lineage_kernel_xcoverpro/sound/soc/codecs/wm_adsp.c

5652 lines
137 KiB
C
Executable File

/*
* wm_adsp.c -- Wolfson ADSP support
*
* Copyright 2012 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "wm_adsp.h"
#define adsp_crit(_dsp, fmt, ...) \
dev_crit(_dsp->dev, "%s%d: " fmt, wm_adsp_arch_text(_dsp->type), \
_dsp->num, ##__VA_ARGS__)
#define adsp_err(_dsp, fmt, ...) \
dev_err(_dsp->dev, "%s%d: " fmt, wm_adsp_arch_text(_dsp->type), \
_dsp->num, ##__VA_ARGS__)
#define adsp_warn(_dsp, fmt, ...) \
dev_warn(_dsp->dev, "%s%d: " fmt, wm_adsp_arch_text(_dsp->type), \
_dsp->num, ##__VA_ARGS__)
#define adsp_info(_dsp, fmt, ...) \
dev_info(_dsp->dev, "%s%d: " fmt, wm_adsp_arch_text(_dsp->type), \
_dsp->num, ##__VA_ARGS__)
#define adsp_dbg(_dsp, fmt, ...) \
dev_dbg(_dsp->dev, "%s%d: " fmt, wm_adsp_arch_text(_dsp->type), \
_dsp->num, ##__VA_ARGS__)
#define ADSP1_CONTROL_1 0x00
#define ADSP1_CONTROL_2 0x02
#define ADSP1_CONTROL_3 0x03
#define ADSP1_CONTROL_4 0x04
#define ADSP1_CONTROL_5 0x06
#define ADSP1_CONTROL_6 0x07
#define ADSP1_CONTROL_7 0x08
#define ADSP1_CONTROL_8 0x09
#define ADSP1_CONTROL_9 0x0A
#define ADSP1_CONTROL_10 0x0B
#define ADSP1_CONTROL_11 0x0C
#define ADSP1_CONTROL_12 0x0D
#define ADSP1_CONTROL_13 0x0F
#define ADSP1_CONTROL_14 0x10
#define ADSP1_CONTROL_15 0x11
#define ADSP1_CONTROL_16 0x12
#define ADSP1_CONTROL_17 0x13
#define ADSP1_CONTROL_18 0x14
#define ADSP1_CONTROL_19 0x16
#define ADSP1_CONTROL_20 0x17
#define ADSP1_CONTROL_21 0x18
#define ADSP1_CONTROL_22 0x1A
#define ADSP1_CONTROL_23 0x1B
#define ADSP1_CONTROL_24 0x1C
#define ADSP1_CONTROL_25 0x1E
#define ADSP1_CONTROL_26 0x20
#define ADSP1_CONTROL_27 0x21
#define ADSP1_CONTROL_28 0x22
#define ADSP1_CONTROL_29 0x23
#define ADSP1_CONTROL_30 0x24
#define ADSP1_CONTROL_31 0x26
/*
* ADSP1 Control 19
*/
#define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
/*
* ADSP1 Control 30
*/
#define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
#define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP1_START 0x0001 /* DSP1_START */
#define ADSP1_START_MASK 0x0001 /* DSP1_START */
#define ADSP1_START_SHIFT 0 /* DSP1_START */
#define ADSP1_START_WIDTH 1 /* DSP1_START */
/*
* ADSP1 Control 31
*/
#define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2_CONTROL 0x0
#define ADSP2_CLOCKING 0x1
#define ADSP2V2_CLOCKING 0x2
#define ADSP2_STATUS1 0x4
#define ADSP2_WDMA_CONFIG_1 0x30
#define ADSP2_WDMA_CONFIG_2 0x31
#define ADSP2V2_WDMA_CONFIG_2 0x32
#define ADSP2_RDMA_CONFIG_1 0x34
#define ADSP2_SCRATCH0 0x40
#define ADSP2_SCRATCH1 0x41
#define ADSP2_SCRATCH2 0x42
#define ADSP2_SCRATCH3 0x43
#define ADSP2V2_SCRATCH0_1 0x40
#define ADSP2V2_SCRATCH2_3 0x42
/*
* ADSP2 Control
*/
#define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
#define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP2_START 0x0001 /* DSP1_START */
#define ADSP2_START_MASK 0x0001 /* DSP1_START */
#define ADSP2_START_SHIFT 0 /* DSP1_START */
#define ADSP2_START_WIDTH 1 /* DSP1_START */
/*
* ADSP2 clocking
*/
#define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
/*
* ADSP2V2 clocking
*/
#define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
#define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
#define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
/*
* ADSP2 Status 1
*/
#define ADSP2_RAM_RDY 0x0001
#define ADSP2_RAM_RDY_MASK 0x0001
#define ADSP2_RAM_RDY_SHIFT 0
#define ADSP2_RAM_RDY_WIDTH 1
/*
* ADSP2 Lock support
*/
#define ADSP2_LOCK_CODE_0 0x5555
#define ADSP2_LOCK_CODE_1 0xAAAA
#define ADSP2_WATCHDOG 0x0A
#define ADSP2_BUS_ERR_ADDR 0x52
#define ADSP2_REGION_LOCK_STATUS 0x64
#define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
#define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
#define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
#define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
#define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
#define ADSP2_LOCK_REGION_CTRL 0x7A
#define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
#define ADSP2_REGION_LOCK_ERR_MASK 0x8000
#define ADSP2_SLAVE_ERR_MASK 0x4000
#define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
#define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
#define ADSP2_CTRL_ERR_EINT 0x0001
#define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
#define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
#define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
#define ADSP2_PMEM_ERR_ADDR_SHIFT 16
#define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
#define ADSP2_LOCK_REGION_SHIFT 16
#define ADSP_MAX_STD_CTRL_SIZE 512
#define WM_ADSP_ACKED_CTL_TIMEOUT_MS 100
#define WM_ADSP_ACKED_CTL_N_QUICKPOLLS 10
#define WM_ADSP_ACKED_CTL_MIN_VALUE 0
#define WM_ADSP_ACKED_CTL_MAX_VALUE 0xFFFFFF
/*
* Event control messages
*/
#define WM_ADSP_FW_EVENT_SHUTDOWN 0x000001
/*
* HALO system info
*/
#define HALO_SYS_INFO_XM_SRAM_SIZE 0x00010
#define HALO_SYS_INFO_YM_SRAM_SIZE 0x00018
#define HALO_SYS_INFO_XM_BANK_SIZE 0x00038
#define HALO_SYS_INFO_YM_BANK_SIZE 0x0003c
#define HALO_AHBM_WINDOW_DEBUG_0 0x02040
#define HALO_AHBM_WINDOW_DEBUG_1 0x02044
/*
* HALO core
*/
#define HALO_SAMPLE_RATE_RX1 0x00080
#define HALO_SAMPLE_RATE_TX1 0x00280
#define HALO_SCRATCH1 0x005c0
#define HALO_CCM_CORE_CONTROL 0x41000
#define HALO_CORE_SOFT_RESET 0x00010
#define HALO_WDT_CONTROL 0x47000
/*
* HALO Lock support
*/
#define HALO_MPU_UNLOCK_CODE_0 0x5555
#define HALO_MPU_UNLOCK_CODE_1 0xaaaa
/*
* HALO MPU banks
*/
#define HALO_MPU_XMEM_ACCESS_0 0x43000
#define HALO_MPU_YMEM_ACCESS_0 0x43004
#define HALO_MPU_WINDOW_ACCESS_0 0x43008
#define HALO_MPU_XREG_ACCESS_0 0x4300C
#define HALO_MPU_YREG_ACCESS_0 0x43014
#define HALO_MPU_XMEM_ACCESS_1 0x43018
#define HALO_MPU_YMEM_ACCESS_1 0x4301C
#define HALO_MPU_WINDOW_ACCESS_1 0x43020
#define HALO_MPU_XREG_ACCESS_1 0x43024
#define HALO_MPU_YREG_ACCESS_1 0x4302C
#define HALO_MPU_XMEM_ACCESS_2 0x43030
#define HALO_MPU_YMEM_ACCESS_2 0x43034
#define HALO_MPU_WINDOW_ACCESS_2 0x43038
#define HALO_MPU_XREG_ACCESS_2 0x4303C
#define HALO_MPU_YREG_ACCESS_2 0x43044
#define HALO_MPU_XMEM_ACCESS_3 0x43048
#define HALO_MPU_YMEM_ACCESS_3 0x4304C
#define HALO_MPU_WINDOW_ACCESS_3 0x43050
#define HALO_MPU_XREG_ACCESS_3 0x43054
#define HALO_MPU_YREG_ACCESS_3 0x4305C
#define HALO_MPU_XM_VIO_ADDR 0x43100
#define HALO_MPU_XM_VIO_STATUS 0x43104
#define HALO_MPU_YM_VIO_ADDR 0x43108
#define HALO_MPU_YM_VIO_STATUS 0x4310C
#define HALO_MPU_PM_VIO_ADDR 0x43110
#define HALO_MPU_PM_VIO_STATUS 0x43114
#define HALO_MPU_LOCK_CONFIG 0x43140
/*
* HALO stream arb
*/
#define HALO_STREAM_ARB_MSTR0_CONFIG_0 0x45000
#define HALO_STREAM_ARB_MSTR0_CONFIG_1 0x45004
#define HALO_STREAM_ARB_MSTR0_CONFIG_2 0x45008
#define HALO_STREAM_ARB_MSTR1_CONFIG_0 0x45010
#define HALO_STREAM_ARB_MSTR1_CONFIG_1 0x45014
#define HALO_STREAM_ARB_MSTR1_CONFIG_2 0x45018
#define HALO_STREAM_ARB_MSTR2_CONFIG_0 0x45020
#define HALO_STREAM_ARB_MSTR2_CONFIG_1 0x45024
#define HALO_STREAM_ARB_MSTR2_CONFIG_2 0x45028
#define HALO_STREAM_ARB_MSTR3_CONFIG_0 0x45030
#define HALO_STREAM_ARB_MSTR3_CONFIG_1 0x45034
#define HALO_STREAM_ARB_MSTR3_CONFIG_2 0x45038
#define HALO_STREAM_ARB_MSTR4_CONFIG_0 0x45040
#define HALO_STREAM_ARB_MSTR4_CONFIG_1 0x45044
#define HALO_STREAM_ARB_MSTR4_CONFIG_2 0x45048
#define HALO_STREAM_ARB_MSTR5_CONFIG_0 0x45050
#define HALO_STREAM_ARB_MSTR5_CONFIG_1 0x45054
#define HALO_STREAM_ARB_MSTR5_CONFIG_2 0x45058
#define HALO_STREAM_ARB_TX1_CONFIG_0 0x45200
#define HALO_STREAM_ARB_TX1_CONFIG_1 0x45204
#define HALO_STREAM_ARB_TX2_CONFIG_0 0x45208
#define HALO_STREAM_ARB_TX2_CONFIG_1 0x4520C
#define HALO_STREAM_ARB_TX3_CONFIG_0 0x45210
#define HALO_STREAM_ARB_TX3_CONFIG_1 0x45214
#define HALO_STREAM_ARB_TX4_CONFIG_0 0x45218
#define HALO_STREAM_ARB_TX4_CONFIG_1 0x4521C
#define HALO_STREAM_ARB_TX5_CONFIG_0 0x45220
#define HALO_STREAM_ARB_TX5_CONFIG_1 0x45224
#define HALO_STREAM_ARB_TX6_CONFIG_0 0x45228
#define HALO_STREAM_ARB_TX6_CONFIG_1 0x4522C
#define HALO_STREAM_ARB_TX7_CONFIG_0 0x45230
#define HALO_STREAM_ARB_TX7_CONFIG_1 0x45234
#define HALO_STREAM_ARB_TX8_CONFIG_0 0x45238
#define HALO_STREAM_ARB_TX8_CONFIG_1 0x4523C
#define HALO_STREAM_ARB_RX1_CONFIG_0 0x45400
#define HALO_STREAM_ARB_RX1_CONFIG_1 0x45404
#define HALO_STREAM_ARB_RX2_CONFIG_0 0x45408
#define HALO_STREAM_ARB_RX2_CONFIG_1 0x4540C
#define HALO_STREAM_ARB_RX3_CONFIG_0 0x45410
#define HALO_STREAM_ARB_RX3_CONFIG_1 0x45414
#define HALO_STREAM_ARB_RX4_CONFIG_0 0x45418
#define HALO_STREAM_ARB_RX4_CONFIG_1 0x4541C
#define HALO_STREAM_ARB_RX5_CONFIG_0 0x45420
#define HALO_STREAM_ARB_RX5_CONFIG_1 0x45424
#define HALO_STREAM_ARB_RX6_CONFIG_0 0x45428
#define HALO_STREAM_ARB_RX6_CONFIG_1 0x4542C
#define HALO_STREAM_ARB_RX7_CONFIG_0 0x45430
#define HALO_STREAM_ARB_RX7_CONFIG_1 0x45434
#define HALO_STREAM_ARB_RX8_CONFIG_0 0x45438
#define HALO_STREAM_ARB_RX8_CONFIG_1 0x4543C
#define HALO_STREAM_ARB_IRQ0_CONFIG_0 0x45600
#define HALO_STREAM_ARB_IRQ0_CONFIG_1 0x45604
#define HALO_STREAM_ARB_IRQ0_CONFIG_2 0x45608
#define HALO_STREAM_ARB_IRQ1_CONFIG_0 0x45610
#define HALO_STREAM_ARB_IRQ1_CONFIG_1 0x45614
#define HALO_STREAM_ARB_IRQ1_CONFIG_2 0x45618
#define HALO_STREAM_ARB_IRQ2_CONFIG_0 0x45620
#define HALO_STREAM_ARB_IRQ2_CONFIG_1 0x45624
#define HALO_STREAM_ARB_IRQ2_CONFIG_2 0x45628
#define HALO_STREAM_ARB_IRQ3_CONFIG_0 0x45630
#define HALO_STREAM_ARB_IRQ3_CONFIG_1 0x45634
#define HALO_STREAM_ARB_IRQ3_CONFIG_2 0x45638
#define HALO_STREAM_ARB_IRQ4_CONFIG_0 0x45640
#define HALO_STREAM_ARB_IRQ4_CONFIG_1 0x45644
#define HALO_STREAM_ARB_IRQ4_CONFIG_2 0x45648
#define HALO_STREAM_ARB_IRQ5_CONFIG_0 0x45650
#define HALO_STREAM_ARB_IRQ5_CONFIG_1 0x45654
#define HALO_STREAM_ARB_IRQ5_CONFIG_2 0x45658
#define HALO_STREAM_ARB_IRQ6_CONFIG_0 0x45660
#define HALO_STREAM_ARB_IRQ6_CONFIG_1 0x45664
#define HALO_STREAM_ARB_IRQ6_CONFIG_2 0x45668
#define HALO_STREAM_ARB_IRQ7_CONFIG_0 0x45670
#define HALO_STREAM_ARB_IRQ7_CONFIG_1 0x45674
#define HALO_STREAM_ARB_IRQ7_CONFIG_2 0x45678
#define HALO_INTP_CTL_NMI_CONTROL 0x46008
#define HALO_INTP_CTL_IRQ_FLUSH 0x46020
/*
* HALO_AHBM_WINDOW_DEBUG_1
*/
#define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
#define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
#define HALO_AHBM_ADDR_ERR_MASK 0x00000080
#define HALO_AHBM_LOCKED_ERR_MASK 0x00000040
#define HALO_AHBM_SIZE_ERR_MASK 0x00000020
#define HALO_AHBM_MODE_ERR_MASK 0x00000010
#define HALO_AHBM_AHB_ERR_MASK 0x00000001
/*
* HALO_SAMPLE_RATE_[RX|TX]n
*/
#define HALO_DSP_RATE_SHIFT 0
#define HALO_DSP_RATE_MASK 0x1f
/*
* HALO_CCM_CORE_CONTROL
*/
#define HALO_CORE_EN 0x00000001
#define HALO_CORE_EN_MASK 0x00000001
#define HALO_CORE_EN_SHIFT 0
#define HALO_CORE_EN_WIDTH 1
#define HALO_CORE_RESET 0x00000200
/*
* HALO_CORE_SOFT_RESET
*/
#define HALO_CORE_SOFT_RESET_SHIFT 0
#define HALO_CORE_SOFT_RESET_MASK 0x00000001
/*
* HALO_WDT_CONTROL
*/
#define HALO_WDT_EN 0x00000001
#define HALO_WDT_EN_MASK 0x00000001
#define HALO_WDT_EN_SHIFT 0
/*
* HALO_MPU_?M_VIO_STATUS
*/
#define HALO_MPU_VIO_STS_MASK 0x007e0000
#define HALO_MPU_VIO_STS_SHIFT 17
#define HALO_MPU_VIO_ERR_MASK 0x00010000
#define HALO_MPU_VIO_ERR_SHIFT 16
#define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
#define HALO_MPU_VIO_ERR_WR_SHIFT 15
#define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
#define HALO_MPU_VIO_ERR_SRC_SHIFT 0
#define HALO_MPU_VIO_SRAM 0x01
#define HALO_MPU_VIO_REG 0x02
#define HALO_MPU_VIO_AHB 0x04
#define HALO_MPU_VIO_EREG 0x08
#define HALO_MPU_VIO_EXTERNAL_MEM 0x10
#define HALO_MPU_VIO_NON_EXIST 0x20
/*
* HALO_STREAM_ARB_MSTRn_CONFIG_0
*/
#define HALO_STREAM_ARB_MSTR_EN_MASK 0x1
/*
* HALO_STREAM_ARB_[TX|RX]n_CONFIG_0
* HALO_STREAM_ARB_IRQn_CONFIG_0
*/
#define HALO_STREAM_ARB_MSTR_SEL_DEFAULT 0xfc
#define ADSP_COMPR_WAKEUP_TIMEOUT 5000
static const unsigned int halo_mpu_access[18] = {
HALO_MPU_WINDOW_ACCESS_0,
HALO_MPU_XREG_ACCESS_0,
HALO_MPU_YREG_ACCESS_0,
HALO_MPU_XMEM_ACCESS_1,
HALO_MPU_YMEM_ACCESS_1,
HALO_MPU_WINDOW_ACCESS_1,
HALO_MPU_XREG_ACCESS_1,
HALO_MPU_YREG_ACCESS_1,
HALO_MPU_XMEM_ACCESS_2,
HALO_MPU_YMEM_ACCESS_2,
HALO_MPU_WINDOW_ACCESS_2,
HALO_MPU_XREG_ACCESS_2,
HALO_MPU_YREG_ACCESS_2,
HALO_MPU_XMEM_ACCESS_3,
HALO_MPU_YMEM_ACCESS_3,
HALO_MPU_WINDOW_ACCESS_3,
HALO_MPU_XREG_ACCESS_3,
HALO_MPU_YREG_ACCESS_3,
};
struct wm_adsp_buf {
struct list_head list;
void *buf;
};
static struct wm_adsp_buf *wm_adsp_buf_alloc(const void *src, size_t len,
struct list_head *list)
{
struct wm_adsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (buf == NULL)
return NULL;
buf->buf = kmemdup(src, len, GFP_KERNEL | GFP_DMA);
if (!buf->buf) {
kfree(buf);
return NULL;
}
if (list)
list_add_tail(&buf->list, list);
return buf;
}
static void wm_adsp_buf_free(struct list_head *list)
{
while (!list_empty(list)) {
struct wm_adsp_buf *buf = list_first_entry(list,
struct wm_adsp_buf,
list);
list_del(&buf->list);
kfree(buf->buf);
kfree(buf);
}
}
#define WM_ADSP_FW_MBC_VSS 0
#define WM_ADSP_FW_HIFI 1
#define WM_ADSP_FW_TX 2
#define WM_ADSP_FW_TX_SPK 3
#define WM_ADSP_FW_RX 4
#define WM_ADSP_FW_RX_ANC 5
#define WM_ADSP_FW_CTRL 6
#define WM_ADSP_FW_ASR 7
#define WM_ADSP_FW_TRACE 8
#define WM_ADSP_FW_SPK_PROT 9
#define WM_ADSP_FW_MISC 10
#define WM_ADSP_NUM_FW 11
#define WM_VPU_FW_MISC 0
#define WM_VPU_NUM_FW 1
static const char *wm_vpu_fw_text[WM_VPU_NUM_FW] = {
[WM_VPU_FW_MISC] = "Misc",
};
static const char *wm_adsp_fw_text[WM_ADSP_NUM_FW] = {
[WM_ADSP_FW_MBC_VSS] = "MBC/VSS",
[WM_ADSP_FW_HIFI] = "MasterHiFi",
[WM_ADSP_FW_TX] = "Tx",
[WM_ADSP_FW_TX_SPK] = "Tx Speaker",
[WM_ADSP_FW_RX] = "Rx",
[WM_ADSP_FW_RX_ANC] = "Rx ANC",
[WM_ADSP_FW_CTRL] = "Voice Ctrl",
[WM_ADSP_FW_ASR] = "ASR Assist",
[WM_ADSP_FW_TRACE] = "Dbg Trace",
[WM_ADSP_FW_SPK_PROT] = "Protection",
[WM_ADSP_FW_MISC] = "Misc",
};
static const char *wm_adsp_arch_text_lower(unsigned int type)
{
switch (type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
case WMFW_HALO:
return "dsp";
case WMFW_VPU:
return "vpu";
default:
return NULL;
}
}
static const char *wm_adsp_arch_text(unsigned int type)
{
switch (type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
case WMFW_HALO:
return "DSP";
case WMFW_VPU:
return "VPU";
default:
return NULL;
}
}
struct wm_adsp_system_config_xm_hdr {
__be32 sys_enable;
__be32 fw_id;
__be32 fw_rev;
__be32 boot_status;
__be32 watchdog;
__be32 dma_buffer_size;
__be32 rdma[6];
__be32 wdma[8];
__be32 build_job_name[3];
__be32 build_job_number;
};
