lineage_kernel_xcoverpro/drivers/phy/samsung/phy-exynos-usbdrd.c

1915 lines
50 KiB
C
Executable File

/*
* Samsung EXYNOS SoC series USB DRD PHY driver
*
* Phy provider for USB 3.0 DRD controller on Exynos SoC series
*
* Copyright (C) 2014 Samsung Electronics Co., Ltd.
* Author: Vivek Gautam <gautam.vivek@samsung.com>
* Minho Lee <minho55.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/mutex.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/exynos5-pmu.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/samsung_usb.h>
#include <linux/usb/otg.h>
#if IS_ENABLED(CONFIG_EXYNOS_OTP)
#include <linux/exynos_otp.h>
#endif
#ifdef CONFIG_OF
#include <linux/of_gpio.h>
#endif
#include "phy-exynos-usbdrd.h"
#include "phy-exynos-debug.h"
static void __iomem *usbdp_combo_phy_reg;
static int phy_isol_delayed, dp_use_informed;
static struct regmap *reg_pmu_delayed;
static u32 pmu_offset_delayed, pmu_offset_dp_delayed;
static int exynos_usbdrd_clk_prepare(struct exynos_usbdrd_phy *phy_drd)
{
int i;
int ret;
for (i = 0; phy_drd->clocks[i] != NULL; i++) {
ret = clk_prepare(phy_drd->clocks[i]);
if (ret)
goto err;
}
if (phy_drd->use_phy_umux) {
for (i = 0; phy_drd->phy_clocks[i] != NULL; i++) {
ret = clk_prepare(phy_drd->phy_clocks[i]);
if (ret)
goto err1;
}
}
return 0;
err:
for (i = i - 1; i >= 0; i--)
clk_unprepare(phy_drd->clocks[i]);
return ret;
err1:
for (i = i - 1; i >= 0; i--)
clk_unprepare(phy_drd->phy_clocks[i]);
return ret;
}
static int exynos_usbdrd_clk_enable(struct exynos_usbdrd_phy *phy_drd,
bool umux)
{
int i;
int ret;
if (!umux) {
for (i = 0; phy_drd->clocks[i] != NULL; i++) {
ret = clk_enable(phy_drd->clocks[i]);
if (ret)
goto err;
}
} else {
for (i = 0; phy_drd->phy_clocks[i] != NULL; i++) {
ret = clk_enable(phy_drd->phy_clocks[i]);
if (ret)
goto err1;
}
}
return 0;
err:
for (i = i - 1; i >= 0; i--)
clk_disable(phy_drd->clocks[i]);
return ret;
err1:
for (i = i - 1; i >= 0; i--)
clk_disable(phy_drd->phy_clocks[i]);
return ret;
}
static void exynos_usbdrd_clk_unprepare(struct exynos_usbdrd_phy *phy_drd)
{
int i;
for (i = 0; phy_drd->clocks[i] != NULL; i++)
clk_unprepare(phy_drd->clocks[i]);
for (i = 0; phy_drd->phy_clocks[i] != NULL; i++)
clk_unprepare(phy_drd->phy_clocks[i]);
}
static void exynos_usbdrd_clk_disable(struct exynos_usbdrd_phy *phy_drd, bool umux)
{
int i;
if (!umux) {
for (i = 0; phy_drd->clocks[i] != NULL; i++)
clk_disable(phy_drd->clocks[i]);
} else {
for (i = 0; phy_drd->phy_clocks[i] != NULL; i++)
clk_disable(phy_drd->phy_clocks[i]);
}
}
