620 lines
17 KiB
C
Executable File
620 lines
17 KiB
C
Executable File
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* High-level sync()-related operations
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/sched/xacct.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/backing-dev.h>
|
|
#include "internal.h"
|
|
|
|
#define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
|
|
SYNC_FILE_RANGE_WAIT_AFTER)
|
|
|
|
/* Interruptible sync for Samsung Mobile Device */
|
|
#ifdef CONFIG_INTERRUPTIBLE_SYNC
|
|
|
|
#include <linux/workqueue.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/delay.h>
|
|
|
|
//#define CONFIG_INTR_SYNC_DEBUG
|
|
|
|
#ifdef CONFIG_INTR_SYNC_DEBUG
|
|
#define dbg_print printk
|
|
#else
|
|
#define dbg_print(...)
|
|
#endif
|
|
|
|
enum {
|
|
INTR_SYNC_STATE_IDLE = 0,
|
|
INTR_SYNC_STATE_QUEUED,
|
|
INTR_SYNC_STATE_RUNNING,
|
|
INTR_SYNC_STATE_MAX
|
|
};
|
|
|
|
struct interruptible_sync_work {
|
|
int id;
|
|
int ret;
|
|
unsigned int waiter;
|
|
unsigned int state;
|
|
unsigned long version;
|
|
spinlock_t lock;
|
|
struct completion done;
|
|
struct work_struct work;
|
|
};
|
|
|
|
/* Initially, intr_sync_work has zero pending */
|
|
static struct interruptible_sync_work intr_sync_work[2];
|
|
|
|
/* Last work start time */
|
|
static atomic_t running_work_idx;
|
|
|
|
/* intr_sync_wq will be created when intr_sync() is called at first time.
|
|
* And it is alive till system shutdown */
|
|
static struct workqueue_struct *intr_sync_wq;
|
|
|
|
/* It prevents double allocation of intr_sync_wq */
|
|
static DEFINE_MUTEX(intr_sync_wq_lock);
|
|
|
|
static inline struct interruptible_sync_work *INTR_SYNC_WORK(struct work_struct *work)
|
|
{
|
|
return container_of(work, struct interruptible_sync_work, work);
|
|
}
|
|
|
|
static void do_intr_sync(struct work_struct *work)
|
|
{
|
|
struct interruptible_sync_work *sync_work = INTR_SYNC_WORK(work);
|
|
int ret = 0;
|
|
unsigned int waiter;
|
|
|
|
spin_lock(&sync_work->lock);
|
|
atomic_set(&running_work_idx, sync_work->id);
|
|
sync_work->state = INTR_SYNC_STATE_RUNNING;
|
|
waiter = sync_work->waiter;
|
|
spin_unlock(&sync_work->lock);
|
|
|
|
dbg_print("\nintr_sync: %s: call sys_sync on work[%d]-%ld\n",
|
|
__func__, sync_work->id, sync_work->version);
|
|
|
|
/* if no one waits, do not call sync() */
|
|
if (waiter) {
|
|
ret = sys_sync();
|
|
dbg_print("\nintr_sync: %s: done sys_sync on work[%d]-%ld\n",
|
|
__func__, sync_work->id, sync_work->version);
|
|
} else {
|
|
dbg_print("\nintr_sync: %s: cancel,no_wait on work[%d]-%ld\n",
|
|
__func__, sync_work->id, sync_work->version);
|
|
}
|
|
|
|
spin_lock(&sync_work->lock);
|
|
sync_work->version++;
|
|
sync_work->ret = ret;
|
|
sync_work->state = INTR_SYNC_STATE_IDLE;
|
|
complete_all(&sync_work->done);
|
|
spin_unlock(&sync_work->lock);
|
|
}
|
|
|
|
/* wakeup functions that depend on PM facilities
|
|
*
|
|
* struct intr_wakeup_data : wrapper structure for variables for PM
|
|
* each thread has own instance of it
|
|
* __prepare_wakeup_event() : prepare and check intr_wakeup_data
|
|
* __check_wakeup_event() : check wakeup-event with intr_wakeup_data
|
|
*/
|
|
struct intr_wakeup_data {
|
|
unsigned int cnt;
|
|
};
|
|
|
|
static inline int __prepare_wakeup_event(struct intr_wakeup_data *wd)
|
|
{
|
|
if (pm_get_wakeup_count(&wd->cnt, false))
|
|
return 0;
|
|
|
|
pr_info("intr_sync: detected wakeup events before sync\n");
|
|
pm_print_active_wakeup_sources();
|
|
return -EBUSY;
|
|
}
|
|
|
|
static inline int __check_wakeup_event(struct intr_wakeup_data *wd)
|
|
{
|
|
unsigned int cnt, no_inpr;
|
|
|
|
no_inpr = pm_get_wakeup_count(&cnt, false);
|
|
if (no_inpr && (cnt == wd->cnt))
|
|
return 0;
|
|
|
|
pr_info("intr_sync: detected wakeup events(no_inpr: %u cnt: %u->%u)\n",
|
|
no_inpr, wd->cnt, cnt);
|
|
pm_print_active_wakeup_sources();
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Interruptible Sync
|
|
*
|
|
* intr_sync() is same function as sys_sync() except that it can wakeup.