struct wm_halo_system_config_xm_hdr {
__be32 halo_heartbeat;
__be32 build_job_name[3];
__be32 build_job_number;
};
struct wm_adsp_alg_xm_struct {
__be32 magic;
__be32 smoothing;
__be32 threshold;
__be32 host_buf_ptr;
__be32 start_seq;
__be32 high_water_mark;
__be32 low_water_mark;
__be64 smoothed_power;
};
struct wm_adsp_host_buf_coeff_v1 {
__be32 host_buf_ptr; /* Host buffer pointer */
__be32 versions; /* Version numbers */
__be32 name[4]; /* The buffer name */
};
struct wm_adsp_buffer {
__be32 buf1_base; /* Base addr of first buffer area */
__be32 buf1_size; /* Size of buf1 area in DSP words */
__be32 buf2_base; /* Base addr of 2nd buffer area */
__be32 buf1_buf2_size; /* Size of buf1+buf2 in DSP words */
__be32 buf3_base; /* Base addr of buf3 area */
__be32 buf_total_size; /* Size of buf1+buf2+buf3 in DSP words */
__be32 high_water_mark; /* Point at which IRQ is asserted */
__be32 irq_count; /* bits 1-31 count IRQ assertions */
__be32 irq_ack; /* acked IRQ count, bit 0 enables IRQ */
__be32 next_write_index; /* word index of next write */
__be32 next_read_index; /* word index of next read */
__be32 error; /* error if any */
__be32 oldest_block_index; /* word index of oldest surviving */
__be32 requested_rewind; /* how many blocks rewind was done */
__be32 reserved_space; /* internal */
__be32 min_free; /* min free space since stream start */
__be32 blocks_written[2]; /* total blocks written (64 bit) */
__be32 words_written[2]; /* total words written (64 bit) */
};
struct wm_adsp_compr;
struct wm_adsp_compr_buf {
struct list_head list;
struct wm_adsp *dsp;
struct wm_adsp_compr *compr;
struct wm_adsp_buffer_region *regions;
u32 host_buf_ptr;
u32 error;
u32 irq_count;
int read_index;
int avail;
int host_buf_mem_type;
int num_regions;
const struct wm_adsp_buffer_region_def *region_def;
char *name;
struct wakeup_source *ws;
};
struct wm_adsp_compr {
struct list_head list;
struct wm_adsp *dsp;
struct wm_adsp_compr_buf *buf;
struct snd_compr_stream *stream;
struct snd_compressed_buffer size;
u32 *raw_buf;
unsigned int copied_total;
unsigned int sample_rate;
const char *name;
};
#define WM_ADSP_DATA_WORD_SIZE_DEFAULT 3
#define WM_ADSP_DATA_WORD_SIZE_VPU 4
#define WM_ADSP_DATA_WORD_MASK_DEFAULT 0x00ffffffu
#define WM_ADSP_DATA_WORD_MASK_VPU 0xffffffffu
#define WM_ADSP_MIN_FRAGMENTS 1
#define WM_ADSP_MAX_FRAGMENTS 256
#define WM_ADSP_MIN_FRAGMENT_SIZE_WORDS 64
#define WM_ADSP_MAX_FRAGMENT_SIZE_WORDS 4096
#define WM_ADSP_ALG_XM_STRUCT_MAGIC 0x49aec7
#define HOST_BUFFER_FIELD(field) \
(offsetof(struct wm_adsp_buffer, field) / sizeof(__be32))
#define ALG_XM_FIELD(field) \
(offsetof(struct wm_adsp_alg_xm_struct, field) / sizeof(__be32))
#define HOST_BUF_COEFF_SUPPORTED_COMPAT_VER 1
#define HOST_BUF_COEFF_COMPAT_VER_MASK 0xFF00
#define HOST_BUF_COEFF_COMPAT_VER_SHIFT 8
static int wm_adsp_buffer_init(struct wm_adsp *dsp);
static int wm_adsp_buffer_free(struct wm_adsp *dsp);
struct wm_adsp_buffer_region {
unsigned int offset;
unsigned int cumulative_size;
unsigned int mem_type;
unsigned int base_addr;
};
static struct wm_adsp_buffer_region_def default_regions[] = {
{
.mem_type = WMFW_ADSP2_XM,
.base_offset = HOST_BUFFER_FIELD(buf1_base),
.size_offset = HOST_BUFFER_FIELD(buf1_size),
},
{
.mem_type = WMFW_ADSP2_XM,
.base_offset = HOST_BUFFER_FIELD(buf2_base),
.size_offset = HOST_BUFFER_FIELD(buf1_buf2_size),
},
{
.mem_type = WMFW_ADSP2_YM,
.base_offset = HOST_BUFFER_FIELD(buf3_base),
.size_offset = HOST_BUFFER_FIELD(buf_total_size),
},
};
static const struct wm_adsp_buffer_region_def vpu_regions[] = {
{
.mem_type = WMFW_VPU_DM,
.base_offset = HOST_BUFFER_FIELD(buf1_base),
.size_offset = HOST_BUFFER_FIELD(buf1_size),
},
{
.mem_type = WMFW_VPU_DM,
.base_offset = HOST_BUFFER_FIELD(buf2_base),
.size_offset = HOST_BUFFER_FIELD(buf1_buf2_size),
},
{
.mem_type = WMFW_VPU_DM,
.base_offset = HOST_BUFFER_FIELD(buf3_base),
.size_offset = HOST_BUFFER_FIELD(buf_total_size),
},
};
static struct wm_adsp_fw_caps ctrl_caps[] = {
{
.id = SND_AUDIOCODEC_BESPOKE,
.desc = {
.max_ch = 8,
.sample_rates = { 16000 },
.num_sample_rates = 1,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
};
static struct wm_adsp_fw_caps trace_caps[] = {
{
.id = SND_AUDIOCODEC_BESPOKE,
.desc = {
.max_ch = 8,
.sample_rates = {
4000, 8000, 11025, 12000, 16000, 22050,
24000, 32000, 44100, 48000, 64000, 88200,
96000, 176400, 192000
},
.num_sample_rates = 15,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
};
static struct wm_adsp_fw_defs wm_adsp_fw[WM_ADSP_NUM_FW] = {
[WM_ADSP_FW_MBC_VSS] = { .file = "mbc-vss" },
[WM_ADSP_FW_HIFI] = { .file = "hifi" },
[WM_ADSP_FW_TX] = { .file = "tx" },
[WM_ADSP_FW_TX_SPK] = { .file = "tx-spk" },
[WM_ADSP_FW_RX] = { .file = "rx" },
[WM_ADSP_FW_RX_ANC] = { .file = "rx-anc" },
[WM_ADSP_FW_CTRL] = {
.file = "ctrl",
.compr_direction = SND_COMPRESS_CAPTURE,
.num_caps = ARRAY_SIZE(ctrl_caps),
.caps = ctrl_caps,
.voice_trigger = true,
},
[WM_ADSP_FW_ASR] = { .file = "asr" },
[WM_ADSP_FW_TRACE] = {
.file = "trace",
.compr_direction = SND_COMPRESS_CAPTURE,
.num_caps = ARRAY_SIZE(trace_caps),
.caps = trace_caps,
},
[WM_ADSP_FW_SPK_PROT] = { .file = "spk-prot" },
[WM_ADSP_FW_MISC] = { .file = "misc" },
};
static const struct {
const char *file;
} wm_vpu_fw[WM_VPU_NUM_FW] = {
[WM_VPU_FW_MISC] = { .file = "misc" },
};
struct wm_coeff_ctl_ops {
int (*xget)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
int (*xput)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
};
struct wm_coeff_ctl {
const char *name;
const char *fw_name;
struct wm_adsp_alg_region alg_region;
struct wm_coeff_ctl_ops ops;
struct wm_adsp *dsp;
unsigned int enabled:1;
struct list_head list;
void *cache;
unsigned int offset;
size_t len;
unsigned int set:1;
struct soc_bytes_ext bytes_ext;
unsigned int flags;
unsigned int type;
};
static const char *wm_adsp_mem_region_name(unsigned int type)
{
switch (type) {
case WMFW_ADSP1_PM:
return "PM";
case WMFW_HALO_PM_PACKED:
return "PM_PACKED";
case WMFW_ADSP1_DM:
return "DM";
case WMFW_ADSP2_XM:
return "XM";
case WMFW_HALO_XM_PACKED:
return "XM_PACKED";
case WMFW_ADSP2_YM:
return "YM";
case WMFW_HALO_YM_PACKED:
return "YM_PACKED";
case WMFW_ADSP1_ZM:
return "ZM";
case WMFW_VPU_DM:
return "DM";
default:
return NULL;
}
}
#ifdef CONFIG_DEBUG_FS
static void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->wmfw_file_name);
dsp->wmfw_file_name = tmp;
}
static void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->bin_file_name);
dsp->bin_file_name = tmp;
}
static void wm_adsp_debugfs_clear(struct wm_adsp *dsp)
{
kfree(dsp->wmfw_file_name);
kfree(dsp->bin_file_name);
dsp->wmfw_file_name = NULL;
dsp->bin_file_name = NULL;
}
static ssize_t wm_adsp_debugfs_wmfw_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct wm_adsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->wmfw_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->wmfw_file_name,
strlen(dsp->wmfw_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static ssize_t wm_adsp_debugfs_bin_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct wm_adsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->bin_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->bin_file_name,
strlen(dsp->bin_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static const struct {
const char *name;
const struct file_operations fops;
} wm_adsp_debugfs_fops[] = {
{
.name = "wmfw_file_name",
.fops = {
.open = simple_open,
.read = wm_adsp_debugfs_wmfw_read,
},
},
{
.name = "bin_file_name",
.fops = {
.open = simple_open,
.read = wm_adsp_debugfs_bin_read,
},
},
};
static void wm_adsp2_init_debugfs(struct wm_adsp *dsp,
struct snd_soc_codec *codec)
{
struct dentry *root = NULL;
char *root_name;
int i;
if (!codec->component.debugfs_root) {
adsp_err(dsp, "No codec debugfs root\n");
goto err;
}
root_name = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!root_name)
goto err;
snprintf(root_name, PAGE_SIZE, "dsp%d", dsp->num);
root = debugfs_create_dir(root_name, codec->component.debugfs_root);
kfree(root_name);
if (!root)
goto err;
if (!debugfs_create_bool("booted", S_IRUGO, root, &dsp->booted))
goto err;
if (!debugfs_create_bool("running", S_IRUGO, root, &dsp->running))
goto err;
if (!debugfs_create_x32("fw_id", S_IRUGO, root, &dsp->fw_id))
goto err;
if (!debugfs_create_x32("fw_version", S_IRUGO, root,
&dsp->fw_id_version))
goto err;
for (i = 0; i < ARRAY_SIZE(wm_adsp_debugfs_fops); ++i) {
if (!debugfs_create_file(wm_adsp_debugfs_fops[i].name,
S_IRUGO, root, dsp,
&wm_adsp_debugfs_fops[i].fops))
goto err;
}
dsp->debugfs_root = root;
return;
err:
debugfs_remove_recursive(root);
adsp_err(dsp, "Failed to create debugfs\n");
}
static void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp)
{
wm_adsp_debugfs_clear(dsp);
debugfs_remove_recursive(dsp->debugfs_root);
}
#else
static inline void wm_adsp2_init_debugfs(struct wm_adsp *dsp,
struct snd_soc_codec *codec)
{
}
static inline void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp)
{
}
static inline void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp,
const char *s)
{
}
static inline void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp,
const char *s)
{
}
static inline void wm_adsp_debugfs_clear(struct wm_adsp *dsp)
{
}
#endif
static int wm_adsp_fw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
struct wm_adsp *dsp = snd_soc_codec_get_drvdata(codec);
ucontrol->value.enumerated.item[0] = dsp[e->shift_l].fw;
return 0;
}
static int wm_adsp_fw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
struct wm_adsp *dsp = snd_soc_codec_get_drvdata(codec);
int ret = 0;
if (ucontrol->value.enumerated.item[0] == dsp[e->shift_l].fw)
return 0;
if (ucontrol->value.enumerated.item[0] >= dsp->num_firmwares)
return -EINVAL;
mutex_lock(&dsp[e->shift_l].pwr_lock);
if (dsp[e->shift_l].booted || !list_empty(&dsp[e->shift_l].compr_list))
ret = -EBUSY;
else
dsp[e->shift_l].fw = ucontrol->value.enumerated.item[0];
mutex_unlock(&dsp[e->shift_l].pwr_lock);
return ret;
}
static struct soc_enum wm_adsp_fw_enum[] = {
SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 1, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 2, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 3, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 4, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 5, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 6, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
};
const struct snd_kcontrol_new wm_adsp_fw_controls[] = {
SOC_ENUM_EXT("DSP1 Firmware", wm_adsp_fw_enum[0],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP2 Firmware", wm_adsp_fw_enum[1],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP3 Firmware", wm_adsp_fw_enum[2],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP4 Firmware", wm_adsp_fw_enum[3],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP5 Firmware", wm_adsp_fw_enum[4],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP6 Firmware", wm_adsp_fw_enum[5],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP7 Firmware", wm_adsp_fw_enum[6],
wm_adsp_fw_get, wm_adsp_fw_put),
};
EXPORT_SYMBOL_GPL(wm_adsp_fw_controls);
static const struct snd_kcontrol_new wm_adsp_ao_fw_controls[] = {
SOC_ENUM_EXT("DSP1AO Firmware", wm_adsp_fw_enum[0],
wm_adsp_fw_get, wm_adsp_fw_put),
};
static struct wm_adsp_region const *wm_adsp_find_region(struct wm_adsp *dsp,
int type)
{
int i;
for (i = 0; i < dsp->num_mems; i++)
if (dsp->mem[i].type == type)
return &dsp->mem[i];
return NULL;
}
static unsigned int wm_adsp_region_to_reg(struct wm_adsp *dsp,
struct wm_adsp_region const *mem,
unsigned int offset)
{
if (WARN_ON(!mem))
return offset;
switch (dsp->type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
switch (mem->type) {
case WMFW_ADSP1_PM:
return mem->base + (offset * 3);
case WMFW_ADSP1_DM:
return mem->base + (offset * 2);
case WMFW_ADSP2_XM:
return mem->base + (offset * 2);
case WMFW_ADSP2_YM:
return mem->base + (offset * 2);
case WMFW_ADSP1_ZM:
return mem->base + (offset * 2);
default:
WARN(1, "Unknown memory region type");
return offset;
}
case WMFW_HALO:
switch (mem->type) {
case WMFW_ADSP2_XM:
return mem->base + (offset * 4);
case WMFW_ADSP2_YM:
return mem->base + (offset * 4);
case WMFW_HALO_XM_PACKED:
return (mem->base + (offset * 3)) & ~0x3;
case WMFW_HALO_YM_PACKED:
return (mem->base + (offset * 3)) & ~0x3;
case WMFW_HALO_PM_PACKED:
return mem->base + (offset * 5);
default:
WARN(1, "Unknown memory region type");
return offset;
}
case WMFW_VPU:
switch (mem->type) {
case WMFW_VPU_DM:
return mem->base + (offset * 4);
default:
WARN(1, "Unknown memory region type");
return offset;
}
default:
WARN(1, "Unknown DSP type");
return offset;
}
}
static void wm_adsp2_show_fw_status(struct wm_adsp *dsp)
{
u16 *scratch;
int ret;
scratch = kmalloc(sizeof(u16) * 4, GFP_KERNEL | GFP_DMA);
if (!scratch)
return;
ret = regmap_raw_read(dsp->regmap, dsp->base + ADSP2_SCRATCH0,
scratch, sizeof(u16) * 4);
if (ret) {
adsp_err(dsp, "Failed to read SCRATCH regs: %d\n", ret);
kfree(scratch);
return;
}
adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
be16_to_cpu(scratch[0]),
be16_to_cpu(scratch[1]),
be16_to_cpu(scratch[2]),
be16_to_cpu(scratch[3]));
kfree(scratch);
}
static void wm_adsp2v2_show_fw_status(struct wm_adsp *dsp)
{
u32 *scratch;
int ret;
scratch = kmalloc(sizeof(u32) * 2, GFP_KERNEL | GFP_DMA);
if (!scratch)
return;
ret = regmap_raw_read(dsp->regmap, dsp->base + ADSP2V2_SCRATCH0_1,
scratch, sizeof(u32) * 2);
if (ret) {
adsp_err(dsp, "Failed to read SCRATCH regs: %d\n", ret);
kfree(scratch);
return;
}
scratch[0] = be32_to_cpu(scratch[0]);
scratch[1] = be32_to_cpu(scratch[1]);
adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
scratch[0] & 0xFFFF,
scratch[0] >> 16,
scratch[1] & 0xFFFF,
scratch[1] >> 16);
kfree(scratch);
}
static void wm_halo_show_fw_status(struct wm_adsp *dsp)
{
unsigned int *scratch;
unsigned int addr = dsp->base + HALO_SCRATCH1;
int ret, i;
scratch = kmalloc(sizeof(unsigned int) * 4, GFP_KERNEL | GFP_DMA);
if (!scratch)
return;
for (i = 0; i < 4; i++) {
ret = regmap_read(dsp->regmap, addr, &scratch[i]);
addr += 8;
if (ret) {
adsp_err(dsp, "Failed to read SCRATCH regs: %d\n", ret);
return;
}
}
adsp_dbg(dsp, "FW SCRATCH 1:0x%x 2:0x%x 3:0x%x 4:0x%x\n",
scratch[0], scratch[1], scratch[2], scratch[3]);
kfree(scratch);
}
static inline struct wm_coeff_ctl *bytes_ext_to_ctl(struct soc_bytes_ext *ext)