static int exynos_usbdrd_phyclk_get(struct exynos_usbdrd_phy *phy_drd)
{
struct device *dev = phy_drd->dev;
const char **phyclk_ids;
const char **clk_ids;
const char *refclk_name;
struct clk *clk;
int phyclk_count;
int clk_count;
bool is_phyclk = false;
int clk_index = 0;
int i, j, ret;
phyclk_count = of_property_count_strings(dev->of_node, "phyclk_mux");
if (IS_ERR_VALUE((unsigned long)phyclk_count)) {
dev_err(dev, "invalid phyclk list in %s node\n",
dev->of_node->name);
return -EINVAL;
}
phyclk_ids = (const char **)devm_kmalloc(dev,
(phyclk_count+1) * sizeof(const char *),
GFP_KERNEL);
for (i = 0; i < phyclk_count; i++) {
ret = of_property_read_string_index(dev->of_node,
"phyclk_mux", i, &phyclk_ids[i]);
if (ret) {
dev_err(dev, "failed to read phyclk_mux name %d from %s node\n",
i, dev->of_node->name);
return ret;
}
}
phyclk_ids[phyclk_count] = NULL;
if (!strcmp("none", phyclk_ids[0])) {
dev_info(dev, "don't need user Mux for phyclk\n");
phy_drd->use_phy_umux = false;
phyclk_count = 0;
} else {
phy_drd->use_phy_umux = true;
phy_drd->phy_clocks = (struct clk **) devm_kmalloc(dev,
(phyclk_count+1) * sizeof(struct clk *),
GFP_KERNEL);
if (!phy_drd->phy_clocks) {
dev_err(dev, "failed to alloc : phy clocks\n");
return -ENOMEM;
}
for (i = 0; phyclk_ids[i] != NULL; i++) {
clk = devm_clk_get(dev, phyclk_ids[i]);
if (IS_ERR_OR_NULL(clk)) {
dev_err(dev, "couldn't get %s clock\n", phyclk_ids[i]);
return -EINVAL;
}
phy_drd->phy_clocks[i] = clk;
}
phy_drd->phy_clocks[i] = NULL;
}
clk_count = of_property_count_strings(dev->of_node, "clock-names");
if (IS_ERR_VALUE((unsigned long)clk_count)) {
dev_err(dev, "invalid clk list in %s node", dev->of_node->name);
return -EINVAL;
}
clk_ids = (const char **)devm_kmalloc(dev,
(clk_count + 1) * sizeof(const char *),
GFP_KERNEL);
for (i = 0; i < clk_count; i++) {
ret = of_property_read_string_index(dev->of_node, "clock-names",
i, &clk_ids[i]);
if (ret) {
dev_err(dev, "failed to read clocks name %d from %s node\n",
i, dev->of_node->name);
return ret;
}
}
clk_ids[clk_count] = NULL;
phy_drd->clocks = (struct clk **) devm_kmalloc(dev,
(clk_count + 1) * sizeof(struct clk *), GFP_KERNEL);
if (!phy_drd->clocks) {
dev_err(dev, "failed to alloc for clocks\n");
return -ENOMEM;
}
for (i = 0; clk_ids[i] != NULL; i++) {
if (phyclk_count) {
for (j = 0; phyclk_ids[j] != NULL; j++) {
if (!strcmp(phyclk_ids[j], clk_ids[i])) {
is_phyclk = true;
phyclk_count--;
}
}
}
if (!is_phyclk) {
clk = devm_clk_get(dev, clk_ids[i]);
if (IS_ERR_OR_NULL(clk)) {
dev_err(dev, "couldn't get %s clock\n", clk_ids[i]);