|
|
* It's possible because of inter_syncd workqueue.
|
|
*
|
|
* If system gets wakeup event while sync_work is running,
|
|
* just return -EBUSY, otherwise 0.
|
|
*
|
|
* If intr_sync() is called again while sync_work is running, it will enqueue
|
|
* idle sync_work to work_queue and wait the completion of it.
|
|
* If there is not idle sync_work but queued one, it just increases waiter by 1,
|
|
* and waits the completion of queued sync_work.
|
|
*
|
|
* If you want to know returned value of sys_sync(),
|
|
* you can get it from the argument, sync_ret
|
|
*/
|
|
|
|
int intr_sync(int *sync_ret)
|
|
{
|
|
int ret;
|
|
enqueue_sync_wait:
|
|
/* If the workqueue exists, try to enqueue work and wait */
|
|
if (likely(intr_sync_wq)) {
|
|
struct interruptible_sync_work *sync_work;
|
|
struct intr_wakeup_data wd;
|
|
int work_idx;
|
|
int work_ver;
|
|
find_idle:
|
|
work_idx = !atomic_read(&running_work_idx);
|
|
sync_work = &intr_sync_work[work_idx];
|
|
|
|
/* Prepare intr_wakeup_data and check wakeup event:
|
|
* If a wakeup-event is detected, wake up right now
|
|
*/
|
|
if (__prepare_wakeup_event(&wd)) {
|
|
dbg_print("intr_sync: detect wakeup event "
|
|
"before waiting work[%d]\n", work_idx);
|
|
return -EBUSY;
|
|
}
|
|
|
|
dbg_print("\nintr_sync: try to wait work[%d]\n", work_idx);
|
|
|
|
spin_lock(&sync_work->lock);
|
|
work_ver = sync_work->version;
|
|
if (sync_work->state == INTR_SYNC_STATE_RUNNING) {
|
|
spin_unlock(&sync_work->lock);
|
|
dbg_print("intr_sync: work[%d] is already running, "
|
|
"find idle work\n", work_idx);
|
|
goto find_idle;
|
|
}
|
|
|
|
sync_work->waiter++;
|
|
if (sync_work->state == INTR_SYNC_STATE_IDLE) {
|
|
dbg_print("intr_sync: enqueue work[%d]\n", work_idx);
|
|
sync_work->state = INTR_SYNC_STATE_QUEUED;
|
|
reinit_completion(&sync_work->done);
|
|
queue_work(intr_sync_wq, &sync_work->work);
|
|
}
|
|
spin_unlock(&sync_work->lock);
|
|
|
|
do {
|
|
/* Check wakeup event first before waiting:
|
|
* If a wakeup-event is detected, wake up right now
|
|
*/
|
|
if (__check_wakeup_event(&wd)) {
|
|
spin_lock(&sync_work->lock);
|
|
sync_work->waiter--;
|
|
spin_unlock(&sync_work->lock);
|
|
dbg_print("intr_sync: detect wakeup event "
|
|
"while waiting work[%d]\n", work_idx);
|
|
return -EBUSY;
|
|
}
|
|
|
|
// dbg_print("intr_sync: waiting work[%d]\n", work_idx);
|
|
/* Return 0 if timed out, or positive if completed. */
|
|
ret = wait_for_completion_io_timeout(
|
|
&sync_work->done, HZ/10);
|
|
/* A work that we are waiting for has done. */
|
|
if ((ret > 0) || (sync_work->version != work_ver))
|
|
break;
|
|
// dbg_print("intr_sync: timeout work[%d]\n", work_idx);
|
|
} while (1);
|
|
|
|
spin_lock(&sync_work->lock);
|
|
sync_work->waiter--;
|
|
if (sync_ret)
|
|
*sync_ret = sync_work->ret;
|
|
spin_unlock(&sync_work->lock);
|
|
dbg_print("intr_sync: sync work[%d] is done with ret(%d)\n",
|
|
work_idx, sync_work->ret);
|
|
return 0;
|
|
}
|
|
|
|
/* check whether a workqueue exists or not under locked state.