{
return container_of(ext, struct wm_coeff_ctl, bytes_ext);
}
static int wm_coeff_base_reg(struct wm_coeff_ctl *ctl, unsigned int *reg)
{
const struct wm_adsp_alg_region *alg_region = &ctl->alg_region;
struct wm_adsp *dsp = ctl->dsp;
const struct wm_adsp_region *mem;
mem = wm_adsp_find_region(dsp, alg_region->type);
if (!mem) {
adsp_err(dsp, "No base for region %x\n",
alg_region->type);
return -EINVAL;
}
*reg = wm_adsp_region_to_reg(dsp, mem,
ctl->alg_region.base + ctl->offset);
return 0;
}
static int wm_coeff_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *uinfo)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
switch (ctl->type) {
case WMFW_CTL_TYPE_ACKED:
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->value.integer.min = WM_ADSP_ACKED_CTL_MIN_VALUE;
uinfo->value.integer.max = WM_ADSP_ACKED_CTL_MAX_VALUE;
uinfo->value.integer.step = 1;
uinfo->count = 1;
break;
default:
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = ctl->len;
break;
}
return 0;
}
static int wm_coeff_write_acked_control(struct wm_coeff_ctl *ctl,
unsigned int event_id)
{
struct wm_adsp *dsp = ctl->dsp;
u32 val = cpu_to_be32(event_id);
unsigned int reg;
int i, ret;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
adsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
event_id, ctl->alg_region.alg,
wm_adsp_mem_region_name(ctl->alg_region.type), ctl->offset);
ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
adsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
return ret;
}
/*
* Poll for ack, we initially poll at ~1ms intervals for firmwares
* that respond quickly, then go to ~10ms polls. A firmware is unlikely
* to ack instantly so we do the first 1ms delay before reading the
* control to avoid a pointless bus transaction
*/
for (i = 0; i < WM_ADSP_ACKED_CTL_TIMEOUT_MS;) {
switch (i) {
case 0 ... WM_ADSP_ACKED_CTL_N_QUICKPOLLS - 1:
usleep_range(1000, 2000);
i++;
break;
default:
usleep_range(10000, 20000);
i += 10;
break;
}
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
adsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
return ret;
}
if (val == 0) {
adsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
return 0;
}
}
adsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
reg, ctl->alg_region.alg,
wm_adsp_mem_region_name(ctl->alg_region.type),
ctl->offset);
return -ETIMEDOUT;
}
static int wm_coeff_write_control(struct wm_coeff_ctl *ctl,
const void *buf, size_t len)
{
struct wm_adsp *dsp = ctl->dsp;
void *scratch, *temp;
size_t to_write = PAGE_SIZE;
int ret;
unsigned int reg;
unsigned int addr_div;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
scratch = kmalloc(PAGE_SIZE, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
switch (dsp->type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
addr_div = 2;
break;
default:
addr_div = 1;
break;
}
temp = (void *)buf;
while (len > 0) {
if (len < to_write)
to_write = len;
memcpy(scratch, temp, to_write);
ret = regmap_raw_write(dsp->regmap, reg, scratch, to_write);
if (ret) {
adsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
to_write, reg, ret);
kfree(scratch);
return ret;
}
adsp_dbg(dsp, "Wrote %zu bytes to %x\n", to_write, reg);
temp += to_write;
reg += to_write / addr_div;
len -= to_write;
}
kfree(scratch);
return 0;
}
static int wm_coeff_put(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
char *p = ucontrol->value.bytes.data;
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
ret = -EPERM;
else
memcpy(ctl->cache, p, ctl->len);
ctl->set = 1;
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_write_control(ctl, p, ctl->len);
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_tlv_put(struct snd_kcontrol *kctl,
const unsigned int __user *bytes, unsigned int size)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (copy_from_user(ctl->cache, bytes, size)) {
ret = -EFAULT;
} else {
ctl->set = 1;
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_write_control(ctl, ctl->cache, size);
else if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
ret = -EPERM;
}
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_put_acked(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
unsigned int val = ucontrol->value.integer.value[0];
int ret;
if (val == 0)
return 0; /* 0 means no event */
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_write_acked_control(ctl, val);
else
ret = -EPERM;
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_read_control(struct wm_coeff_ctl *ctl,
void *buf, size_t len)
{
struct wm_adsp *dsp = ctl->dsp;
void *scratch, *temp;
size_t to_read = PAGE_SIZE, remain = len;
int ret;
unsigned int reg;
unsigned int addr_div;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
switch (dsp->type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
addr_div = 2;
break;
default:
addr_div = 1;
break;
}
temp = scratch;
remain = len;
while (remain > 0) {
if (remain < to_read)
to_read = remain;
ret = regmap_raw_read(dsp->regmap, reg, temp, to_read);
if (ret) {
adsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
to_read, reg, ret);
msleep(50);
ret = regmap_raw_read(dsp->regmap, reg, temp, to_read);
if (ret){
adsp_err(dsp, "Retry failed\n");
kfree(scratch);
return ret;
} else {
adsp_info(dsp, "Retry success\n");
adsp_info(dsp,
"Read %zu bytes from %x\n",
to_read, reg);
}
}
adsp_dbg(dsp, "Read %zu bytes from %x\n", to_read, reg);
temp += to_read;
reg += to_read / addr_div;
remain -= to_read;
}
memcpy(buf, scratch, len);
kfree(scratch);
return 0;
}
static int wm_coeff_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
char *p = ucontrol->value.bytes.data;
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, p, ctl->len);
else
ret = -EPERM;
} else {
if (!ctl->flags && ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, ctl->cache, ctl->len);
memcpy(p, ctl->cache, ctl->len);
}
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_tlv_get(struct snd_kcontrol *kctl,
unsigned int __user *bytes, unsigned int size)
{
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *)kctl->private_value;
struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
int ret = 0;
mutex_lock(&ctl->dsp->pwr_lock);
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
if (ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, ctl->cache, size);
else
ret = -EPERM;
} else {
if (!ctl->flags && ctl->enabled && ctl->dsp->running)
ret = wm_coeff_read_control(ctl, ctl->cache, size);
}
if (!ret && copy_to_user(bytes, ctl->cache, size))
ret = -EFAULT;
mutex_unlock(&ctl->dsp->pwr_lock);
return ret;
}
static int wm_coeff_get_acked(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
/*
* Although it's not useful to read an acked control, we must satisfy
* user-side assumptions that all controls are readable and that a
* write of the same value should be filtered out (it's valid to send
* the same event number again to the firmware). We therefore return 0,
* meaning "no event" so valid event numbers will always be a change
*/
ucontrol->value.integer.value[0] = 0;
return 0;
}
struct wmfw_ctl_work {
struct wm_adsp *dsp;
struct wm_coeff_ctl *ctl;
struct work_struct work;
};
static unsigned int wmfw_convert_flags(unsigned int in, unsigned int len)
{
unsigned int out, rd, wr, vol;
if (len > ADSP_MAX_STD_CTRL_SIZE) {
rd = SNDRV_CTL_ELEM_ACCESS_TLV_READ;
wr = SNDRV_CTL_ELEM_ACCESS_TLV_WRITE;
vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE;
out = SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
} else {
rd = SNDRV_CTL_ELEM_ACCESS_READ;
wr = SNDRV_CTL_ELEM_ACCESS_WRITE;
vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE;
out = 0;
}
if (in) {
if (in & WMFW_CTL_FLAG_READABLE)
out |= rd;
if (in & WMFW_CTL_FLAG_WRITEABLE)
out |= wr;
if (in & WMFW_CTL_FLAG_VOLATILE)
out |= vol;
} else {
out |= rd | wr | vol;
}
return out;
}
static int wmfw_add_ctl(struct wm_adsp *dsp, struct wm_coeff_ctl *ctl)
{
struct snd_kcontrol_new *kcontrol;
int ret;
if (!ctl || !ctl->name)
return -EINVAL;
kcontrol = kzalloc(sizeof(*kcontrol), GFP_KERNEL);
if (!kcontrol)
return -ENOMEM;
kcontrol->name = ctl->name;
kcontrol->info = wm_coeff_info;
kcontrol->iface = SNDRV_CTL_ELEM_IFACE_MIXER;
kcontrol->tlv.c = snd_soc_bytes_tlv_callback;
kcontrol->private_value = (unsigned long)&ctl->bytes_ext;
kcontrol->access = wmfw_convert_flags(ctl->flags, ctl->len);
switch (ctl->type) {
case WMFW_CTL_TYPE_ACKED:
kcontrol->get = wm_coeff_get_acked;
kcontrol->put = wm_coeff_put_acked;
break;
default:
if (kcontrol->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) {
ctl->bytes_ext.max = ctl->len;
ctl->bytes_ext.get = wm_coeff_tlv_get;
ctl->bytes_ext.put = wm_coeff_tlv_put;
} else {
kcontrol->get = wm_coeff_get;
kcontrol->put = wm_coeff_put;
}
break;
}
ret = snd_soc_add_codec_controls(dsp->codec, kcontrol, 1);
if (ret < 0)
goto err_kcontrol;
kfree(kcontrol);
return 0;
err_kcontrol:
kfree(kcontrol);
return ret;
}
static int wm_coeff_init_control_caches(struct wm_adsp *dsp)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled || ctl->set)
continue;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
continue;
/*
* For readable controls populate the cache from the DSP memory.
* For non-readable controls the cache was zero-filled when
* created so we don't need to do anything.
*/
if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
ret = wm_coeff_read_control(ctl, ctl->cache, ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static int wm_coeff_sync_controls(struct wm_adsp *dsp)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled)
continue;
if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
ret = wm_coeff_write_control(ctl, ctl->cache, ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static void wm_adsp_signal_event_controls(struct wm_adsp *dsp,
unsigned int event)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
continue;
if (!ctl->enabled)
continue;
ret = wm_coeff_write_acked_control(ctl, event);
if (ret)
adsp_warn(dsp,
"Failed to send 0x%x event to alg 0x%x (%d)\n",
event, ctl->alg_region.alg, ret);
}
}
static void wm_adsp_ctl_work(struct work_struct *work)
{
struct wmfw_ctl_work *ctl_work = container_of(work,
struct wmfw_ctl_work,
work);
wmfw_add_ctl(ctl_work->dsp, ctl_work->ctl);
kfree(ctl_work);
}
static void wm_adsp_free_ctl_blk(struct wm_coeff_ctl *ctl)
{
kfree(ctl->cache);
kfree(ctl->name);
kfree(ctl);
}
static int wm_adsp_create_control(struct wm_adsp *dsp,
const struct wm_adsp_alg_region *alg_region,
unsigned int offset, unsigned int len,
const char *subname, unsigned int subname_len,
unsigned int flags, unsigned int type)
{
struct wm_coeff_ctl *ctl;
struct wmfw_ctl_work *ctl_work;
char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN];
const char *region_name;
const char *fw_txt;
int ret;
region_name = wm_adsp_mem_region_name(alg_region->type);
if (!region_name) {
adsp_err(dsp, "Unknown region type: %d\n", alg_region->type);
return -EINVAL;
}
switch (dsp->type) {
case WMFW_VPU:
fw_txt = wm_vpu_fw_text[dsp->fw];
break;
case WMFW_ADSP1:
case WMFW_ADSP2:
case WMFW_HALO:
fw_txt = dsp->fw_enum.texts[dsp->fw];
break;
default:
adsp_err(dsp, "Unknown Architecture type: %d\n", dsp->type);
return -EINVAL;
}
switch (dsp->fw_ver) {
case 0:
case 1:
snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN, "DSP%d %s %x",
dsp->num, region_name, alg_region->alg);
subname = NULL; /* don't append subname */
break;
case 2:
ret = snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN,
"DSP%d%s%c %.12s %x", dsp->num,
dsp->suffix, *region_name,
fw_txt, alg_region->alg);
break;
default:
ret = snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN,
"%s%d%s %.12s %x",
wm_adsp_arch_text(dsp->type),
dsp->num, dsp->suffix,
fw_txt, alg_region->alg);
break;
}
if (subname) {
struct snd_soc_component *component = &dsp->codec->component;
int avail = SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret - 2;
int skip = 0;
if (component->name_prefix)
avail -= strlen(component->name_prefix) + 1;
/* Truncate the subname from the start if it is too long */
if (subname_len > avail)
skip = subname_len - avail;
snprintf(name + ret,
SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret, " %.*s",
subname_len - skip, subname + skip);
}
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!strcmp(ctl->name, name)) {
if (!ctl->enabled)
ctl->enabled = 1;
return 0;
}
}
ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
if (!ctl)
return -ENOMEM;
ctl->fw_name = fw_txt;
ctl->alg_region = *alg_region;
ctl->name = kmemdup(name, strlen(name) + 1, GFP_KERNEL);
if (!ctl->name) {
ret = -ENOMEM;
goto err_ctl;
}
ctl->enabled = 1;
ctl->set = 0;
ctl->ops.xget = wm_coeff_get;
ctl->ops.xput = wm_coeff_put;
ctl->dsp = dsp;
ctl->flags = flags;
ctl->type = type;
ctl->offset = offset;
ctl->len = len;
ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
if (!ctl->cache) {
ret = -ENOMEM;
goto err_ctl_name;
}
list_add(&ctl->list, &dsp->ctl_list);
if (flags & WMFW_CTL_FLAG_SYS)
return 0;
ctl_work = kzalloc(sizeof(*ctl_work), GFP_KERNEL);
if (!ctl_work) {
ret = -ENOMEM;
goto err_ctl_cache;
}
ctl_work->dsp = dsp;
ctl_work->ctl = ctl;
INIT_WORK(&ctl_work->work, wm_adsp_ctl_work);
schedule_work(&ctl_work->work);
return 0;
err_ctl_cache:
kfree(ctl->cache);
err_ctl_name:
kfree(ctl->name);
err_ctl:
kfree(ctl);
return ret;
}
struct wm_coeff_parsed_alg {
int id;
const u8 *name;
int name_len;
int ncoeff;
};
struct wm_coeff_parsed_coeff {
int offset;
int mem_type;
const u8 *name;
int name_len;
int ctl_type;
int flags;
int len;
};
static int wm_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
{
int length;
switch (bytes) {
case 1:
length = **pos;
break;
case 2:
length = le16_to_cpu(*((__le16 *)*pos));
break;
default:
return 0;
}
if (str)
*str = *pos + bytes;
*pos += ((length + bytes) + 3) & ~0x03;
return length;
}
static int wm_coeff_parse_int(int bytes, const u8 **pos)
{
int val = 0;
switch (bytes) {
case 2:
val = le16_to_cpu(*((__le16 *)*pos));
break;
case 4:
val = le32_to_cpu(*((__le32 *)*pos));
break;
default:
break;
}
*pos += bytes;
return val;
}
static inline void wm_coeff_parse_alg(struct wm_adsp *dsp, const u8 **data,
struct wm_coeff_parsed_alg *blk)
{
const struct wmfw_adsp_alg_data *raw;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_alg_data *)*data;
*data = raw->data;
blk->id = le32_to_cpu(raw->id);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ncoeff = le32_to_cpu(raw->ncoeff);
break;
default:
blk->id = wm_coeff_parse_int(sizeof(raw->id), data);
blk->name_len = wm_coeff_parse_string(sizeof(u8), data,
&blk->name);
wm_coeff_parse_string(sizeof(u16), data, NULL);
blk->ncoeff = wm_coeff_parse_int(sizeof(raw->ncoeff), data);
break;
}
adsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
adsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
adsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
}
static inline void wm_coeff_parse_coeff(struct wm_adsp *dsp, const u8 **data,
struct wm_coeff_parsed_coeff *blk)
{
const struct wmfw_adsp_coeff_data *raw;
const u8 *tmp;
int length;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_coeff_data *)*data;
*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
blk->offset = le16_to_cpu(raw->hdr.offset);
blk->mem_type = le16_to_cpu(raw->hdr.type);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ctl_type = le16_to_cpu(raw->ctl_type);
blk->flags = le16_to_cpu(raw->flags);
blk->len = le32_to_cpu(raw->len);
break;
default:
tmp = *data;
blk->offset = wm_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
blk->mem_type = wm_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
length = wm_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
blk->name_len = wm_coeff_parse_string(sizeof(u8), &tmp,
&blk->name);
wm_coeff_parse_string(sizeof(u8), &tmp, NULL);
wm_coeff_parse_string(sizeof(u16), &tmp, NULL);
blk->ctl_type = wm_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
blk->flags = wm_coeff_parse_int(sizeof(raw->flags), &tmp);
blk->len = wm_coeff_parse_int(sizeof(raw->len), &tmp);
*data = *data + sizeof(raw->hdr) + length;
break;
}
adsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
adsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
adsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
adsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
adsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
adsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
}
static int wm_adsp_check_coeff_flags(struct wm_adsp *dsp,
const struct wm_coeff_parsed_coeff *coeff_blk,
unsigned int f_required,
unsigned int f_illegal)
{
if ((coeff_blk->flags & f_illegal) ||
((coeff_blk->flags & f_required) != f_required)) {
adsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
coeff_blk->flags, coeff_blk->ctl_type);
return -EINVAL;
}
return 0;
}
static int wm_adsp_parse_coeff(struct wm_adsp *dsp,
const struct wmfw_region *region)
{
struct wm_adsp_alg_region alg_region = {};
struct wm_coeff_parsed_alg alg_blk;
struct wm_coeff_parsed_coeff coeff_blk;
const u8 *data = region->data;
int i, ret;
wm_coeff_parse_alg(dsp, &data, &alg_blk);
for (i = 0; i < alg_blk.ncoeff; i++) {
wm_coeff_parse_coeff(dsp, &data, &coeff_blk);
switch (coeff_blk.ctl_type) {
case SNDRV_CTL_ELEM_TYPE_BYTES:
break;
case WMFW_CTL_TYPE_ACKED:
if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
continue; /* ignore */
ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOSTEVENT:
ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOST_BUFFER:
ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
default:
adsp_err(dsp, "Unknown control type: %d\n",
coeff_blk.ctl_type);
return -EINVAL;
}
alg_region.type = coeff_blk.mem_type;
alg_region.alg = alg_blk.id;
ret = wm_adsp_create_control(dsp, &alg_region,
coeff_blk.offset,
coeff_blk.len,
coeff_blk.name,
coeff_blk.name_len,
coeff_blk.flags,
coeff_blk.ctl_type);
if (ret < 0)
adsp_err(dsp, "Failed to create control: %.*s, %d\n",
coeff_blk.name_len, coeff_blk.name, ret);
}
return 0;
}
static int wm_adsp_write_blocks(struct wm_adsp *dsp, const u8 *data, size_t len,
unsigned int reg, struct list_head *list,
size_t burst_multiple)
{
size_t to_write = PAGE_SIZE - (PAGE_SIZE % burst_multiple);
size_t remain = len;
struct wm_adsp_buf *buf;
unsigned int addr_div;
int ret;
switch (dsp->type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
addr_div = 2;
break;
default:
addr_div = 1;
break;
}
while (remain > 0) {
if (remain < to_write)
to_write = remain;
buf = wm_adsp_buf_alloc(data, to_write, list);
if (!buf) {
adsp_err(dsp, "Out of memory\n");
return -ENOMEM;
}
ret = regmap_raw_write_async(dsp->regmap, reg,
buf->buf, to_write);
if (ret != 0) {
adsp_err(dsp,
"Failed to write %zd bytes at %d\n",
to_write, reg);
return ret;
}
data += to_write;
reg += to_write / addr_div;
remain -= to_write;
}
return 0;
}
static int wm_adsp_load(struct wm_adsp *dsp)
{
LIST_HEAD(buf_list);
const struct firmware *firmware;
struct regmap *regmap = dsp->regmap;
unsigned int pos = 0;
const struct wmfw_header *header;
const struct wmfw_adsp1_sizes *adsp1_sizes;
const struct wmfw_adsp2_sizes *adsp2_sizes;
const struct wmfw_vpu_sizes *vpu_sizes;
const struct wmfw_footer *footer;
const struct wmfw_region *region;
const struct wm_adsp_region *mem;
const char *region_name;
char *file, *text = NULL;
unsigned int reg;
int regions = 0;
int ret, offset, type, sizes;
unsigned int burst_multiple;
file = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (file == NULL)
return -ENOMEM;
switch (dsp->type) {
case WMFW_VPU:
snprintf(file, PAGE_SIZE, "%s-%s%d-%s.wmfw",
dsp->part, wm_adsp_arch_text_lower(dsp->type),
dsp->num, wm_vpu_fw[dsp->fw].file);
break;
case WMFW_ADSP1:
case WMFW_ADSP2:
case WMFW_HALO:
if (dsp->firmwares[dsp->fw].fullname)
snprintf(file, PAGE_SIZE,
"%s", dsp->firmwares[dsp->fw].file);
else
snprintf(file, PAGE_SIZE, "%s-%s%d-%s.wmfw",
dsp->part, wm_adsp_arch_text_lower(dsp->type),
dsp->num, dsp->firmwares[dsp->fw].file);
break;
default:
adsp_err(dsp, "Unknown Architecture type: %d\n", dsp->type);
ret = -EINVAL;
goto out;
}
file[PAGE_SIZE - 1] = '\0';
ret = request_firmware(&firmware, file, dsp->dev);
if (ret != 0) {
adsp_err(dsp, "Failed to request '%s'\n", file);
goto out;
}
ret = -EINVAL;
pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
if (pos >= firmware->size) {
adsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
header = (void *)&firmware->data[0];
if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
adsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
switch (dsp->type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
switch (header->ver) {
case 0:
adsp_warn(dsp, "%s: Deprecated file format %d\n",
file, header->ver);
break;
case 1:
case 2:
break;
default:
adsp_err(dsp, "%s: unknown file format %d\n",
file, header->ver);
goto out_fw;
}
break;
case WMFW_HALO:
switch (header->ver) {
case 1:
case 2:
/*
* we are required to load these for testing purposes
* but this format is not allowed for production fw
*/
adsp_warn(dsp,
"%s: Not a production firmware (deprecated file format %d)\n",
file, header->ver);
break;
case 3:
break;
default:
adsp_err(dsp, "%s: unknown file format %d\n",
file, header->ver);
goto out_fw;
}
break;
case WMFW_VPU:
switch (header->ver) {
case 3:
break;
default:
adsp_err(dsp, "%s: unknown file format %d\n",
file, header->ver);
goto out_fw;
}
break;
default:
WARN(1, "Unknown DSP type");
goto out_fw;
}
adsp_info(dsp, "Firmware version: %d\n", header->ver);
dsp->fw_ver = header->ver;
if (header->core != dsp->type) {
adsp_err(dsp, "%s: invalid core %d != %d\n",
file, header->core, dsp->type);
goto out_fw;
}
switch (dsp->type) {
case WMFW_ADSP1:
pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
adsp1_sizes = (void *)&(header[1]);
footer = (void *)&(adsp1_sizes[1]);
sizes = sizeof(*adsp1_sizes);
adsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n",
file, le32_to_cpu(adsp1_sizes->dm),
le32_to_cpu(adsp1_sizes->pm),
le32_to_cpu(adsp1_sizes->zm));
break;
case WMFW_HALO:
case WMFW_ADSP2:
pos = sizeof(*header) + sizeof(*adsp2_sizes) + sizeof(*footer);
adsp2_sizes = (void *)&(header[1]);
footer = (void *)&(adsp2_sizes[1]);
sizes = sizeof(*adsp2_sizes);
adsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n",
file, le32_to_cpu(adsp2_sizes->xm),
le32_to_cpu(adsp2_sizes->ym),
le32_to_cpu(adsp2_sizes->pm),
le32_to_cpu(adsp2_sizes->zm));
break;
case WMFW_VPU:
pos = sizeof(*header) + sizeof(*vpu_sizes) + sizeof(*footer);
vpu_sizes = (void *)&(header[1]);
footer = (void *)&(vpu_sizes[1]);
sizes = sizeof(*vpu_sizes);
break;
default:
WARN(1, "Unknown DSP type");
goto out_fw;
}
if (le32_to_cpu(header->len) != sizeof(*header) +
sizes + sizeof(*footer)) {
adsp_err(dsp, "%s: unexpected header length %d\n",
file, le32_to_cpu(header->len));
goto out_fw;
}
adsp_dbg(dsp, "%s: timestamp %llu\n", file,
le64_to_cpu(footer->timestamp));
while (pos < firmware->size &&
sizeof(*region) < firmware->size - pos) {
region = (void *)&(firmware->data[pos]);
region_name = "Unknown";
reg = 0;
burst_multiple = 4;
text = NULL;
offset = le32_to_cpu(region->offset) & 0xffffff;
type = be32_to_cpu(region->type) & 0xff;
mem = wm_adsp_find_region(dsp, type);
switch (type) {
case WMFW_NAME_TEXT:
region_name = "Firmware name";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ALGORITHM_DATA:
region_name = "Algorithm";
ret = wm_adsp_parse_coeff(dsp, region);
if (ret != 0)
goto out_fw;
break;
case WMFW_INFO_TEXT:
region_name = "Information";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ABSOLUTE:
region_name = "Absolute";
reg = offset;
break;
case WMFW_ADSP1_PM:
case WMFW_ADSP1_DM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_ADSP1_ZM:
region_name = wm_adsp_mem_region_name(type);
reg = wm_adsp_region_to_reg(dsp, mem, offset);
break;
case WMFW_HALO_PM_PACKED:
region_name = wm_adsp_mem_region_name(type);
reg = wm_adsp_region_to_reg(dsp, mem, offset);
burst_multiple = 20;
break;
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
region_name = wm_adsp_mem_region_name(type);
reg = wm_adsp_region_to_reg(dsp, mem, offset);
burst_multiple = 12;
break;
default:
adsp_warn(dsp,
"%s.%d: Unknown region type %x at %d(%x)\n",
file, regions, type, pos, pos);
break;
}
adsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
regions, le32_to_cpu(region->len), offset,
region_name);
if (le32_to_cpu(region->len) >
firmware->size - pos - sizeof(*region)) {
adsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, regions, region_name,
le32_to_cpu(region->len), firmware->size);
ret = -EINVAL;
goto out_fw;
}
if (text) {
memcpy(text, region->data, le32_to_cpu(region->len));
adsp_info(dsp, "%s: %s\n", file, text);
kfree(text);
text = NULL;
}
if (reg) {
ret = wm_adsp_write_blocks(dsp, region->data,
le32_to_cpu(region->len),
reg, &buf_list,
burst_multiple);
if (ret != 0) {
adsp_err(dsp,
"%s.%d: Failed writing data at %d in %s: %d\n",
file, regions,
offset, region_name, ret);
goto out_fw;
}
}
pos += le32_to_cpu(region->len) + sizeof(*region);
regions++;
}
ret = regmap_async_complete(regmap);
if (ret != 0) {
adsp_err(dsp, "Failed to complete async write: %d\n", ret);
goto out_fw;
}
if (pos > firmware->size)
adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, regions, pos - firmware->size);
wm_adsp_debugfs_save_wmfwname(dsp, file);
out_fw:
regmap_async_complete(regmap);
wm_adsp_buf_free(&buf_list);
release_firmware(firmware);
kfree(text);
out:
kfree(file);
return ret;
}
static void wm_adsp_ctl_fixup_base(struct wm_adsp *dsp,
const struct wm_adsp_alg_region *alg_region)
{
struct wm_coeff_ctl *ctl;
const char *fw_txt;
switch (dsp->type) {
case WMFW_VPU:
fw_txt = wm_vpu_fw_text[dsp->fw];
break;
case WMFW_ADSP1:
case WMFW_ADSP2:
case WMFW_HALO:
fw_txt = dsp->fw_enum.texts[dsp->fw];
break;
default:
return;
}
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->fw_name == fw_txt &&
alg_region->alg == ctl->alg_region.alg &&
alg_region->type == ctl->alg_region.type) {
ctl->alg_region.base = alg_region->base;
}
}
}
static void *wm_adsp_read_algs(struct wm_adsp *dsp, size_t n_algs,
const struct wm_adsp_region *mem,
unsigned int pos, unsigned int len)
{
void *alg;
unsigned int reg;
int ret;
__be32 val;
if (n_algs == 0) {
adsp_err(dsp, "No algorithms\n");
return ERR_PTR(-EINVAL);
}
if (n_algs > 1024) {
adsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
return ERR_PTR(-EINVAL);
}
/* Read the terminator first to validate the length */
reg = wm_adsp_region_to_reg(dsp, mem, pos + len);
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm list end: %d\n",
ret);
return ERR_PTR(ret);
}
if (be32_to_cpu(val) != 0xbedead)
adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
reg, be32_to_cpu(val));
/* Convert length from DSP words to bytes */
len *= sizeof(u32);
alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
if (!alg)
return ERR_PTR(-ENOMEM);
reg = wm_adsp_region_to_reg(dsp, mem, pos);
ret = regmap_raw_read(dsp->regmap, reg, alg, len);
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
kfree(alg);
return ERR_PTR(ret);
}
return alg;
}
static struct wm_adsp_alg_region *
wm_adsp_find_alg_region(struct wm_adsp *dsp, int type, unsigned int id)
{
struct wm_adsp_alg_region *alg_region;
list_for_each_entry(alg_region, &dsp->alg_regions, list) {
if (id == alg_region->alg && type == alg_region->type)
return alg_region;
}
return NULL;
}
static struct wm_adsp_alg_region *wm_adsp_create_region(struct wm_adsp *dsp,
int type, __be32 id,
__be32 base)
{
struct wm_adsp_alg_region *alg_region;
alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
if (!alg_region)
return ERR_PTR(-ENOMEM);
alg_region->type = type;
alg_region->alg = be32_to_cpu(id);
alg_region->base = be32_to_cpu(base);
list_add_tail(&alg_region->list, &dsp->alg_regions);
if (dsp->fw_ver > 0)
wm_adsp_ctl_fixup_base(dsp, alg_region);
return alg_region;
}
static void wm_adsp_free_alg_regions(struct wm_adsp *dsp)
{
struct wm_adsp_alg_region *alg_region;
while (!list_empty(&dsp->alg_regions)) {
alg_region = list_first_entry(&dsp->alg_regions,
struct wm_adsp_alg_region,
list);
list_del(&alg_region->list);
kfree(alg_region);
}
}
static int wm_adsp1_setup_algs(struct wm_adsp *dsp)
{
struct wmfw_adsp1_id_hdr *adsp1_id;
struct wmfw_adsp1_alg_hdr *adsp1_alg;
struct wm_adsp_alg_region *alg_region;
const struct wm_adsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = wm_adsp_find_region(dsp, WMFW_ADSP1_DM);
if (WARN_ON(!mem))
return -EINVAL;
adsp1_id = kmalloc(sizeof(*adsp1_id), GFP_KERNEL | GFP_DMA);
if (!adsp1_id)
return -ENOMEM;
ret = regmap_raw_read(dsp->regmap, mem->base, adsp1_id,
sizeof(*adsp1_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
goto out_adsp1_id;
}
n_algs = be32_to_cpu(adsp1_id->n_algs);
dsp->fw_id = be32_to_cpu(adsp1_id->fw.id);
adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n",
dsp->fw_id,
(be32_to_cpu(adsp1_id->fw.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp1_id->fw.ver) & 0xff00) >> 8,