return -EINVAL;
}
phy_drd->clocks[clk_index] = clk;
clk_index++;
}
is_phyclk = false;
}
phy_drd->clocks[clk_index] = NULL;
ret = of_property_read_string_index(dev->of_node,
"phy_refclk", 0, &refclk_name);
if (ret) {
dev_err(dev, "failed to read ref_clocks name from %s node\n",
dev->of_node->name);
return ret;
}
if (!strcmp("none", refclk_name)) {
dev_err(dev, "phy reference clock shouldn't be omitted");
return -EINVAL;
}
for (i = 0; clk_ids[i] != NULL; i++) {
if (!strcmp(clk_ids[i], refclk_name)) {
phy_drd->ref_clk = devm_clk_get(dev, refclk_name);
break;
}
}
if (IS_ERR_OR_NULL(phy_drd->ref_clk)) {
dev_err(dev, "%s couldn't get ref_clk", __func__);
return -EINVAL;
}
devm_kfree(dev, phyclk_ids);
devm_kfree(dev, clk_ids);
return 0;
}
static int exynos_usbdrd_clk_get(struct exynos_usbdrd_phy *phy_drd)
{
struct device *dev = phy_drd->dev;
int ret;
ret = exynos_usbdrd_phyclk_get(phy_drd);
if (ret < 0) {
dev_err(dev, "failed to get clock for DRD USBPHY");
return ret;
}
return 0;
}
static inline
struct exynos_usbdrd_phy *to_usbdrd_phy(struct phy_usb_instance *inst)
{
return container_of((inst), struct exynos_usbdrd_phy,
phys[(inst)->index]);
}
#if IS_ENABLED(CONFIG_EXYNOS_OTP)
void exynos_usbdrd_phy_get_otp_info(struct exynos_usbdrd_phy *phy_drd)
{
struct tune_bits *data;
u16 magic;
u8 type;
u8 index_count;
u8 i, j;
phy_drd->otp_index[0] = phy_drd->otp_index[1] = 0;
for (i = 0; i < OTP_SUPPORT_USBPHY_NUMBER; i++) {
magic = i ? OTP_MAGIC_USB2: OTP_MAGIC_USB3;
if (otp_tune_bits_parsed(magic, &type, &index_count, &data)) {
dev_err(phy_drd->dev, "%s failed to get usb%d otp\n",
__func__, i ? 2 : 3);
continue;
}
dev_info(phy_drd->dev, "usb[%d] otp index_count: %d\n",
i, index_count);
if (!index_count) {
phy_drd->otp_data[i] = NULL;
continue;
}
phy_drd->otp_data[i] = devm_kzalloc(phy_drd->dev,
sizeof(*data) * index_count, GFP_KERNEL);
if (!phy_drd->otp_data[i]) {
dev_err(phy_drd->dev, "%s failed to alloc for usb%d\n",
__func__, i ? 2 : 3);
continue;
}
phy_drd->otp_index[i] = index_count;
phy_drd->otp_type[i] = type ? 4 : 1;
dev_info(phy_drd->dev, "usb[%d] otp type: %d\n", i, type);
for (j = 0; j < index_count; j++) {
phy_drd->otp_data[i][j].index = data[j].index;
phy_drd->otp_data[i][j].value = data[j].value;
dev_dbg(phy_drd->dev,
"usb[%d][%d] otp_data index:%d, value:0x%08x\n",
i, j, phy_drd->otp_data[i][j].index,
phy_drd->otp_data[i][j].value);
}
}
}
#endif
/*
* exynos_rate_to_clk() converts the supplied clock rate to the value that
* can be written to the phy register.