|
|
* Create new one if a workqueue is not created yet.
|
|
*/
|
|
mutex_lock(&intr_sync_wq_lock);
|
|
if (likely(!intr_sync_wq)) {
|
|
intr_sync_work[0].id = 0;
|
|
intr_sync_work[1].id = 1;
|
|
INIT_WORK(&intr_sync_work[0].work, do_intr_sync);
|
|
INIT_WORK(&intr_sync_work[1].work, do_intr_sync);
|
|
spin_lock_init(&intr_sync_work[0].lock);
|
|
spin_lock_init(&intr_sync_work[1].lock);
|
|
init_completion(&intr_sync_work[0].done);
|
|
init_completion(&intr_sync_work[1].done);
|
|
intr_sync_wq = alloc_ordered_workqueue("intr_syncd", WQ_MEM_RECLAIM);
|
|
dbg_print("\nintr_sync: try to allocate intr_sync_queue\n");
|
|
}
|
|
mutex_unlock(&intr_sync_wq_lock);
|
|
|
|
/* try to enqueue work again if the workqueue is created successfully */
|
|
if (likely(intr_sync_wq))
|
|
goto enqueue_sync_wait;
|
|
|
|
printk("\nintr_sync: allocation failed, just call sync()\n");
|
|
ret = sys_sync();
|
|
if (sync_ret)
|
|
*sync_ret = ret;
|
|
return 0;
|
|
}
|
|
#else /* CONFIG_INTERRUPTIBLE_SYNC */
|
|
int intr_sync(int *sync_ret)
|
|
{
|
|
int ret = sys_sync();
|
|
if (sync_ret)
|
|
*sync_ret = ret;
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_INTERRUPTIBLE_SYNC */
|
|
|
|
/*
|
|
* Do the filesystem syncing work. For simple filesystems
|
|
* writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
|
|
* submit IO for these buffers via __sync_blockdev(). This also speeds up the
|
|
* wait == 1 case since in that case write_inode() functions do
|
|
* sync_dirty_buffer() and thus effectively write one block at a time.
|
|
*/
|
|
static int __sync_filesystem(struct super_block *sb, int wait)
|
|
{
|
|
if (wait)
|
|
sync_inodes_sb(sb);
|
|
else
|
|
writeback_inodes_sb(sb, WB_REASON_SYNC);
|
|
|
|
if (sb->s_op->sync_fs)
|
|
sb->s_op->sync_fs(sb, wait);
|
|
return __sync_blockdev(sb->s_bdev, wait);
|
|
}
|
|
|
|
/*
|
|
* Write out and wait upon all dirty data associated with this
|
|
* superblock. Filesystem data as well as the underlying block
|
|
* device. Takes the superblock lock.
|
|
*/
|
|
int sync_filesystem(struct super_block *sb)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* We need to be protected against the filesystem going from
|
|
* r/o to r/w or vice versa.
|
|
*/
|
|
WARN_ON(!rwsem_is_locked(&sb->s_umount));
|
|
|
|
/*
|
|
* No point in syncing out anything if the filesystem is read-only.
|
|
*/
|
|
if (sb_rdonly(sb))
|
|
return 0;
|
|
|
|
ret = __sync_filesystem(sb, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
return __sync_filesystem(sb, 1);
|
|
}
|
|
EXPORT_SYMBOL(sync_filesystem);
|
|
|
|
static void sync_inodes_one_sb(struct super_block *sb, void *arg)
|
|
{
|
|
if (!sb_rdonly(sb))
|
|
sync_inodes_sb(sb);
|
|
}
|
|
|
|
static void sync_fs_one_sb(struct super_block *sb, void *arg)
|
|
{
|
|
if (!sb_rdonly(sb) && sb->s_op->sync_fs)
|
|
sb->s_op->sync_fs(sb, *(int *)arg);
|
|
}
|
|
|
|
static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
|
|
{
|
|
filemap_fdatawrite(bdev->bd_inode->i_mapping);
|
|
}
|
|
|
|
static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
|
|
{
|
|
/*
|
|
* We keep the error status of individual mapping so that
|
|
* applications can catch the writeback error using fsync(2).
|
|
* See filemap_fdatawait_keep_errors() for details.