be32_to_cpu(adsp1_id->fw.ver) & 0xff,
n_algs);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_id->fw.id, adsp1_id->zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_adsp1_id;
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_id->fw.id, adsp1_id->dm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_adsp1_id;
}
/* Calculate offset and length in DSP words */
pos = sizeof(*adsp1_id) / sizeof(u32);
len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
adsp1_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp1_alg)) {
ret = PTR_ERR(adsp1_alg);
goto out_adsp1_id;
}
for (i = 0; i < n_algs; i++) {
adsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
i, be32_to_cpu(adsp1_alg[i].alg.id),
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp1_alg[i].dm),
be32_to_cpu(adsp1_alg[i].zm));
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_alg[i].alg.id,
adsp1_alg[i].dm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].dm);
len -= be32_to_cpu(adsp1_alg[i].dm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region DM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_alg[i].alg.id,
adsp1_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].zm);
len -= be32_to_cpu(adsp1_alg[i].zm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
}
out:
kfree(adsp1_alg);
out_adsp1_id:
kfree(adsp1_id);
return ret;
}
static int wm_adsp2_setup_algs(struct wm_adsp *dsp)
{
struct wmfw_adsp2_id_hdr *adsp2_id;
struct wmfw_adsp2_alg_hdr *adsp2_alg;
struct wm_adsp_alg_region *alg_region;
const struct wm_adsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
adsp2_id = kmalloc(sizeof(*adsp2_id), GFP_KERNEL | GFP_DMA);
if (!adsp2_id)
return -ENOMEM;
ret = regmap_raw_read(dsp->regmap, mem->base, adsp2_id,
sizeof(*adsp2_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
goto out_adsp2_id;
}
n_algs = be32_to_cpu(adsp2_id->n_algs);
dsp->fw_id = be32_to_cpu(adsp2_id->fw.id);
dsp->fw_id_version = be32_to_cpu(adsp2_id->fw.ver);
dsp->fw_vendor_id = 0;
adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n",
dsp->fw_id,
(dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8,
dsp->fw_id_version & 0xff,
n_algs);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_id->fw.id, adsp2_id->xm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_adsp2_id;
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_id->fw.id, adsp2_id->ym);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_adsp2_id;
}
switch (dsp->type) {
case WMFW_HALO:
break;
default:
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_id->fw.id,
adsp2_id->zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_adsp2_id;
}
break;
}
/* Calculate offset and length in DSP words */
pos = sizeof(*adsp2_id) / sizeof(u32);
len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
adsp2_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp2_alg)) {
ret = PTR_ERR(adsp2_alg);
goto out_adsp2_id;
}
for (i = 0; i < n_algs; i++) {
adsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
i, be32_to_cpu(adsp2_alg[i].alg.id),
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp2_alg[i].xm),
be32_to_cpu(adsp2_alg[i].ym),
be32_to_cpu(adsp2_alg[i].zm));
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_alg[i].alg.id,
adsp2_alg[i].xm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].xm);
len -= be32_to_cpu(adsp2_alg[i].xm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region XM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_alg[i].alg.id,
adsp2_alg[i].ym);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].ym);
len -= be32_to_cpu(adsp2_alg[i].ym);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region YM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
/* no ZM on HALO */
if (dsp->type == WMFW_HALO)
continue;
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_alg[i].alg.id,
adsp2_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].zm);
len -= be32_to_cpu(adsp2_alg[i].zm);
len *= 4;
wm_adsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
SNDRV_CTL_ELEM_TYPE_BYTES);
} else {
adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
}
out:
kfree(adsp2_alg);
out_adsp2_id:
kfree(adsp2_id);
return ret;
}
static int wm_halo_setup_algs(struct wm_adsp *dsp)
{
struct wmfw_halo_id_hdr *halo_id;
struct wmfw_halo_alg_hdr *halo_alg;
struct wm_adsp_alg_region *alg_region;
const struct wm_adsp_region *mem;
unsigned int pos, len, block_rev;
size_t n_algs;
int i, ret;
mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
halo_id = kmalloc(sizeof(*halo_id), GFP_KERNEL | GFP_DMA);
if (!halo_id)
return -ENOMEM;
ret = regmap_raw_read(dsp->regmap, mem->base, halo_id,
sizeof(*halo_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
goto out_halo_id;
}
block_rev = be32_to_cpu(halo_id->fw.block_rev) >> 16;
switch (block_rev) {
case 3:
break;
default:
adsp_err(dsp, "Unknown firmware ID block version 0x%x\n",
block_rev);
ret = -EINVAL;
goto out_halo_id;
}
n_algs = be32_to_cpu(halo_id->n_algs);
dsp->fw_id = be32_to_cpu(halo_id->fw.id);
dsp->fw_id_version = be32_to_cpu(halo_id->fw.ver);
dsp->fw_vendor_id = be32_to_cpu(halo_id->fw.vendor_id);
adsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %zu algorithms\n",
dsp->fw_id,
dsp->fw_vendor_id,
(dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8,
dsp->fw_id_version & 0xff,
n_algs);
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
halo_id->fw.id, halo_id->xm_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_halo_id;
}
alg_region = wm_adsp_create_region(dsp, WMFW_HALO_XM_PACKED,
halo_id->fw.id, halo_id->xm_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_halo_id;
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
halo_id->fw.id, halo_id->ym_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_halo_id;
}
alg_region = wm_adsp_create_region(dsp, WMFW_HALO_YM_PACKED,
halo_id->fw.id, halo_id->ym_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_halo_id;
}
/* Calculate offset and length in DSP words */
pos = sizeof(*halo_id) / sizeof(u32);
len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
halo_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(halo_alg)) {
ret = PTR_ERR(halo_alg);
goto out_halo_id;
}
for (i = 0; i < n_algs; i++) {
adsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
i, be32_to_cpu(halo_alg[i].alg.id),
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
be32_to_cpu(halo_alg[i].xm_base),
be32_to_cpu(halo_alg[i].ym_base));
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
halo_alg[i].alg.id,
halo_alg[i].xm_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
alg_region = wm_adsp_create_region(dsp, WMFW_HALO_XM_PACKED,
halo_alg[i].alg.id,
halo_alg[i].xm_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
halo_alg[i].alg.id,
halo_alg[i].ym_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
alg_region = wm_adsp_create_region(dsp, WMFW_HALO_YM_PACKED,
halo_alg[i].alg.id,
halo_alg[i].ym_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
}
out:
kfree(halo_alg);
out_halo_id:
kfree(halo_id);
return ret;
}
int wm_vpu_setup_algs(struct wm_adsp *vpu)
{
const struct wm_adsp_region *mem;
struct wmfw_vpu_id_hdr *vpu_id;
struct wmfw_vpu_alg_hdr *vpu_alg;
unsigned int pos, len, block_rev;
struct wm_adsp_alg_region *alg_region;
size_t n_algs;
int i, ret;
mem = wm_adsp_find_region(vpu, WMFW_VPU_DM);
if (WARN_ON(!mem))
return -EINVAL;
vpu_id = kmalloc(sizeof(*vpu_id), GFP_KERNEL | GFP_DMA);
if (!vpu_id)
return -ENOMEM;
ret = regmap_raw_read(vpu->regmap, mem->base, vpu_id, sizeof(*vpu_id));
if (ret != 0) {
adsp_err(vpu, "Failed to read algorithm info: %d\n", ret);
goto out_vpu_id;
}
block_rev = be32_to_cpu(vpu_id->fw.block_rev) >> 16;
switch (block_rev) {
case 3:
break;
default:
adsp_err(vpu, "Unknown firmware ID block version 0x%x\n",
block_rev);
ret = -EINVAL;
goto out_vpu_id;
}
n_algs = be32_to_cpu(vpu_id->n_algs);
vpu->fw_id = be32_to_cpu(vpu_id->fw.firmware_id);
vpu->fw_id_version = be32_to_cpu(vpu_id->fw.ver);
vpu->fw_vendor_id = be32_to_cpu(vpu_id->fw.vendor_id);
adsp_info(vpu, "Firmware: %x vendor: 0x%x v%d.%d.%d, %zu algorithms\n",
vpu->fw_id,
vpu->fw_vendor_id,
(vpu->fw_id_version & 0xff0000) >> 16,
(vpu->fw_id_version & 0xff00) >> 8,
vpu->fw_id_version & 0xff,
n_algs);
alg_region = wm_adsp_create_region(vpu, WMFW_VPU_DM,
vpu_id->fw.firmware_id,
vpu_id->dm_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out_vpu_id;
}
pos = sizeof(*vpu_id) / sizeof(u32);
len = (sizeof(*vpu_alg) * n_algs) / sizeof(u32);
vpu_alg = wm_adsp_read_algs(vpu, n_algs, mem, pos, len);
if (IS_ERR(vpu_alg)) {
ret = PTR_ERR(vpu_alg);
goto out_vpu_id;
}
for (i = 0; i < n_algs; i++) {
adsp_info(vpu, "%d: ID %x v%d.%d.%d DM@%x\n",
i,
be32_to_cpu(vpu_alg[i].alg.id),
(be32_to_cpu(vpu_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(vpu_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(vpu_alg[i].alg.ver) & 0xff,
be32_to_cpu(vpu_alg[i].dm_base));
alg_region = wm_adsp_create_region(vpu, WMFW_VPU_DM,
vpu_alg[i].alg.id,
vpu_alg[i].dm_base);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
}
out:
kfree(vpu_alg);
out_vpu_id:
kfree(vpu_id);
return ret;
}
EXPORT_SYMBOL_GPL(wm_vpu_setup_algs);
static int wm_adsp_load_coeff(struct wm_adsp *dsp)
{
LIST_HEAD(buf_list);
struct regmap *regmap = dsp->regmap;
struct wmfw_coeff_hdr *hdr;
struct wmfw_coeff_item *blk;
const struct firmware *firmware;
const struct wm_adsp_region *mem;
struct wm_adsp_alg_region *alg_region;
const char *region_name;
int ret, pos, blocks, type, offset, reg;
char *file;
unsigned int burst_multiple;
if (dsp->firmwares[dsp->fw].binfile &&
!(strcmp(dsp->firmwares[dsp->fw].binfile, "None")))
return 0;
file = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (file == NULL)
return -ENOMEM;
switch (dsp->type) {
case WMFW_VPU:
snprintf(file, PAGE_SIZE, "%s-vpu%d-%s.bin",
dsp->part, dsp->num,
wm_vpu_fw[dsp->fw].file);
break;
default:
if (dsp->firmwares[dsp->fw].fullname &&
dsp->firmwares[dsp->fw].binfile)
snprintf(file, PAGE_SIZE, "%s",
dsp->firmwares[dsp->fw].binfile);
else if (dsp->firmwares[dsp->fw].binfile)
snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.bin", dsp->part,
dsp->num, dsp->firmwares[dsp->fw].binfile);
else
snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.bin", dsp->part,
dsp->num, dsp->firmwares[dsp->fw].file);
break;
}
file[PAGE_SIZE - 1] = '\0';
ret = request_firmware(&firmware, file, dsp->dev);
if (ret != 0) {
adsp_warn(dsp, "Failed to request '%s'\n", file);
ret = 0;
goto out;
}
ret = -EINVAL;
if (sizeof(*hdr) >= firmware->size) {
adsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
hdr = (void *)&firmware->data[0];
if (memcmp(hdr->magic, "WMDR", 4) != 0) {
adsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
switch (be32_to_cpu(hdr->rev) & 0xff) {
case 1:
break;
default:
adsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
file, be32_to_cpu(hdr->rev) & 0xff);
ret = -EINVAL;
goto out_fw;
}
adsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
(le32_to_cpu(hdr->ver) >> 16) & 0xff,
(le32_to_cpu(hdr->ver) >> 8) & 0xff,
le32_to_cpu(hdr->ver) & 0xff);
pos = le32_to_cpu(hdr->len);
blocks = 0;
while (pos < firmware->size &&
sizeof(*blk) < firmware->size - pos) {
blk = (void *)(&firmware->data[pos]);
type = le16_to_cpu(blk->type);
offset = le16_to_cpu(blk->offset);
adsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
file, blocks, le32_to_cpu(blk->id),
(le32_to_cpu(blk->ver) >> 16) & 0xff,
(le32_to_cpu(blk->ver) >> 8) & 0xff,
le32_to_cpu(blk->ver) & 0xff);
adsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
file, blocks, le32_to_cpu(blk->len), offset, type);
reg = 0;
burst_multiple = 4;
region_name = "Unknown";
switch (type) {
case (WMFW_NAME_TEXT << 8):
case (WMFW_INFO_TEXT << 8):
break;
case (WMFW_ABSOLUTE << 8):
/*
* Old files may use this for global
* coefficients.
*/
if (le32_to_cpu(blk->id) == dsp->fw_id &&
offset == 0) {
region_name = "global coefficients";
mem = wm_adsp_find_region(dsp, type);
if (!mem) {
adsp_err(dsp, "No ZM\n");
break;
}
reg = wm_adsp_region_to_reg(dsp, mem, 0);
} else {
region_name = "register";
reg = offset;
}
break;
case WMFW_HALO_PM_PACKED:
burst_multiple += 8; /* plus the 8 below yields 20 */
/* fall through */
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
burst_multiple += 8; /* yields 12 */
/* fall through */
case WMFW_ADSP1_DM:
case WMFW_ADSP1_ZM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_VPU_DM:
adsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
file, blocks, le32_to_cpu(blk->len),
type, le32_to_cpu(blk->id));
mem = wm_adsp_find_region(dsp, type);
if (!mem) {
adsp_err(dsp, "No base for region %x\n", type);
break;
}
alg_region = wm_adsp_find_alg_region(dsp, type,
le32_to_cpu(blk->id));
if (alg_region) {
reg = alg_region->base;
reg = wm_adsp_region_to_reg(dsp, mem, reg);
reg += offset;
} else {
adsp_err(dsp, "No %x for algorithm %x\n",
type, le32_to_cpu(blk->id));
}
break;
default:
adsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
file, blocks, type, pos);
break;
}
if (reg) {
if (le32_to_cpu(blk->len) >
firmware->size - pos - sizeof(*blk)) {
adsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, blocks, region_name,
le32_to_cpu(blk->len),
firmware->size);
ret = -EINVAL;
goto out_fw;
}
adsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
file, blocks, le32_to_cpu(blk->len),
reg);
ret = wm_adsp_write_blocks(dsp, blk->data,
le32_to_cpu(blk->len),
reg, &buf_list,
burst_multiple);
if (ret != 0) {
adsp_err(dsp,
"%s.%d: Failed to write to %x in %s: %d\n",
file, blocks, reg, region_name, ret);
}
}
pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
blocks++;
}
ret = regmap_async_complete(regmap);
if (ret != 0)
adsp_err(dsp, "Failed to complete async write: %d\n", ret);
if (pos > firmware->size)
adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, blocks, pos - firmware->size);
wm_adsp_debugfs_save_binname(dsp, file);
out_fw:
regmap_async_complete(regmap);
release_firmware(firmware);
wm_adsp_buf_free(&buf_list);
out:
kfree(file);
return ret;
}
int wm_adsp1_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct wm_adsp *dsp = &dsps[w->shift];
struct wm_coeff_ctl *ctl;
int ret;
unsigned int val;
dsp->codec = codec;
mutex_lock(&dsp->pwr_lock);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, ADSP1_SYS_ENA);
/*
* For simplicity set the DSP clock rate to be the
* SYSCLK rate rather than making it configurable.