*/
static unsigned int exynos_rate_to_clk(struct exynos_usbdrd_phy *phy_drd)
{
int ret;
ret = clk_prepare_enable(phy_drd->ref_clk);
if (ret) {
dev_err(phy_drd->dev, "%s failed to enable ref_clk", __func__);
return 0;
}
/* EXYNOS_FSEL_MASK */
switch (clk_get_rate(phy_drd->ref_clk)) {
case 9600 * KHZ:
phy_drd->extrefclk = EXYNOS_FSEL_9MHZ6;
break;
case 10 * MHZ:
phy_drd->extrefclk = EXYNOS_FSEL_10MHZ;
break;
case 12 * MHZ:
phy_drd->extrefclk = EXYNOS_FSEL_12MHZ;
break;
case 19200 * KHZ:
phy_drd->extrefclk = EXYNOS_FSEL_19MHZ2;
break;
case 20 * MHZ:
phy_drd->extrefclk = EXYNOS_FSEL_20MHZ;
break;
case 24 * MHZ:
phy_drd->extrefclk = EXYNOS_FSEL_24MHZ;
break;
case 26 * MHZ:
phy_drd->extrefclk = EXYNOS_FSEL_26MHZ;
break;
case 50 * MHZ:
phy_drd->extrefclk = EXYNOS_FSEL_50MHZ;
break;
default:
phy_drd->extrefclk = 0;
clk_disable_unprepare(phy_drd->ref_clk);
return -EINVAL;
}
clk_disable_unprepare(phy_drd->ref_clk);
return 0;
}
static void exynos_usbdrd_pipe3_phy_isol(struct phy_usb_instance *inst,
unsigned int on, unsigned int mask)
{
unsigned int val;
if (!inst->reg_pmu)
return;
val = on ? 0 : mask;
regmap_update_bits(inst->reg_pmu, inst->pmu_offset_dp,
mask, val);
}
static void exynos_usbdrd_utmi_phy_isol(struct phy_usb_instance *inst,
unsigned int on, unsigned int mask)
{
unsigned int val;
if (!inst->reg_pmu)
return;
val = on ? 0 : mask;
regmap_update_bits(inst->reg_pmu, inst->pmu_offset,
mask, val);
}
/*
* Sets the pipe3 phy's clk as EXTREFCLK (XXTI) which is internal clock
* from clock core. Further sets multiplier values and spread spectrum
* clock settings for SuperSpeed operations.
*/
static unsigned int
exynos_usbdrd_pipe3_set_refclk(struct phy_usb_instance *inst)
{
static u32 reg;
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
/* PHYCLKRST setting isn't required in Combo PHY */
if (phy_drd->usbphy_info.version >= EXYNOS_USBPHY_VER_02_0_0)
return -EINVAL;
/* restore any previous reference clock settings */
reg = readl(phy_drd->reg_phy + EXYNOS_DRD_PHYCLKRST);
/* Use EXTREFCLK as ref clock */
reg &= ~PHYCLKRST_REFCLKSEL_MASK;
reg |= PHYCLKRST_REFCLKSEL_EXT_REFCLK;
/* FSEL settings corresponding to reference clock */
reg &= ~PHYCLKRST_FSEL_PIPE_MASK |
PHYCLKRST_MPLL_MULTIPLIER_MASK |
PHYCLKRST_SSC_REFCLKSEL_MASK;
switch (phy_drd->extrefclk) {
case EXYNOS_FSEL_50MHZ:
reg |= (PHYCLKRST_MPLL_MULTIPLIER_50M_REF |
PHYCLKRST_SSC_REFCLKSEL(0x00));
break;
case EXYNOS_FSEL_24MHZ:
reg |= (PHYCLKRST_MPLL_MULTIPLIER_24MHZ_REF |
PHYCLKRST_SSC_REFCLKSEL(0x88));
break;
case EXYNOS_FSEL_20MHZ:
reg |= (PHYCLKRST_MPLL_MULTIPLIER_20MHZ_REF |
PHYCLKRST_SSC_REFCLKSEL(0x00));
break;
case EXYNOS_FSEL_19MHZ2:
reg |= (PHYCLKRST_MPLL_MULTIPLIER_19200KHZ_REF |
PHYCLKRST_SSC_REFCLKSEL(0x88));
break;
default:
dev_dbg(phy_drd->dev, "unsupported ref clk\n");
break;
}
return reg;
}
/*
* Sets the utmi phy's clk as EXTREFCLK (XXTI) which is internal clock
* from clock core. Further sets the FSEL values for HighSpeed operations.
