \
} while (0)
#define pmd_none(x) (!pmd_val(x))
#define pmd_present(x) (!pmd_none(x))
#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
#define pmd_bad(x) 0
#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
#ifndef __ASSEMBLY__
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_user(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; }
static inline int pte_read(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; }
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_write(pte_t pte) { return pte_val(pte) & __PAGE_PROT_WRITE; }
static inline int pte_special(pte_t pte){ return 0; }
static inline pte_t pte_rdprotect(pte_t pte)
{
pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte;
}
static inline pte_t pte_exprotect(pte_t pte)
{
pte_val(pte) |= _PAGE_NX; return pte;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte;
}
static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_NX; return pte; }
static inline pte_t pte_mkread(pte_t pte)
{
pte_val(pte) |= __PAGE_PROT_USER;
if (pte_write(pte))
pte_val(pte) |= __PAGE_PROT_UWAUX;
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= __PAGE_PROT_WRITE;
if (pte_val(pte) & __PAGE_PROT_USER)
pte_val(pte) |= __PAGE_PROT_UWAUX;
return pte;
}
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
#define pte_ERROR(e) \
printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \
__FILE__, __LINE__, pte_val(e))
#define pgd_ERROR(e) \
printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
__FILE__, __LINE__, pgd_val(e))
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
#define pgd_clear(xp) do { } while (0)
/*
* Certain architectures need to do special things when PTEs
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) (*(pteptr) = pteval)
#define set_pte_at(mm, addr, ptep, pteval) set_pte((ptep), (pteval))
#define set_pte_atomic(pteptr, pteval) set_pte((pteptr), (pteval))
/*
* (pmds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
#define ptep_get_and_clear(mm, addr, ptep) \
__pte(xchg(&(ptep)->pte, 0))
#define pte_same(a, b) (pte_val(a) == pte_val(b))
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pte_none(x) (!pte_val(x))
#define pte_pfn(x) ((unsigned long) (pte_val(x) >> PAGE_SHIFT))
#define __pfn_addr(pfn) ((pfn) << PAGE_SHIFT)
#define pfn_pte(pfn, prot) __pte(__pfn_addr(pfn) | pgprot_val(prot))
#define pfn_pmd(pfn, prot) __pmd(__pfn_addr(pfn) | pgprot_val(prot))
/*
* All present user pages are user-executable:
*/
static inline int pte_exec(pte_t pte)
{
return pte_user(pte);
}
/*
* All present pages are kernel-executable:
*/
static inline int pte_exec_kernel(pte_t pte)
{
return 1;
}
/* Encode and de-code a swap entry */
#define __swp_type(x) (((x).val >> 1) & 0x3f)
#define __swp_offset(x) ((x).val >> 7)
#define __swp_entry(type, offset) \
((swp_entry_t) { ((type) << 1) | ((offset) << 7) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) __pte((x).val)
static inline
int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep)
{
if (!pte_dirty(*ptep))
return 0;
return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte);
}
static inline
int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep)
{
if (!pte_young(*ptep))
return 0;
return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte);
}
static inline
void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX);
}
static inline void ptep_mkdirty(pte_t *ptep)
{
set_bit(_PAGE_BIT_DIRTY, &ptep->pte);
}
/*
* Macro to mark a page protection value as "uncacheable". On processors which
* do not support it, this is a no-op.
*/
#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHE)
/*
* Macro to mark a page protection value as "Write-Through".
* On processors which do not support it, this is a no-op.
*/
#define pgprot_through(prot) __pgprot(pgprot_val(prot) | _PAGE_CACHE_WT)
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#define mk_pte_huge(entry) \
((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) &= _PAGE_CHG_MASK;
pte_val(pte) |= pgprot_val(newprot);
return pte;
}
#define page_pte(page) page_pte_prot((page), __pgprot(0))
#define pmd_page_kernel(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
#define pmd_large(pmd) \
((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \
(_PAGE_PSE | _PAGE_PRESENT))
/*
* the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
*
* this macro returns the index of the entry in the pgd page which would
* control the given virtual address
*/
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
/*
* pgd_offset() returns a (pgd_t *)
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
*/
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/*
* a shortcut which implies the use of the kernel's pgd, instead
* of a process's
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/*
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
*
* this macro returns the index of the entry in the pmd page which would
* control the given virtual address
*/
#define pmd_index(address) \
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
/*
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
*
* this macro returns the index of the entry in the pte page which would
* control the given virtual address
*/
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
/*
* Make a given kernel text page executable/non-executable.
* Returns the previous executability setting of that page (which
* is used to restore the previous state). Used by the SMP bootup code.
* NOTE: this is an __init function for security reasons.
*/
static inline int set_kernel_exec(unsigned long vaddr, int enable)
{
return 0;
}
#define pte_offset_map(dir, address) \
((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address))
#define pte_unmap(pte) do {} while (0)
/*
* The MN10300 has external MMU info in the form of a TLB: this is adapted from
* the kernel page tables containing the necessary information by tlb-mn10300.S
*/
extern void update_mmu_cache(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#endif /* !__ASSEMBLY__ */
#define kern_addr_valid(addr) (1)
#define MK_IOSPACE_PFN(space, pfn) (pfn)
#define GET_IOSPACE(pfn) 0
#define GET_PFN(pfn) (pfn)
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTEP_MKDIRTY
#define __HAVE_ARCH_PTE_SAME
#include <asm-generic/pgtable.h>
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_PGTABLE_H */