*/
if (dsp->sysclk_reg) {
ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
if (ret != 0) {
adsp_err(dsp, "Failed to read SYSCLK state: %d\n",
ret);
goto err_mutex;
}
val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
ret = regmap_update_bits(dsp->regmap,
dsp->base + ADSP1_CONTROL_31,
ADSP1_CLK_SEL_MASK, val);
if (ret != 0) {
adsp_err(dsp, "Failed to set clock rate: %d\n",
ret);
goto err_mutex;
}
}
ret = wm_adsp_load(dsp);
if (ret != 0)
goto err_ena;
ret = wm_adsp1_setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = wm_adsp_load_coeff(dsp);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
/* Sync set controls */
ret = wm_coeff_sync_controls(dsp);
if (ret != 0)
goto err_ena;
dsp->booted = true;
/* Start the core running */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START,
ADSP1_CORE_ENA | ADSP1_START);
dsp->running = true;
break;
case SND_SOC_DAPM_PRE_PMD:
dsp->running = false;
dsp->booted = false;
/* Halt the core */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
wm_adsp_free_alg_regions(dsp);
break;
default:
break;
}
mutex_unlock(&dsp->pwr_lock);
return 0;
err_ena:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp1_event);
static int wm_adsp2_ena(struct wm_adsp *dsp)
{
unsigned int val;
int ret, count;
switch (dsp->rev) {
case 0:
ret = regmap_update_bits_async(dsp->regmap,
dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, ADSP2_SYS_ENA);
if (ret != 0)
return ret;
break;
default:
break;
}
/* Wait for the RAM to start, should be near instantaneous */
for (count = 0; count < 10; ++count) {
ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
if (ret != 0)
return ret;
if (val & ADSP2_RAM_RDY)
break;
usleep_range(250, 500);
}
if (!(val & ADSP2_RAM_RDY)) {
adsp_err(dsp, "Failed to start DSP RAM\n");
return -EBUSY;
}
adsp_dbg(dsp, "RAM ready after %d polls\n", count);
return 0;
}
static void wm_adsp2_boot_work(struct work_struct *work)
{
struct wm_adsp *dsp = container_of(work,
struct wm_adsp,
boot_work);
int ret;
mutex_lock(&dsp->pwr_lock);
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, ADSP2_MEM_ENA);
if (ret != 0)
goto err_mutex;
ret = wm_adsp2_ena(dsp);
if (ret != 0)
goto err_mem;
ret = wm_adsp_load(dsp);
if (ret != 0)
goto err_ena;
ret = wm_adsp2_setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = wm_adsp_load_coeff(dsp);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
switch (dsp->rev) {
case 0:
/* Turn DSP back off until we are ready to run */
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, 0);
if (ret != 0)
goto err_ena;
break;
default:
break;
}
dsp->booted = true;
mutex_unlock(&dsp->pwr_lock);
return;
err_ena:
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0);
err_mem:
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
}
static int wm_halo_set_rate_block(struct wm_adsp *dsp,
unsigned int rate_base,
unsigned int n_rates,
const u8 *rate_cache)
{
unsigned int addr = dsp->base + rate_base, val;
int ret, i;
mutex_lock(dsp->rate_lock);
for (i = 0; i < n_rates; ++i) {
val = rate_cache[i] << HALO_DSP_RATE_SHIFT;
ret = regmap_update_bits(dsp->regmap,
addr + (i * 8),
HALO_DSP_RATE_MASK,
val);
if (ret) {
adsp_err(dsp, "Failed to set rate: %d\n", ret);
mutex_unlock(dsp->rate_lock);
return ret;
}
adsp_dbg(dsp, "Set rate %d to 0x%x\n", i, val);
}
udelay(300);
mutex_unlock(dsp->rate_lock);
return 0;
}
static int wm_halo_configure_mpu(struct wm_adsp *dsp)
{
struct regmap *regmap = dsp->regmap;
int i = 0, len = 0, ret;
unsigned int sysinfo_base = dsp->base_sysinfo, dsp_base = dsp->base;
unsigned int xm_sz, xm_bank_sz, ym_sz, ym_bank_sz;
unsigned int xm_acc_cfg, ym_acc_cfg;
unsigned int lock_cfg;
ret = regmap_read(regmap, sysinfo_base + HALO_SYS_INFO_XM_BANK_SIZE,
&xm_bank_sz);
if (ret) {
adsp_err(dsp, "Failed to read XM bank size.\n");
goto err;
}
if (!xm_bank_sz) {
adsp_err(dsp, "Failed to configure MPU (XM_BANK_SIZE = 0)\n");
goto err;
}
ret = regmap_read(regmap, sysinfo_base + HALO_SYS_INFO_YM_BANK_SIZE,
&ym_bank_sz);
if (ret) {
adsp_err(dsp, "Failed to read YM bank size.\n");
goto err;
}
if (!ym_bank_sz) {
adsp_err(dsp, "Failed to configure MPU (YM_BANK_SIZE = 0)\n");
goto err;
}
ret = regmap_read(regmap, sysinfo_base + HALO_SYS_INFO_XM_SRAM_SIZE,
&xm_sz);
if (ret) {
adsp_err(dsp, "Failed to read XM size.\n");
goto err;
}
ret = regmap_read(regmap, sysinfo_base + HALO_SYS_INFO_YM_SRAM_SIZE,
&ym_sz);
if (ret) {
adsp_err(dsp, "Failed to read YM size.\n");
goto err;
}
adsp_dbg(dsp,
"XM size 0x%x XM bank size 0x%x YM size 0x%x YM bank size 0x%x\n",
xm_sz, xm_bank_sz, ym_sz, ym_bank_sz);
/* calculate amount of banks to unlock */
xm_acc_cfg = (1 << (xm_sz / xm_bank_sz)) - 1;
ym_acc_cfg = (1 << (ym_sz / ym_bank_sz)) - 1;
/* unlock MPU */
ret = regmap_write(regmap, dsp_base + HALO_MPU_LOCK_CONFIG,
HALO_MPU_UNLOCK_CODE_0);
if (ret) {
adsp_err(dsp, "Error while unlocking MPU: %d\n", ret);
goto err;
}
ret = regmap_write(regmap, dsp_base + HALO_MPU_LOCK_CONFIG,
HALO_MPU_UNLOCK_CODE_1);
if (ret) {
adsp_err(dsp, "Error while unlocking MPU: %d\n", ret);
goto err;
}
adsp_dbg(dsp, "Unlocking XM (cfg: %x) and YM (cfg: %x)",
xm_acc_cfg, ym_acc_cfg);
/* unlock XMEM and YMEM */
ret = regmap_write(regmap, dsp_base + HALO_MPU_XMEM_ACCESS_0,
xm_acc_cfg);
if (ret)
goto err;
ret = regmap_write(regmap, dsp_base + HALO_MPU_YMEM_ACCESS_0,
ym_acc_cfg);
if (ret)
goto err;
len = sizeof(halo_mpu_access) / sizeof(halo_mpu_access[0]);
/* configure all other banks */
lock_cfg = (dsp->unlock_all) ? 0xFFFFFFFF : 0;
for (i = 0; i < len; i++) {
ret = regmap_write(regmap, dsp_base + halo_mpu_access[i],
lock_cfg);
if (ret)
goto err;
}
/* lock MPU */
ret = regmap_write(regmap, dsp_base + HALO_MPU_LOCK_CONFIG, 0);
if (ret)
adsp_err(dsp, "Error while locking MPU: %d\n", ret);
err:
return ret;
}
static void wm_halo_boot_work(struct work_struct *work)
{
struct wm_adsp *dsp = container_of(work,
struct wm_adsp,
boot_work);
int ret;
mutex_lock(&dsp->pwr_lock);
ret = wm_adsp_load(dsp);
if (ret != 0)
goto err;
switch (dsp->fw_ver) {
case 1:
case 2:
ret = wm_adsp2_setup_algs(dsp);
if (ret != 0)
goto err;
break;
default:
ret = wm_halo_setup_algs(dsp);
if (ret != 0)
goto err;
break;
}
ret = wm_adsp_load_coeff(dsp);
if (ret != 0)
goto err;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(dsp);
if (ret != 0)
goto err;
dsp->booted = true;
err:
mutex_unlock(&dsp->pwr_lock);
}
static void wm_vpu_boot_work(struct work_struct *work)
{
struct wm_adsp *vpu = container_of(work, struct wm_adsp, boot_work);
int ret;
mutex_lock(&vpu->pwr_lock);
ret = wm_adsp_load(vpu);
if (ret != 0)
goto err;
switch (vpu->fw_ver) {
case 3:
ret = wm_vpu_setup_algs(vpu);
if (ret != 0)
goto err;
break;
default:
goto err;
}
ret = wm_adsp_load_coeff(vpu);
if (ret != 0)
goto err;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(vpu);
if (ret != 0)
goto err;
/* Sync set controls */
ret = wm_coeff_sync_controls(vpu);
if (ret != 0)
goto err;
if (wm_adsp_fw[vpu->fw].num_caps != 0) {
ret = wm_adsp_buffer_init(vpu);
if (ret < 0)
goto err;
}
vpu->booted = true;
err:
mutex_unlock(&vpu->pwr_lock);
}
static void wm_adsp2_set_dspclk(struct wm_adsp *dsp, unsigned int freq)
{
int ret;
switch (dsp->rev) {
case 0:
ret = regmap_update_bits_async(dsp->regmap,
dsp->base + ADSP2_CLOCKING,
ADSP2_CLK_SEL_MASK,
freq << ADSP2_CLK_SEL_SHIFT);
if (ret) {
adsp_err(dsp, "Failed to set clock rate: %d\n", ret);
return;
}
break;
default:
/* clock is handled by parent codec driver */
break;
}
}
int wm_adsp2_preloader_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct wm_adsp *dsp = &dsps[mc->shift-1];
ucontrol->value.integer.value[0] = dsp->preloaded;
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_preloader_get);
int wm_adsp2_preloader_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct wm_adsp *dsp = &dsps[mc->shift-1];
char preload[32];
snprintf(preload, ARRAY_SIZE(preload), "DSP%u%s Preload", mc->shift,
dsp->suffix);
dsp->preloaded = ucontrol->value.integer.value[0];
if (ucontrol->value.integer.value[0])
snd_soc_component_force_enable_pin(&codec->component, preload);
else
snd_soc_component_disable_pin(&codec->component, preload);
snd_soc_dapm_sync(dapm);
flush_work(&dsp->boot_work);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_preloader_put);
static void wm_adsp_stop_watchdog(struct wm_adsp *dsp)
{
switch (dsp->rev) {
case 0:
case 1:
return;
default:
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
ADSP2_WDT_ENA_MASK, 0);
}
}
static void wm_halo_stop_watchdog(struct wm_adsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
HALO_WDT_EN_MASK, 0);
}
int wm_adsp2_early_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event,
unsigned int freq)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct wm_adsp *dsp = &dsps[w->shift];
struct wm_coeff_ctl *ctl;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
wm_adsp2_set_dspclk(dsp, freq);
queue_work(system_unbound_wq, &dsp->boot_work);
break;
case SND_SOC_DAPM_PRE_PMD:
mutex_lock(&dsp->pwr_lock);
wm_adsp_debugfs_clear(dsp);
dsp->fw_id = 0;
dsp->fw_id_version = 0;
dsp->booted = false;
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
wm_adsp_free_alg_regions(dsp);
mutex_unlock(&dsp->pwr_lock);
adsp_dbg(dsp, "Shutdown complete\n");
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_early_event);
int wm_halo_early_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct wm_adsp *dsp = &dsps[w->shift];
struct wm_coeff_ctl *ctl;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
queue_work(system_unbound_wq, &dsp->boot_work);
break;
case SND_SOC_DAPM_PRE_PMD:
mutex_lock(&dsp->pwr_lock);
wm_adsp_debugfs_clear(dsp);
dsp->fw_id = 0;
dsp->fw_id_version = 0;
dsp->booted = false;
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
wm_adsp_free_alg_regions(dsp);
mutex_unlock(&dsp->pwr_lock);
adsp_dbg(dsp, "Shutdown complete\n");
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_halo_early_event);
void wm_adsp_queue_boot_work(struct wm_adsp *dsp)
{
queue_work(system_unbound_wq, &dsp->boot_work);
}
EXPORT_SYMBOL_GPL(wm_adsp_queue_boot_work);
int wm_adsp2_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct wm_adsp *dsp = &dsps[w->shift];
int ret;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
flush_work(&dsp->boot_work);
mutex_lock(&dsp->pwr_lock);
if (!dsp->booted) {
ret = -EIO;
goto err;
}
ret = wm_adsp2_ena(dsp);
if (ret != 0)
goto err;
/* Sync set controls */
ret = wm_coeff_sync_controls(dsp);
if (ret != 0)
goto err;
wm_adsp2_lock(dsp, dsp->lock_regions);
ret = regmap_update_bits(dsp->regmap,
dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START,
ADSP2_CORE_ENA | ADSP2_START);
if (ret != 0)
goto err;
if (dsp->firmwares[dsp->fw].num_caps != 0) {
ret = wm_adsp_buffer_init(dsp);
if (ret < 0)
goto err;
}
dsp->running = true;
mutex_unlock(&dsp->pwr_lock);
adsp_dbg(dsp, "Execution started\n");
break;
case SND_SOC_DAPM_PRE_PMD:
/* Tell the firmware to cleanup */
wm_adsp_signal_event_controls(dsp, WM_ADSP_FW_EVENT_SHUTDOWN);
wm_adsp_stop_watchdog(dsp);
/* Log firmware state, it can be useful for analysis */
switch (dsp->rev) {
case 0:
wm_adsp2_show_fw_status(dsp);
break;
default:
wm_adsp2v2_show_fw_status(dsp);
break;
}
mutex_lock(&dsp->pwr_lock);
dsp->running = false;
regmap_update_bits(dsp->regmap,
dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START, 0);
/* Make sure DMAs are quiesced */
switch (dsp->rev) {
case 0:
regmap_write(dsp->regmap,
dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap,
dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap,
dsp->base + ADSP2_WDMA_CONFIG_2, 0);
regmap_update_bits(dsp->regmap,
dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, 0);
break;
default:
regmap_write(dsp->regmap,
dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap,
dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap,
dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
break;
}
if (dsp->firmwares[dsp->fw].num_caps != 0)
wm_adsp_buffer_free(dsp);
mutex_unlock(&dsp->pwr_lock);
adsp_dbg(dsp, "Execution stopped\n");
break;
default:
break;
}
return 0;
err:
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0);
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp2_event);
int wm_halo_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct wm_adsp *dsp = &dsps[w->shift];
int ret;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
flush_work(&dsp->boot_work);
mutex_lock(&dsp->pwr_lock);
if (!dsp->booted) {
ret = -EIO;
goto err;
}
/* Sync set controls */
ret = wm_coeff_sync_controls(dsp);
if (ret != 0)
goto err;
adsp_dbg(dsp, "Setting RX rates.\n");
ret = wm_halo_set_rate_block(dsp, HALO_SAMPLE_RATE_RX1,
dsp->n_rx_channels,
dsp->rx_rate_cache);
if (ret) {
adsp_err(dsp, "Failed to set RX rates.\n");
goto err;
}
adsp_dbg(dsp, "Setting TX rates.\n");
ret = wm_halo_set_rate_block(dsp, HALO_SAMPLE_RATE_TX1,
dsp->n_tx_channels,
dsp->tx_rate_cache);
if (ret) {
adsp_err(dsp, "Failed to set TX rates.\n");
goto err;
}
ret = wm_halo_configure_mpu(dsp);
if (ret != 0)
goto err;
ret = regmap_update_bits(dsp->regmap,
dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_EN, HALO_CORE_EN);
if (ret != 0)
goto err;
if (dsp->firmwares[dsp->fw].num_caps != 0) {
ret = wm_adsp_buffer_init(dsp);
if (ret < 0)
goto err;
}
dsp->running = true;
mutex_unlock(&dsp->pwr_lock);
adsp_info(dsp, "Execution started\n");
break;
case SND_SOC_DAPM_PRE_PMD:
/* Tell the firmware to cleanup */
wm_adsp_signal_event_controls(dsp, WM_ADSP_FW_EVENT_SHUTDOWN);
/* Log firmware state, it can be useful for analysis */
wm_halo_show_fw_status(dsp);
mutex_lock(&dsp->pwr_lock);
dsp->running = false;
regmap_update_bits(dsp->regmap,
dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_EN, 0);
if (dsp->firmwares[dsp->fw].num_caps != 0)
wm_adsp_buffer_free(dsp);
dsp->fatal_error = false;
mutex_unlock(&dsp->pwr_lock);
/* reset halo core with CORE_SOFT_REEST */
regmap_update_bits(dsp->regmap,
dsp->base + HALO_CORE_SOFT_RESET,
HALO_CORE_SOFT_RESET_MASK, 1);
adsp_info(dsp, "Execution stopped\n");
break;
default:
break;
}
return 0;
err:
mutex_unlock(&dsp->pwr_lock);
regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_EN, 0);
return ret;
}
EXPORT_SYMBOL_GPL(wm_halo_event);
int wm_adsp2_codec_probe(struct wm_adsp *dsp, struct snd_soc_codec *codec)
{
char preload[32];
if (!dsp->suffix)
dsp->suffix = "";
if (!dsp->no_preloader) {
snprintf(preload, ARRAY_SIZE(preload), "DSP%d%s Preload",
dsp->num, dsp->suffix);
snd_soc_component_disable_pin(&codec->component, preload);
}
wm_adsp2_init_debugfs(dsp, codec);
dsp->codec = codec;
return snd_soc_add_codec_controls(codec, &dsp->fw_ctrl, 1);
}
EXPORT_SYMBOL_GPL(wm_adsp2_codec_probe);
int wm_adsp2_codec_remove(struct wm_adsp *dsp, struct snd_soc_codec *codec)
{
wm_adsp2_cleanup_debugfs(dsp);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_codec_remove);
#ifdef CONFIG_OF
static int wm_adsp_of_parse_caps(struct wm_adsp *dsp,
struct device_node *np,
struct wm_adsp_fw_defs *fw)
{
const char *prop = "cirrus,compr-caps";
int i;
int len_prop;
u32 of_cap;
if (!of_get_property(np, prop, &len_prop))
return -EINVAL;
len_prop /= sizeof(u32);
if (len_prop < 5 || len_prop > 4 + MAX_NUM_SAMPLE_RATES)
return -EOVERFLOW;
fw->num_caps = 1;
fw->caps = devm_kzalloc(dsp->dev,
sizeof(struct wm_adsp_fw_caps),
GFP_KERNEL);
if (!fw->caps)
return -ENOMEM;
of_property_read_u32_index(np, prop, 0, &of_cap);
fw->caps->id = of_cap;
of_property_read_u32_index(np, prop, 1, &of_cap);
fw->caps->desc.max_ch = of_cap;
of_property_read_u32_index(np, prop, 2, &of_cap);
fw->caps->desc.formats = of_cap;
of_property_read_u32_index(np, prop, 3, &of_cap);
fw->compr_direction = of_cap;
for (i = 4; i < len_prop; ++i) {
of_property_read_u32_index(np, prop, i, &of_cap);
fw->caps->desc.sample_rates[i - 4] = of_cap;
}
fw->caps->desc.num_sample_rates = i - 4;
return 0;
}
static int wm_adsp_of_parse_firmware(struct wm_adsp *dsp,
struct device_node *np)
{
struct device_node *fws = of_get_child_by_name(np, "firmware");
struct device_node *fw = NULL;
const char **ctl_names;
const char *tmp;
int ret;
int i;
if (!fws)
return 0;
i = 0;
while ((fw = of_get_next_child(fws, fw)) != NULL)
i++;
if (i == 0)
return 0;
dsp->num_firmwares = i;
dsp->firmwares = devm_kzalloc(dsp->dev,
i * sizeof(struct wm_adsp_fw_defs),
GFP_KERNEL);
if (!dsp->firmwares)
return -ENOMEM;
ctl_names = devm_kzalloc(dsp->dev,
i * sizeof(const char *),
GFP_KERNEL);
if (!ctl_names)
return -ENOMEM;
i = 0;
while ((fw = of_get_next_child(fws, fw)) != NULL) {
ctl_names[i] = fw->name;
ret = of_property_read_string(fw, "cirrus,wmfw-file",
&dsp->firmwares[i].file);
if (ret < 0) {
dev_err(dsp->dev,
"Firmware filename missing/malformed: %d\n",
ret);
return ret;
}
ret = of_property_read_string(fw, "cirrus,bin-file",
&dsp->firmwares[i].binfile);
if (ret < 0)
dsp->firmwares[i].binfile = NULL;
dsp->firmwares[i].fullname =
of_property_read_bool(fw, "cirrus,full-name");
ret = of_property_read_string(fw, "cirrus,fw-name", &tmp);
if (ret == 0)
ctl_names[i] = tmp;
wm_adsp_of_parse_caps(dsp, fw, &dsp->firmwares[i]);
i++;
}
dsp->fw_enum.items = dsp->num_firmwares;
dsp->fw_enum.texts = ctl_names;
dsp->fw_enum.shift_l = dsp->num - 1;
dsp->fw_enum.shift_r = dsp->num - 1;
if (dsp->ao_dsp)
dsp->fw_ctrl = wm_adsp_ao_fw_controls[dsp->num - 1];
else
dsp->fw_ctrl = wm_adsp_fw_controls[dsp->num - 1];
dsp->fw_ctrl.private_value = (unsigned long)(&dsp->fw_enum);
return dsp->num_firmwares;
}
static int wm_adsp_of_parse_adsp(struct wm_adsp *dsp)
{
struct device_node *np = of_get_child_by_name(dsp->dev->of_node,
"adsps");
struct device_node *core = NULL;
unsigned int addr;
int ret;
if (!np)
return 0;
while ((core = of_get_next_child(np, core)) != NULL) {
ret = of_property_read_u32(core, "reg", &addr);
if (ret < 0) {
dev_err(dsp->dev,
"Failed to get ADSP base address: %d\n",
ret);
return ret;
}
if (addr == dsp->base)
break;
}
if (!core)
return 0;
return wm_adsp_of_parse_firmware(dsp, core);
}
#else
static inline int wm_adsp_of_parse_adsp(struct wm_adsp *dsp)
{
return 0;
}
#endif
int wm_adsp1_init(struct wm_adsp *dsp)
{
INIT_LIST_HEAD(&dsp->alg_regions);
INIT_LIST_HEAD(&dsp->compr_list);
INIT_LIST_HEAD(&dsp->buffer_list);
mutex_init(&dsp->pwr_lock);
if (!dsp->dev->of_node || wm_adsp_of_parse_adsp(dsp) <= 0) {
dsp->fw_enum = wm_adsp_fw_enum[dsp->num - 1];
dsp->fw_ctrl = wm_adsp_fw_controls[dsp->num - 1];
dsp->num_firmwares = ARRAY_SIZE(wm_adsp_fw);
dsp->firmwares = wm_adsp_fw;
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp1_init);
int wm_adsp2_init(struct wm_adsp *dsp)
{
int ret;
switch (dsp->rev) {
case 0:
/*
* Disable the DSP memory by default when in reset for a small
* power saving.