|
|
*/
|
|
filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
|
|
}
|
|
|
|
/*
|
|
* Sync everything. We start by waking flusher threads so that most of
|
|
* writeback runs on all devices in parallel. Then we sync all inodes reliably
|
|
* which effectively also waits for all flusher threads to finish doing
|
|
* writeback. At this point all data is on disk so metadata should be stable
|
|
* and we tell filesystems to sync their metadata via ->sync_fs() calls.
|
|
* Finally, we writeout all block devices because some filesystems (e.g. ext2)
|
|
* just write metadata (such as inodes or bitmaps) to block device page cache
|
|
* and do not sync it on their own in ->sync_fs().
|
|
*/
|
|
SYSCALL_DEFINE0(sync)
|
|
{
|
|
int nowait = 0, wait = 1;
|
|
|
|
wakeup_flusher_threads(0, WB_REASON_SYNC);
|
|
iterate_supers(sync_inodes_one_sb, NULL);
|
|
iterate_supers(sync_fs_one_sb, &nowait);
|
|
iterate_supers(sync_fs_one_sb, &wait);
|
|
iterate_bdevs(fdatawrite_one_bdev, NULL);
|
|
iterate_bdevs(fdatawait_one_bdev, NULL);
|
|
if (unlikely(laptop_mode))
|
|
laptop_sync_completion();
|
|
return 0;
|
|
}
|
|
|
|
static void do_sync_work(struct work_struct *work)
|
|
{
|
|
int nowait = 0;
|
|
|
|
/*
|
|
* Sync twice to reduce the possibility we skipped some inodes / pages
|
|
* because they were temporarily locked
|
|
*/
|
|
iterate_supers(sync_inodes_one_sb, &nowait);
|
|
iterate_supers(sync_fs_one_sb, &nowait);
|
|
iterate_bdevs(fdatawrite_one_bdev, NULL);
|
|
iterate_supers(sync_inodes_one_sb, &nowait);
|
|
iterate_supers(sync_fs_one_sb, &nowait);
|
|
iterate_bdevs(fdatawrite_one_bdev, NULL);
|
|
printk("Emergency Sync complete\n");
|
|
kfree(work);
|
|
}
|
|
|
|
void emergency_sync(void)
|
|
{
|
|
struct work_struct *work;
|
|
|
|
work = kmalloc(sizeof(*work), GFP_ATOMIC);
|
|
if (work) {
|
|
INIT_WORK(work, do_sync_work);
|
|
schedule_work(work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sync a single super
|
|
*/
|
|
SYSCALL_DEFINE1(syncfs, int, fd)
|
|
{
|
|
struct fd f = fdget(fd);
|
|
struct super_block *sb;
|
|
int ret;
|
|
|
|
if (!f.file)
|
|
return -EBADF;
|
|
sb = f.file->f_path.dentry->d_sb;
|
|
|
|
down_read(&sb->s_umount);
|
|
ret = sync_filesystem(sb);
|
|
up_read(&sb->s_umount);
|
|
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vfs_fsync_range - helper to sync a range of data & metadata to disk
|
|
* @file: file to sync
|
|
* @start: offset in bytes of the beginning of data range to sync
|
|
* @end: offset in bytes of the end of data range (inclusive)
|
|
* @datasync: perform only datasync
|
|
*
|
|
* Write back data in range @start..@end and metadata for @file to disk. If
|
|
* @datasync is set only metadata needed to access modified file data is
|
|
* written.
|
|
*/
|
|
int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
|
|
if (!file->f_op->fsync)
|
|
return -EINVAL;
|
|
if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_state &= ~I_DIRTY_TIME;
|
|
spin_unlock(&inode->i_lock);
|
|
mark_inode_dirty_sync(inode);
|
|
}
|
|
return file->f_op->fsync(file, start, end, datasync);
|
|
}
|
|
EXPORT_SYMBOL(vfs_fsync_range);
|
|
|
|
/**
|
|
* vfs_fsync - perform a fsync or fdatasync on a file
|
|
* @file: file to sync
|
|
* @datasync: only perform a fdatasync operation
|
|
*
|
|
* Write back data and metadata for @file to disk. If @datasync is
|
|
* set only metadata needed to access modified file data is written.