*/
static unsigned int
exynos_usbdrd_utmi_set_refclk(struct phy_usb_instance *inst)
{
static u32 reg;
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
/* PHYCLKRST setting isn't required in Combo PHY */
if(phy_drd->usbphy_info.version >= EXYNOS_USBPHY_VER_02_0_0)
return EINVAL;
/* restore any previous reference clock settings */
reg = readl(phy_drd->reg_phy + EXYNOS_DRD_PHYCLKRST);
reg &= ~PHYCLKRST_REFCLKSEL_MASK;
reg |= PHYCLKRST_REFCLKSEL_EXT_REFCLK;
reg &= ~PHYCLKRST_FSEL_UTMI_MASK |
PHYCLKRST_MPLL_MULTIPLIER_MASK |
PHYCLKRST_SSC_REFCLKSEL_MASK;
reg |= PHYCLKRST_FSEL(phy_drd->extrefclk);
return reg;
}
/*
* Sets the default PHY tuning values for high-speed connection.
*/
static int exynos_usbdrd_fill_hstune(struct exynos_usbdrd_phy *phy_drd,
struct device_node *node)
{
struct device *dev = phy_drd->dev;
struct exynos_usbphy_hs_tune *hs_tune = phy_drd->hs_value;
int ret;
u32 res[2];
u32 value;
ret = of_property_read_u32_array(node, "tx_vref", res, 2);
if (ret == 0) {
hs_tune[0].tx_vref = res[0];
hs_tune[1].tx_vref = res[1];
} else {
dev_err(dev, "can't get tx_vref value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_pre_emp", res, 2);
if (ret == 0) {
hs_tune[0].tx_pre_emp = res[0];
hs_tune[1].tx_pre_emp = res[1];
} else {
dev_err(dev, "can't get tx_pre_emp value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_pre_emp_puls", res, 2);
if (ret == 0) {
hs_tune[0].tx_pre_emp_puls = res[0];
hs_tune[1].tx_pre_emp_puls = res[1];
} else {
dev_err(dev, "can't get tx_pre_emp_puls value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_res", res, 2);
if (ret == 0) {
hs_tune[0].tx_res = res[0];
hs_tune[1].tx_res = res[1];
} else {
dev_err(dev, "can't get tx_res value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_rise", res, 2);
if (ret == 0) {
hs_tune[0].tx_rise = res[0];
hs_tune[1].tx_rise = res[1];
} else {
dev_err(dev, "can't get tx_rise value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_hsxv", res, 2);
if (ret == 0) {
hs_tune[0].tx_hsxv = res[0];
hs_tune[1].tx_hsxv = res[1];
} else {
dev_err(dev, "can't get tx_hsxv value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_fsls", res, 2);
if (ret == 0) {
hs_tune[0].tx_fsls = res[0];
hs_tune[1].tx_fsls = res[1];
} else {
dev_err(dev, "can't get tx_fsls value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "rx_sqrx", res, 2);
if (ret == 0) {
hs_tune[0].rx_sqrx = res[0];
hs_tune[1].rx_sqrx = res[1];
} else {
dev_err(dev, "can't get tx_sqrx value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "compdis", res, 2);
if (ret == 0) {
hs_tune[0].compdis = res[0];
hs_tune[1].compdis = res[1];
} else {
dev_err(dev, "can't get compdis value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "otg", res, 2);
if (ret == 0) {
hs_tune[0].otg = res[0];
hs_tune[1].otg = res[1];
} else {
dev_err(dev, "can't get otg_tune value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "enable_user_imp", res, 2);
if (ret == 0) {
if (res[0]) {
hs_tune[0].enable_user_imp = true;
hs_tune[1].enable_user_imp = true;
hs_tune[0].user_imp_value = res[1];
hs_tune[1].user_imp_value = res[1];
} else {
hs_tune[0].enable_user_imp = false;
hs_tune[1].enable_user_imp = false;
}
} else {
dev_err(dev, "can't get enable_user_imp value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32(node, "is_phyclock", &value);
if (ret == 0) {
if ( value == 1) {
hs_tune[0].utmi_clk = USBPHY_UTMI_PHYCLOCK;
hs_tune[1].utmi_clk = USBPHY_UTMI_PHYCLOCK;
} else {
hs_tune[0].utmi_clk = USBPHY_UTMI_FREECLOCK;
hs_tune[1].utmi_clk = USBPHY_UTMI_FREECLOCK;
}
} else {
dev_err(dev, "can't get is_phyclock value, error = %d\n", ret);
return -EINVAL;
}
return 0;
}
/*
* Sets the default PHY tuning values for super-speed connection.