*/
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
if (ret) {
adsp_err(dsp,
"Failed to clear memory retention: %d\n", ret);
return ret;
}
break;
default:
break;
}
INIT_LIST_HEAD(&dsp->alg_regions);
INIT_LIST_HEAD(&dsp->ctl_list);
INIT_LIST_HEAD(&dsp->compr_list);
INIT_LIST_HEAD(&dsp->buffer_list);
INIT_WORK(&dsp->boot_work, wm_adsp2_boot_work);
mutex_init(&dsp->pwr_lock);
if (!dsp->dev->of_node || wm_adsp_of_parse_adsp(dsp) <= 0) {
dsp->fw_enum = wm_adsp_fw_enum[dsp->num - 1];
dsp->fw_ctrl = wm_adsp_fw_controls[dsp->num - 1];
dsp->num_firmwares = ARRAY_SIZE(wm_adsp_fw);
dsp->firmwares = wm_adsp_fw;
}
dsp->data_word_size = WM_ADSP_DATA_WORD_SIZE_DEFAULT;
dsp->data_word_mask = WM_ADSP_DATA_WORD_MASK_DEFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_init);
int wm_halo_init(struct wm_adsp *dsp, struct mutex *rate_lock)
{
INIT_LIST_HEAD(&dsp->alg_regions);
INIT_LIST_HEAD(&dsp->ctl_list);
INIT_LIST_HEAD(&dsp->compr_list);
INIT_LIST_HEAD(&dsp->buffer_list);
INIT_WORK(&dsp->boot_work, wm_halo_boot_work);
mutex_init(&dsp->pwr_lock);
if (!dsp->dev->of_node || wm_adsp_of_parse_adsp(dsp) <= 0) {
dsp->fw_enum = wm_adsp_fw_enum[dsp->num - 1];
if (dsp->ao_dsp)
dsp->fw_ctrl = wm_adsp_ao_fw_controls[dsp->num - 1];
else
dsp->fw_ctrl = wm_adsp_fw_controls[dsp->num - 1];
dsp->num_firmwares = ARRAY_SIZE(wm_adsp_fw);
dsp->firmwares = wm_adsp_fw;
}
dsp->rate_lock = rate_lock;
dsp->rx_rate_cache = kcalloc(dsp->n_rx_channels, sizeof(u8),
GFP_KERNEL);
dsp->tx_rate_cache = kcalloc(dsp->n_tx_channels, sizeof(u8),
GFP_KERNEL);
dsp->data_word_size = WM_ADSP_DATA_WORD_SIZE_DEFAULT;
dsp->data_word_mask = WM_ADSP_DATA_WORD_MASK_DEFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(wm_halo_init);
void wm_vpu_init(struct wm_adsp *vpu)
{
INIT_LIST_HEAD(&vpu->alg_regions);
INIT_LIST_HEAD(&vpu->ctl_list);
INIT_LIST_HEAD(&vpu->compr_list);
INIT_LIST_HEAD(&vpu->buffer_list);
INIT_WORK(&vpu->boot_work, wm_vpu_boot_work);
mutex_init(&vpu->pwr_lock);
vpu->data_word_size = WM_ADSP_DATA_WORD_SIZE_VPU;
vpu->data_word_mask = WM_ADSP_DATA_WORD_MASK_VPU;
}
EXPORT_SYMBOL_GPL(wm_vpu_init);
void wm_adsp2_remove(struct wm_adsp *dsp)
{
struct wm_coeff_ctl *ctl;
while (!list_empty(&dsp->ctl_list)) {
ctl = list_first_entry(&dsp->ctl_list, struct wm_coeff_ctl,
list);
list_del(&ctl->list);
wm_adsp_free_ctl_blk(ctl);
}
kfree(dsp->rx_rate_cache);
kfree(dsp->tx_rate_cache);
}
EXPORT_SYMBOL_GPL(wm_adsp2_remove);
static inline int wm_adsp_compr_attached(struct wm_adsp_compr *compr)
{
return compr->buf != NULL;
}
static int wm_adsp_compr_attach(struct wm_adsp_compr *compr)
{
struct wm_adsp_compr_buf *buf = NULL, *tmp;
if (compr->dsp->fatal_error)
return -EINVAL;
list_for_each_entry(tmp, &compr->dsp->buffer_list, list) {
if (tmp->name == NULL || !strcmp(compr->name, tmp->name)) {
buf = tmp;
break;
}
}
if (!buf)
return -EINVAL;
compr->buf = buf;
compr->buf->compr = compr;
return 0;
}
static void wm_adsp_compr_detach(struct wm_adsp_compr *compr)
{
if (!compr)
return;
/* Wake the poll so it can see buffer is no longer attached */
if (compr->stream)
snd_compr_fragment_elapsed(compr->stream);
if (wm_adsp_compr_attached(compr)) {
compr->buf->compr = NULL;
compr->buf = NULL;
}
}
int wm_adsp_compr_open(struct wm_adsp *dsp, struct snd_compr_stream *stream)
{
struct wm_adsp_compr *compr, *tmp;
struct snd_soc_pcm_runtime *rtd = stream->private_data;
int ret = 0;
mutex_lock(&dsp->pwr_lock);
if (dsp->firmwares[dsp->fw].num_caps == 0) {
adsp_err(dsp, "Firmware does not support compressed API\n");
ret = -ENXIO;
goto out;
}
if (dsp->firmwares[dsp->fw].compr_direction != stream->direction) {
adsp_err(dsp, "Firmware does not support stream direction\n");
ret = -EINVAL;
goto out;
}
list_for_each_entry(tmp, &dsp->compr_list, list) {
if (!strcmp(tmp->name, rtd->codec_dai->name)) {
adsp_err(dsp, "Only a single stream supported per dai\n");
ret = -EBUSY;
goto out;
}
}
compr = kzalloc(sizeof(*compr), GFP_KERNEL);
if (!compr) {
ret = -ENOMEM;
goto out;
}
compr->dsp = dsp;
compr->stream = stream;
compr->name = rtd->codec_dai->name;
list_add_tail(&compr->list, &dsp->compr_list);
stream->runtime->private_data = compr;
out:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_open);
int wm_adsp_compr_free(struct snd_compr_stream *stream)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
mutex_lock(&dsp->pwr_lock);
wm_adsp_compr_detach(compr);
list_del(&compr->list);
kfree(compr->raw_buf);
kfree(compr);
mutex_unlock(&dsp->pwr_lock);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_free);
static int wm_adsp_compr_check_params(struct snd_compr_stream *stream,
struct snd_compr_params *params)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
const struct wm_adsp_fw_caps *caps;
const struct snd_codec_desc *desc;
int i, j;
if (params->buffer.fragment_size < (WM_ADSP_MIN_FRAGMENT_SIZE_WORDS
* dsp->data_word_size) ||
params->buffer.fragment_size > (WM_ADSP_MAX_FRAGMENT_SIZE_WORDS
* dsp->data_word_size) ||
params->buffer.fragments < WM_ADSP_MIN_FRAGMENTS ||
params->buffer.fragments > WM_ADSP_MAX_FRAGMENTS ||
params->buffer.fragment_size % dsp->data_word_size) {
adsp_err(dsp, "Invalid buffer fragsize=%d fragments=%d\n",
params->buffer.fragment_size,
params->buffer.fragments);
return -EINVAL;
}
for (i = 0; i < dsp->firmwares[dsp->fw].num_caps; i++) {
caps = &dsp->firmwares[dsp->fw].caps[i];
desc = &caps->desc;
if (caps->id != params->codec.id)
continue;
if (stream->direction == SND_COMPRESS_PLAYBACK) {
if (desc->max_ch < params->codec.ch_out)
continue;
} else {
if (desc->max_ch < params->codec.ch_in)
continue;
}
if (!(desc->formats & (1 << params->codec.format)))
continue;
for (j = 0; j < desc->num_sample_rates; ++j)
if (desc->sample_rates[j] == params->codec.sample_rate)
return 0;
}
adsp_err(dsp, "Invalid params id=%u ch=%u,%u rate=%u fmt=%u\n",
params->codec.id, params->codec.ch_in, params->codec.ch_out,
params->codec.sample_rate, params->codec.format);
return -EINVAL;
}
static inline unsigned int wm_adsp_compr_frag_words(struct wm_adsp_compr *compr)
{
return compr->size.fragment_size / compr->dsp->data_word_size;
}
int wm_adsp_compr_set_params(struct snd_compr_stream *stream,
struct snd_compr_params *params)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
unsigned int size;
int ret;
ret = wm_adsp_compr_check_params(stream, params);
if (ret)
return ret;
compr->size = params->buffer;
adsp_dbg(compr->dsp, "fragment_size=%d fragments=%d\n",
compr->size.fragment_size, compr->size.fragments);
size = wm_adsp_compr_frag_words(compr) * sizeof(*compr->raw_buf);
compr->raw_buf = kmalloc(size, GFP_DMA | GFP_KERNEL);
if (!compr->raw_buf)
return -ENOMEM;
compr->sample_rate = params->codec.sample_rate;
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_set_params);
int wm_adsp_compr_get_caps(struct snd_compr_stream *stream,
struct snd_compr_caps *caps)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
int fw = compr->dsp->fw;
int i;
if (dsp->firmwares[fw].caps) {
for (i = 0; i < dsp->firmwares[fw].num_caps; i++)
caps->codecs[i] = dsp->firmwares[fw].caps[i].id;
caps->num_codecs = i;
caps->direction = dsp->firmwares[fw].compr_direction;
caps->min_fragment_size = WM_ADSP_MIN_FRAGMENT_SIZE_WORDS
* dsp->data_word_size;
caps->max_fragment_size = WM_ADSP_MAX_FRAGMENT_SIZE_WORDS
* dsp->data_word_size;
caps->min_fragments = WM_ADSP_MIN_FRAGMENTS;
caps->max_fragments = WM_ADSP_MAX_FRAGMENTS;
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_get_caps);
static int wm_adsp_read_data_block(struct wm_adsp *dsp, int mem_type,
unsigned int mem_addr,
unsigned int num_words, u32 *data)
{
struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type);
unsigned int i, reg;
unsigned int data_word_mask = dsp->data_word_mask;
int ret;
if (!mem)
return -EINVAL;
reg = wm_adsp_region_to_reg(dsp, mem, mem_addr);
ret = regmap_raw_read(dsp->regmap, reg, data,
sizeof(*data) * num_words);
if (ret < 0)
return ret;
for (i = 0; i < num_words; ++i)
data[i] = be32_to_cpu(data[i]) & data_word_mask;
return 0;
}
static inline int wm_adsp_read_data_word(struct wm_adsp *dsp, int mem_type,
unsigned int mem_addr, u32 *data)
{
return wm_adsp_read_data_block(dsp, mem_type, mem_addr, 1, data);
}
static int wm_adsp_write_data_word(struct wm_adsp *dsp, int mem_type,
unsigned int mem_addr, u32 data)
{
struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type);
unsigned int reg;
if (!mem)
return -EINVAL;
reg = wm_adsp_region_to_reg(dsp, mem, mem_addr);
data = cpu_to_be32(data & dsp->data_word_mask);
return regmap_raw_write(dsp->regmap, reg, &data, sizeof(data));
}
static inline int wm_adsp_buffer_read(struct wm_adsp_compr_buf *buf,
unsigned int field_offset, u32 *data)
{
return wm_adsp_read_data_word(buf->dsp, buf->host_buf_mem_type,
buf->host_buf_ptr + field_offset, data);
}
static inline int wm_adsp_buffer_write(struct wm_adsp_compr_buf *buf,
unsigned int field_offset, u32 data)
{
return wm_adsp_write_data_word(buf->dsp, buf->host_buf_mem_type,
buf->host_buf_ptr + field_offset, data);
}
static int wm_adsp_legacy_host_buf_addr(struct wm_adsp_compr_buf *buf)
{
struct wm_adsp_alg_region *alg_region;
struct wm_adsp *dsp = buf->dsp;
u32 xmalg, addr, magic;
int i, ret;
alg_region = wm_adsp_find_alg_region(dsp, WMFW_ADSP2_XM, dsp->fw_id);
switch (dsp->type) {
case WMFW_ADSP2:
xmalg = sizeof(struct wm_adsp_system_config_xm_hdr);
xmalg /= sizeof(__be32);
break;
case WMFW_HALO:
xmalg = sizeof(struct wm_halo_system_config_xm_hdr);
xmalg /= sizeof(__be32);
break;
default:
WARN(1, "Unknown DSP type");
return -ENODEV;
}
addr = alg_region->base + xmalg + ALG_XM_FIELD(magic);
ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr, &magic);
if (ret < 0)
return ret;
if (magic != WM_ADSP_ALG_XM_STRUCT_MAGIC)
return -EINVAL;
addr = alg_region->base + xmalg + ALG_XM_FIELD(host_buf_ptr);
for (i = 0; i < 5; ++i) {
ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr,
&buf->host_buf_ptr);
if (ret < 0)
return ret;
if (buf->host_buf_ptr)
break;
usleep_range(1000, 2000);
}
if (!buf->host_buf_ptr)
return -EIO;
buf->host_buf_mem_type = WMFW_ADSP2_XM;
adsp_dbg(dsp, "host_buf_ptr=%x\n", buf->host_buf_ptr);
return 0;
}
static int wm_adsp_buffer_populate(struct wm_adsp_compr_buf *buf)
{
struct wm_adsp_buffer_region *region;
u32 offset = 0;
int i, ret;
for (i = 0; i < buf->num_regions; ++i) {
region = &buf->regions[i];
region->offset = offset;
region->mem_type = buf->region_def[i].mem_type;
ret = wm_adsp_buffer_read(buf, buf->region_def[i].base_offset,
&region->base_addr);
if (ret < 0)
return ret;
ret = wm_adsp_buffer_read(buf, buf->region_def[i].size_offset,
&offset);
if (ret < 0)
return ret;
region->cumulative_size = offset;
adsp_dbg(buf->dsp,
"region=%d type=%d base=%08x off=%08x size=%08x\n",
i, region->mem_type, region->base_addr,
region->offset, region->cumulative_size);
}
return 0;
}
static void wm_adsp_buffer_clear(struct wm_adsp_compr_buf *buf)
{
buf->irq_count = 0xFFFFFFFF;
buf->read_index = -1;
buf->avail = 0;
}
static int wm_adsp_buf_init(struct wm_adsp_compr_buf *buf)
{
struct wm_adsp *dsp = buf->dsp;
int ret;
switch (dsp->type) {
case WMFW_ADSP1:
case WMFW_ADSP2:
case WMFW_HALO:
buf->num_regions = ARRAY_SIZE(default_regions);
buf->region_def = default_regions;
break;
case WMFW_VPU:
buf->num_regions = ARRAY_SIZE(vpu_regions);
buf->region_def = vpu_regions;
break;
default:
adsp_err(dsp, "Unknown DSP type:%d\n", dsp->type);
return -EINVAL;
}
buf->regions = kcalloc(buf->num_regions, sizeof(*buf->regions),
GFP_KERNEL);
if (!buf->regions)
return -ENOMEM;
ret = wm_adsp_buffer_populate(buf);
if (ret < 0) {
adsp_err(dsp, "Failed to populate host buffer: %d\n", ret);
kfree(buf->regions);
return ret;
}
list_add_tail(&buf->list, &dsp->buffer_list);
return 0;
}
static void wm_adsp_remove_padding(u32 *buf, int nwords, int data_word_size)
{
u8 *pack_in = (u8 *)buf;
u8 *pack_out = (u8 *)buf;
int i, j;
/* Remove the padding bytes from the data read from the DSP */
for (i = 0; i < nwords; i++) {
for (j = 0; j < data_word_size; j++)
*pack_out++ = *pack_in++;
pack_in += sizeof(*buf) - data_word_size;
}
}
static int wm_adsp_parse_buffer_coeff(struct wm_coeff_ctl *ctl)
{
int ret, i;
unsigned int val, reg;
struct wm_adsp_host_buf_coeff_v1 coeff_v1;
struct wm_adsp_compr_buf *buf;
ret = wm_coeff_base_reg(ctl, &reg);
if (ret)
return ret;
for (i = 0; i < 5; ++i) {
ret = regmap_raw_read(ctl->dsp->regmap, reg, &val,
sizeof(val));
if (ret < 0)
return ret;
if (val)
break;
usleep_range(1000, 2000);
}
if (!val) {
adsp_err(ctl->dsp, "Failed to acquire host buffer\n");
return -EIO;
}
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf->dsp = ctl->dsp;
buf->host_buf_mem_type = ctl->alg_region.type;
wm_adsp_buffer_clear(buf);
buf->host_buf_ptr = be32_to_cpu(val);
adsp_dbg(ctl->dsp, "host_buf_ptr=%x\n", buf->host_buf_ptr);
ret = wm_adsp_buf_init(buf);
if (ret) {
kfree(buf);
return val;
}
/*
* v0 host_buffer coefficients didn't have versioning, so if the
* control is one word, assume version 0.