|
|
*/
|
|
int vfs_fsync(struct file *file, int datasync)
|
|
{
|
|
return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
|
|
}
|
|
EXPORT_SYMBOL(vfs_fsync);
|
|
|
|
static int do_fsync(unsigned int fd, int datasync)
|
|
{
|
|
struct fd f = fdget(fd);
|
|
int ret = -EBADF;
|
|
|
|
if (f.file) {
|
|
ret = vfs_fsync(f.file, datasync);
|
|
fdput(f);
|
|
inc_syscfs(current);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(fsync, unsigned int, fd)
|
|
{
|
|
return do_fsync(fd, 0);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
|
|
{
|
|
return do_fsync(fd, 1);
|
|
}
|
|
|
|
/*
|
|
* sys_sync_file_range() permits finely controlled syncing over a segment of
|
|
* a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
|
|
* zero then sys_sync_file_range() will operate from offset out to EOF.
|
|
*
|
|
* The flag bits are:
|
|
*
|
|
* SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
|
|
* before performing the write.
|
|
*
|
|
* SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
|
|
* range which are not presently under writeback. Note that this may block for
|
|
* significant periods due to exhaustion of disk request structures.
|
|
*
|
|
* SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
|
|
* after performing the write.
|
|
*
|
|
* Useful combinations of the flag bits are:
|
|
*
|
|
* SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
|
|
* in the range which were dirty on entry to sys_sync_file_range() are placed
|
|
* under writeout. This is a start-write-for-data-integrity operation.
|
|
*
|
|
* SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
|
|
* are not presently under writeout. This is an asynchronous flush-to-disk
|
|
* operation. Not suitable for data integrity operations.
|
|
*
|
|
* SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
|
|
* completion of writeout of all pages in the range. This will be used after an
|
|
* earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
|
|
* for that operation to complete and to return the result.
|
|
*
|
|
* SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
|
|
* a traditional sync() operation. This is a write-for-data-integrity operation
|
|
* which will ensure that all pages in the range which were dirty on entry to
|
|
* sys_sync_file_range() are committed to disk.
|
|
*
|
|
*
|
|
* SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
|
|
* I/O errors or ENOSPC conditions and will return those to the caller, after
|
|
* clearing the EIO and ENOSPC flags in the address_space.
|
|
*
|
|
* It should be noted that none of these operations write out the file's
|
|
* metadata. So unless the application is strictly performing overwrites of
|
|
* already-instantiated disk blocks, there are no guarantees here that the data
|
|
* will be available after a crash.
|
|
*/
|
|
SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
|
|
unsigned int, flags)
|
|
{
|
|
int ret;
|
|
struct fd f;
|
|
struct address_space *mapping;
|
|
loff_t endbyte; /* inclusive */
|
|
umode_t i_mode;
|
|
|
|
ret = -EINVAL;
|
|
if (flags & ~VALID_FLAGS)
|
|
goto out;
|
|
|
|
endbyte = offset + nbytes;
|
|
|
|
if ((s64)offset < 0)
|
|
goto out;
|
|
if ((s64)endbyte < 0)
|
|
goto out;
|
|
if (endbyte < offset)
|
|
goto out;
|
|
|
|
if (sizeof(pgoff_t) == 4) {
|
|
if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
|
|
/*
|
|
* The range starts outside a 32 bit machine's
|
|
* pagecache addressing capabilities. Let it "succeed"
|
|
*/
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
|
|
/*
|
|
* Out to EOF
|
|
*/
|
|
nbytes = 0;
|
|
}
|
|
}
|
|
|
|
if (nbytes == 0)
|
|
endbyte = LLONG_MAX;
|
|
else
|
|
endbyte--; /* inclusive */
|
|
|
|
ret = -EBADF;
|
|
f = fdget(fd);
|
|
if (!f.file)
|
|
goto out;
|
|
|
|
i_mode = file_inode(f.file)->i_mode;
|
|
ret = -ESPIPE;
|
|
if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
|
|
!S_ISLNK(i_mode))
|
|
goto out_put;
|
|
|
|
mapping = f.file->f_mapping;
|
|
ret = 0;
|
|
if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
|
|
ret = file_fdatawait_range(f.file, offset, endbyte);
|
|
if (ret < 0)
|
|
goto out_put;
|
|
}
|
|
|
|
if (flags & SYNC_FILE_RANGE_WRITE) {
|
|
ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
|
|
WB_SYNC_NONE);
|
|
if (ret < 0)
|
|
goto out_put;
|
|
}
|
|
|
|
if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
|
|
ret = file_fdatawait_range(f.file, offset, endbyte);
|
|
|
|
out_put:
|
|
fdput(f);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* It would be nice if people remember that not all the world's an i386
|
|
when they introduce new system calls */
|
|
SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
|
|
loff_t, offset, loff_t, nbytes)
|
|
{
|
|
return sys_sync_file_range(fd, offset, nbytes, flags);
|
|
}
|