*/
static int exynos_usbdrd_fill_sstune(struct exynos_usbdrd_phy *phy_drd,
struct device_node *node)
{
struct device *dev = phy_drd->dev;
struct exynos_usbphy_ss_tune *ss_tune = phy_drd->ss_value;
u32 res[2];
int ret;
ret = of_property_read_u32_array(node, "tx_boost_level", res, 2);
if (ret == 0) {
ss_tune[0].tx_boost_level = res[0];
ss_tune[1].tx_boost_level = res[1];
} else {
dev_err(dev, "can't get tx_boost_level value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_swing_level", res, 2);
if (ret == 0) {
ss_tune[0].tx_swing_level = res[0];
ss_tune[1].tx_swing_level = res[1];
} else {
dev_err(dev, "can't get tx_swing_level value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_swing_full", res, 2);
if (ret == 0) {
ss_tune[0].tx_swing_full = res[0];
ss_tune[1].tx_swing_full = res[1];
} else {
dev_err(dev, "can't get tx_swing_full value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_swing_low", res, 2);
if (ret == 0) {
ss_tune[0].tx_swing_low = res[0];
ss_tune[1].tx_swing_low = res[1];
} else {
dev_err(dev, "can't get tx_swing_low value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_deemphasis_mode", res, 2);
if (ret == 0) {
ss_tune[0].tx_deemphasis_mode = res[0];
ss_tune[1].tx_deemphasis_mode = res[1];
} else {
dev_err(dev, "can't get tx_deemphasis_mode value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_deemphasis_3p5db", res, 2);
if (ret == 0) {
ss_tune[0].tx_deemphasis_3p5db = res[0];
ss_tune[1].tx_deemphasis_3p5db = res[1];
} else {
dev_err(dev, "can't get tx_deemphasis_3p5db value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "tx_deemphasis_6db", res, 2);
if (ret == 0) {
ss_tune[0].tx_deemphasis_6db = res[0];
ss_tune[1].tx_deemphasis_6db = res[1];
} else {
dev_err(dev, "can't get tx_deemphasis_6db value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "enable_ssc", res, 2);
if (ret == 0) {
ss_tune[0].enable_ssc = res[0];
ss_tune[1].enable_ssc = res[1];
} else {
dev_err(dev, "can't get enable_ssc value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "ssc_range", res, 2);
if (ret == 0) {
ss_tune[0].ssc_range = res[0];
ss_tune[1].ssc_range = res[1];
} else {
dev_err(dev, "can't get ssc_range value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "los_bias", res, 2);
if (ret == 0) {
ss_tune[0].los_bias = res[0];
ss_tune[1].los_bias = res[1];
} else {
dev_err(dev, "can't get los_bias value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "los_mask_val", res, 2);
if (ret == 0) {
ss_tune[0].los_mask_val = res[0];
ss_tune[1].los_mask_val = res[1];
} else {
dev_err(dev, "can't get los_mask_val value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "enable_fixed_rxeq_mode", res, 2);
if (ret == 0) {
ss_tune[0].enable_fixed_rxeq_mode = res[0];
ss_tune[1].enable_fixed_rxeq_mode = res[1];
} else {
dev_err(dev, "can't get enable_fixed_rxeq_mode value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "fix_rxeq_value", res, 2);
if (ret == 0) {
ss_tune[0].fix_rxeq_value = res[0];
ss_tune[1].fix_rxeq_value = res[1];
} else {
dev_err(dev, "can't get fix_rxeq_value value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "set_crport_level_en", res, 2);
if (ret == 0) {
ss_tune[0].set_crport_level_en = res[0];