*/
if (ctl->len == 4) {
adsp_dbg(ctl->dsp, "Host buffer coeff version 0\n");
return 0;
}
ret = regmap_raw_read(ctl->dsp->regmap, reg, &coeff_v1,
sizeof(coeff_v1));
if (ret < 0) {
adsp_err(ctl->dsp,
"Failed to get host buffer coeff version: %d\n",
ret);
return ret;
}
coeff_v1.versions = be32_to_cpu(coeff_v1.versions);
val = coeff_v1.versions & HOST_BUF_COEFF_COMPAT_VER_MASK;
val >>= HOST_BUF_COEFF_COMPAT_VER_SHIFT;
if (val > HOST_BUF_COEFF_SUPPORTED_COMPAT_VER) {
adsp_err(ctl->dsp,
"Host buffer coeff ver %u > supported version %u\n",
val, HOST_BUF_COEFF_SUPPORTED_COMPAT_VER);
return -EINVAL;
}
adsp_dbg(ctl->dsp, "Host buffer coeff version %u\n", val);
for (i = 0; i < ARRAY_SIZE(coeff_v1.name); i++)
coeff_v1.name[i] = be32_to_cpu(coeff_v1.name[i]);
wm_adsp_remove_padding((u32 *)&coeff_v1.name,
ARRAY_SIZE(coeff_v1.name),
ctl->dsp->data_word_size);
buf->name = kasprintf(GFP_KERNEL, "%s-dsp-%s", ctl->dsp->part,
(char *)&coeff_v1.name);
buf->ws = wakeup_source_register(buf->name);
return val;
}
static int wm_adsp_buffer_init(struct wm_adsp *dsp)
{
struct wm_adsp_compr_buf *buf;
struct wm_coeff_ctl *ctl;
int ret;
int coeff_ver;
bool found = false;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->type != WMFW_CTL_TYPE_HOST_BUFFER)
continue;
if (!ctl->enabled)
continue;
found = true;
coeff_ver = wm_adsp_parse_buffer_coeff(ctl);
if (coeff_ver < 0) {
wm_adsp_buffer_free(dsp);
return coeff_ver;
}
/* Only one buffer supported for version 0 coefficients */
if (coeff_ver == 0)
break;
}
if (!found) {
/* Fall back to legacy support */
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf->dsp = dsp;
wm_adsp_buffer_clear(buf);
ret = wm_adsp_legacy_host_buf_addr(buf);
if (ret) {
kfree(buf);
return ret;
}
ret = wm_adsp_buf_init(buf);
if (ret) {
kfree(buf);
return ret;
}
buf->ws = wakeup_source_register("legacy-buffer");
}
return 0;
}
static int wm_adsp_buffer_free(struct wm_adsp *dsp)
{
struct wm_adsp_compr_buf *buf, *tmp;
list_for_each_entry_safe(buf, tmp, &dsp->buffer_list, list) {
if (buf->compr)
wm_adsp_compr_detach(buf->compr);
kfree(buf->name);
kfree(buf->regions);
pm_wakeup_ws_event(buf->ws, 0, false);
wakeup_source_unregister(buf->ws);
list_del(&buf->list);
kfree(buf);
}
return 0;
}
static int wm_adsp_buffer_get_error(struct wm_adsp_compr_buf *buf)
{
int ret;
ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(error), &buf->error);
if (ret < 0) {
adsp_err(buf->dsp, "Failed to check buffer error: %d\n", ret);
return ret;
}
if (buf->error != 0) {
adsp_err(buf->dsp, "Buffer error occurred: %d\n", buf->error);
return -EIO;
}
return 0;
}
int wm_adsp_compr_trigger(struct snd_compr_stream *stream, int cmd)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
int ret = 0;
adsp_dbg(dsp, "Trigger: %d\n", cmd);
mutex_lock(&dsp->pwr_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!wm_adsp_compr_attached(compr)) {
ret = wm_adsp_compr_attach(compr);
if (ret < 0) {
adsp_err(dsp, "Failed to link buffer and stream: %d\n",
ret);
break;
}
}
ret = wm_adsp_buffer_get_error(compr->buf);
if (ret < 0)
break;
/* Trigger the IRQ at one fragment of data */
ret = wm_adsp_buffer_write(compr->buf,
HOST_BUFFER_FIELD(high_water_mark),
wm_adsp_compr_frag_words(compr));
if (ret < 0) {
adsp_err(dsp, "Failed to set high water mark: %d\n",
ret);
break;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
if (wm_adsp_compr_attached(compr))
wm_adsp_buffer_clear(compr->buf);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_trigger);
static inline int wm_adsp_buffer_size(struct wm_adsp_compr_buf *buf)
{
int last_region = buf->num_regions - 1;
return buf->regions[last_region].cumulative_size;
}
static int wm_adsp_buffer_update_avail(struct wm_adsp_compr_buf *buf)
{
u32 next_read_index, next_write_index;
int write_index, read_index, avail;
int ret;
/* Only sync read index if we haven't already read a valid index */
if (buf->read_index < 0) {
ret = wm_adsp_buffer_read(buf,
HOST_BUFFER_FIELD(next_read_index),
&next_read_index);
if (ret < 0)
return ret;
read_index = sign_extend32(next_read_index, 23);
if (read_index < 0) {
adsp_dbg(buf->dsp, "Avail check on unstarted stream\n");
return 0;
}
buf->read_index = read_index;
}
ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(next_write_index),
&next_write_index);
if (ret < 0)
return ret;
write_index = sign_extend32(next_write_index, 23);
avail = write_index - buf->read_index;
if (avail < 0)
avail += wm_adsp_buffer_size(buf);
adsp_dbg(buf->dsp, "readindex=0x%x, writeindex=0x%x, avail=%d\n",
buf->read_index, write_index, avail * buf->dsp->data_word_size);
buf->avail = avail;
if (avail)
pm_wakeup_ws_event(buf->ws, ADSP_COMPR_WAKEUP_TIMEOUT, false);
return 0;
}
int wm_adsp_compr_handle_irq(struct wm_adsp *dsp)
{
struct wm_adsp_compr_buf *buf;
struct wm_adsp_compr *compr;
int ret = 0;
mutex_lock(&dsp->pwr_lock);
if (list_empty(&dsp->buffer_list)) {
ret = -ENODEV;
goto out;
}
adsp_dbg(dsp, "Handling buffer IRQ\n");
list_for_each_entry(buf, &dsp->buffer_list, list) {
compr = buf->compr;
ret = wm_adsp_buffer_get_error(buf);
if (ret < 0)
goto out_notify; /* Wake poll to report error */
ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(irq_count),
&buf->irq_count);
if (ret < 0) {
adsp_err(dsp, "Failed to get irq_count: %d\n", ret);
goto out;
}
ret = wm_adsp_buffer_update_avail(buf);
if (ret < 0) {
adsp_err(dsp, "Error reading avail: %d\n", ret);
goto out;
}
if (dsp->firmwares[dsp->fw].voice_trigger &&
buf->irq_count == 2) {
adsp_info(dsp, "Voice trigger on %sattached buffer: %s\n",
compr ? "" : "un",
buf->name ? buf->name : "legacy");
ret = WM_ADSP_COMPR_VOICE_TRIGGER;
}
out_notify:
if (compr && compr->stream)
snd_compr_fragment_elapsed(compr->stream);
}
out:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_handle_irq);
static int wm_adsp_buffer_reenable_irq(struct wm_adsp_compr_buf *buf)
{
if (buf->irq_count & 0x01)
return 0;
adsp_dbg(buf->dsp, "Enable IRQ(0x%x) for next fragment\n",
buf->irq_count);
buf->irq_count |= 0x01;
pm_wakeup_ws_event(buf->ws, 0, false);
return wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(irq_ack),
buf->irq_count);
}
int wm_adsp_compr_pointer(struct snd_compr_stream *stream,
struct snd_compr_tstamp *tstamp)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
struct wm_adsp_compr_buf *buf;
int ret = 0;
adsp_dbg(dsp, "Pointer request\n");
mutex_lock(&dsp->pwr_lock);
buf = compr->buf;
if (dsp->fatal_error || !compr->buf || compr->buf->error) {
snd_compr_stop_error(stream, SNDRV_PCM_STATE_XRUN);
ret = -EIO;
goto out;
}
if (buf->avail < wm_adsp_compr_frag_words(compr)) {
ret = wm_adsp_buffer_update_avail(buf);
if (ret < 0) {
adsp_err(dsp, "Error reading avail: %d\n", ret);
goto out;
}
/*
* If we really have less than 1 fragment available tell the
* DSP to inform us once a whole fragment is available.
*/
if (buf->avail < wm_adsp_compr_frag_words(compr)) {
ret = wm_adsp_buffer_get_error(buf);
if (ret < 0) {
if (compr->buf->error)
snd_compr_stop_error(stream,
SNDRV_PCM_STATE_XRUN);
goto out;
}
ret = wm_adsp_buffer_reenable_irq(buf);
if (ret < 0) {
adsp_err(dsp,
"Failed to re-enable buffer IRQ: %d\n",
ret);
goto out;
}
}
}
tstamp->copied_total = compr->copied_total;
tstamp->copied_total += buf->avail * dsp->data_word_size;
tstamp->sampling_rate = compr->sample_rate;
out:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_pointer);
static int wm_adsp_buffer_capture_block(struct wm_adsp_compr *compr, int target)
{
struct wm_adsp_compr_buf *buf = compr->buf;
unsigned int adsp_addr;
int mem_type, nwords, max_read;
int i, ret;
int data_word_size = buf->dsp->data_word_size;
/* Calculate read parameters */
for (i = 0; i < buf->num_regions; ++i)
if (buf->read_index < buf->regions[i].cumulative_size)
break;
if (i == buf->num_regions)
return -EINVAL;
mem_type = buf->regions[i].mem_type;
adsp_addr = buf->regions[i].base_addr +
(buf->read_index - buf->regions[i].offset);
max_read = wm_adsp_compr_frag_words(compr);
nwords = buf->regions[i].cumulative_size - buf->read_index;
if (nwords > target)
nwords = target;
if (nwords > buf->avail)
nwords = buf->avail;
if (nwords > max_read)
nwords = max_read;
if (!nwords)
return 0;
/* Read data from DSP */
ret = wm_adsp_read_data_block(buf->dsp, mem_type, adsp_addr,
nwords, compr->raw_buf);
if (ret < 0)
return ret;
wm_adsp_remove_padding(compr->raw_buf, nwords, data_word_size);
/* update read index to account for words read */
buf->read_index += nwords;
if (buf->read_index == wm_adsp_buffer_size(buf))
buf->read_index = 0;
ret = wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(next_read_index),
buf->read_index);
if (ret < 0)
return ret;
/* update avail to account for words read */
buf->avail -= nwords;
return nwords;
}
static int wm_adsp_compr_read(struct wm_adsp_compr *compr,
char __user *buf, size_t count)
{
struct wm_adsp *dsp = compr->dsp;
int ntotal = 0;
int nwords, nbytes;
adsp_dbg(dsp, "Requested read of %zu bytes\n", count);
if (dsp->fatal_error || !compr->buf || compr->buf->error) {
snd_compr_stop_error(compr->stream, SNDRV_PCM_STATE_XRUN);
return -EIO;
}
count /= dsp->data_word_size;
do {
nwords = wm_adsp_buffer_capture_block(compr, count);
if (nwords < 0) {
adsp_err(dsp, "Failed to capture block: %d\n", nwords);
return nwords;
}
nbytes = nwords * dsp->data_word_size;
adsp_dbg(dsp, "Read %d bytes\n", nbytes);
if (copy_to_user(buf + ntotal, compr->raw_buf, nbytes)) {
adsp_err(dsp, "Failed to copy data to user: %d, %d\n",
ntotal, nbytes);
return -EFAULT;
}
count -= nwords;
ntotal += nbytes;
} while (nwords > 0 && count > 0);
compr->copied_total += ntotal;
return ntotal;
}
int wm_adsp_compr_copy(struct snd_compr_stream *stream, char __user *buf,
size_t count)
{
struct wm_adsp_compr *compr = stream->runtime->private_data;
struct wm_adsp *dsp = compr->dsp;
int ret;
mutex_lock(&dsp->pwr_lock);
if (stream->direction == SND_COMPRESS_CAPTURE)
ret = wm_adsp_compr_read(compr, buf, count);
else
ret = -ENOTSUPP;
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp_compr_copy);
int wm_adsp2_lock(struct wm_adsp *dsp, unsigned int lock_regions)
{
struct regmap *regmap = dsp->regmap;
unsigned int code0, code1, lock_reg;
if (!(lock_regions & WM_ADSP2_REGION_ALL))
return 0;
lock_regions &= WM_ADSP2_REGION_ALL;
lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
while (lock_regions) {
code0 = code1 = 0;
if (lock_regions & BIT(0)) {
code0 = ADSP2_LOCK_CODE_0;
code1 = ADSP2_LOCK_CODE_1;
}
if (lock_regions & BIT(1)) {
code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
}
regmap_write(regmap, lock_reg, code0);
regmap_write(regmap, lock_reg, code1);
lock_regions >>= 2;
lock_reg += 2;
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_lock);
irqreturn_t wm_adsp2_bus_error(struct wm_adsp *dsp)
{
unsigned int val;
struct regmap *regmap = dsp->regmap;
int ret = 0;
ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
if (ret) {
adsp_err(dsp,
"Failed to read Region Lock Ctrl register: %d\n", ret);
return IRQ_HANDLED;
}
if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
adsp_err(dsp, "watchdog timeout error\n");
wm_adsp_stop_watchdog(dsp);
}
if (val & (ADSP2_SLAVE_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
if (val & ADSP2_SLAVE_ERR_MASK)
adsp_err(dsp, "bus error: slave error\n");
else
adsp_err(dsp, "bus error: region lock error\n");
ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
if (ret) {
adsp_err(dsp,
"Failed to read Bus Err Addr register: %d\n",
ret);
return IRQ_HANDLED;
}
adsp_err(dsp, "bus error address = 0x%x\n",
val & ADSP2_BUS_ERR_ADDR_MASK);
ret = regmap_read(regmap,
dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
&val);
if (ret) {
adsp_err(dsp,
"Failed to read Pmem Xmem Err Addr register: %d\n",
ret);
return IRQ_HANDLED;
}
adsp_err(dsp, "xmem error address = 0x%x\n",
val & ADSP2_XMEM_ERR_ADDR_MASK);
adsp_err(dsp, "pmem error address = 0x%x\n",
(val & ADSP2_PMEM_ERR_ADDR_MASK) >>
ADSP2_PMEM_ERR_ADDR_SHIFT);
}
regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(wm_adsp2_bus_error);
static void wm_halo_dump_fault_info(struct wm_adsp *dsp, const char *region,
unsigned int addr, unsigned int status)
{
unsigned int write = status & HALO_MPU_VIO_ERR_WR_MASK;
unsigned int type = (status & HALO_MPU_VIO_STS_MASK) >>
HALO_MPU_VIO_STS_SHIFT;
unsigned int src = (status & HALO_MPU_VIO_ERR_SRC_MASK) >>
HALO_MPU_VIO_ERR_SRC_SHIFT;
adsp_warn(dsp, "%s: FAULT_ADDR:0x%x FAULT_STATUS:0x%x %s\n",
region, addr, status,
write ? "write" : "read");
switch (src) {
case 0:
adsp_warn(dsp, "%s: SRC=HALO\n", region);
break;
default:
adsp_warn(dsp, "%s: SRC=Requestor%u\n", region, src);
break;
}
adsp_warn(dsp, "%s: %s %s %s %s %s %s\n",
region,
(type & HALO_MPU_VIO_SRAM) ? "SRAM" : "",
(type & HALO_MPU_VIO_REG) ? "REG" : "",
(type & HALO_MPU_VIO_AHB) ? "AHB" : "",
(type & HALO_MPU_VIO_EREG) ? "EREG" : "",
(type & HALO_MPU_VIO_EXTERNAL_MEM) ? "ExtMem" : "",
(type & HALO_MPU_VIO_NON_EXIST) ? "NotExist" : "");
}
irqreturn_t wm_halo_bus_error(struct wm_adsp *dsp)
{
struct regmap *regmap = dsp->regmap;
unsigned int *fault;
unsigned int ahb_sts, reg;
int ret;
mutex_lock(&dsp->pwr_lock);
fault = kmalloc(sizeof(unsigned int) * 6, GFP_KERNEL | GFP_DMA);
if (!fault)
goto exit_unlock;
/* Ensure we log the fault even if we fail to read the fault info */
adsp_warn(dsp, "MPU FAULT\n");
ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
&ahb_sts);
if (ret) {
adsp_warn(dsp, "Failed to read AHB DEBUG_1 (%d)\n", ret);
goto exit_free;
}
adsp_warn(dsp, "AHB WINDOW: ADDR: 0x%x STATUS: 0x%x\n",
(ahb_sts & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
HALO_AHBM_CORE_ERR_ADDR_SHIFT,
ahb_sts);
adsp_warn(dsp, "AHB WINDOW: %s %s %s %s\n",
(ahb_sts & HALO_AHBM_ADDR_ERR_MASK) ? "ADDR" : "",
(ahb_sts & HALO_AHBM_LOCKED_ERR_MASK) ? "LOCKED" : "",
(ahb_sts & HALO_AHBM_SIZE_ERR_MASK) ? "SIZE" : "",
(ahb_sts & HALO_AHBM_MODE_ERR_MASK) ? "MODE" : "");
ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
&ahb_sts);
if (ret) {
adsp_warn(dsp, "Failed to read AHB DEBUG_0 (%d)\n", ret);
goto exit_free;
}
adsp_warn(dsp, "AHB SYS_ADDR: 0x%x\n", ahb_sts);
ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
fault, 6);
if (ret) {
adsp_warn(dsp, "Failed to read MPU fault info (%d)\n", ret);
goto exit_free;
}
wm_halo_dump_fault_info(dsp, "XM", fault[0], fault[1]);
wm_halo_dump_fault_info(dsp, "YM", fault[2], fault[3]);
wm_halo_dump_fault_info(dsp, "PM", fault[4], fault[5]);
/* Clear fault status */
for (reg = HALO_MPU_XM_VIO_STATUS; reg <= HALO_MPU_PM_VIO_STATUS;
reg += 8) {
ret = regmap_write(regmap, dsp->base + reg, 0);
if (ret)
adsp_warn(dsp, "Failed to clear MPU status @0x%x (%d)\n",
reg, ret);
}
exit_free:
kfree(fault);
exit_unlock:
mutex_unlock(&dsp->pwr_lock);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(wm_halo_bus_error);
irqreturn_t wm_halo_wdt_expire(int irq, void *data)
{
struct wm_adsp *dsp = data;
struct wm_adsp_compr *compr;
mutex_lock(&dsp->pwr_lock);
adsp_warn(dsp, "WDT Expiry Fault\n");
wm_halo_stop_watchdog(dsp);
dsp->fatal_error = true;
list_for_each_entry(compr, &dsp->compr_list, list) {
if (compr->stream)
snd_compr_fragment_elapsed(compr->stream);
}
mutex_unlock(&dsp->pwr_lock);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(wm_halo_wdt_expire);
MODULE_LICENSE("GPL v2");