ss_tune[1].set_crport_level_en = res[1];
} else {
dev_err(dev, "can't get set_crport_level_en value, error = %d\n", ret);
return -EINVAL;
}
ret = of_property_read_u32_array(node, "set_crport_mpll_charge_pump", res, 2);
if (ret == 0) {
ss_tune[0].set_crport_mpll_charge_pump = res[0];
ss_tune[1].set_crport_mpll_charge_pump = res[1];
} else {
dev_err(dev, "can't get set_crport_mpll_charge_pump value, error = %d\n", ret);
return -EINVAL;
}
return 0;
}
static int exynos_usbdrd_fill_hstune_param(struct exynos_usbdrd_phy *phy_drd,
struct device_node *node)
{
struct device *dev = phy_drd->dev;
struct device_node *child = NULL;
struct exynos_usb_tune_param *hs_tune_param;
size_t size = sizeof(struct exynos_usb_tune_param);
int ret;
u32 res[2];
u32 param_index = 0;
const char *name;
ret = of_property_read_u32_array(node, "hs_tune_cnt", &res[0], 1);
dev_info(dev, "%s hs tune cnt = %d\n", __func__, res[0]);
hs_tune_param = devm_kzalloc(dev, size*res[0], GFP_KERNEL);
if (!hs_tune_param)
return -ENOMEM;
phy_drd->usbphy_info.tune_param = hs_tune_param;
for_each_child_of_node(node, child) {
ret = of_property_read_string(child, "tune_name", &name);
if (ret == 0) {
memcpy(hs_tune_param[param_index].name, name, strlen(name));
} else {
dev_err(dev, "failed to read hs tune name from %s node\n", child->name);
return ret;
}
ret = of_property_read_u32_array(child, "tune_value", res, 2);
if (ret == 0) {
phy_drd->hs_tune_param_value[param_index][0] = res[0];
phy_drd->hs_tune_param_value[param_index][1] = res[1];
} else {
dev_err(dev, "failed to read hs tune value from %s node\n", child->name);
return -EINVAL;
}
param_index++;
}
hs_tune_param[param_index].value = EXYNOS_USB_TUNE_LAST;
return 0;
}
/*
* Sets the default PHY tuning values for super-speed connection.
*/
static int exynos_usbdrd_fill_sstune_param(struct exynos_usbdrd_phy *phy_drd,
struct device_node *node)
{
struct device *dev = phy_drd->dev;
struct device_node *child = NULL;
struct exynos_usb_tune_param *ss_tune_param;
size_t size = sizeof(struct exynos_usb_tune_param);
int ret;
u32 res[2];
u32 param_index = 0;
const char *name;
ret = of_property_read_u32_array(node, "ss_tune_cnt", &res[0], 1);
dev_info(dev, "%s ss tune cnt = %d\n", __func__, res[0]);
ss_tune_param = devm_kzalloc(dev, size*res[0], GFP_KERNEL);
if (!ss_tune_param)
return -ENOMEM;
phy_drd->usbphy_sub_info.tune_param = ss_tune_param;
for_each_child_of_node(node, child) {
ret = of_property_read_string(child, "tune_name", &name);
if (ret == 0) {
memcpy(ss_tune_param[param_index].name, name, strlen(name));
}
else {
dev_err(dev, "failed to read ss tune name from %s node\n", child->name);
return ret;
}
ret = of_property_read_u32_array(child, "tune_value", res, 2);
if (ret == 0) {
phy_drd->ss_tune_param_value[param_index][0] = res[0];
phy_drd->ss_tune_param_value[param_index][1] = res[1];
} else {
dev_err(dev, "failed to read ss tune value from %s node\n", child->name);
return -EINVAL;
}
param_index++;
}
ss_tune_param[param_index].value = EXYNOS_USB_TUNE_LAST;
return 0;
}
static int exynos_usbdrd_get_phy_refsel(struct exynos_usbdrd_phy *phy_drd)
{
struct device *dev = phy_drd->dev;
struct device_node *node = dev->of_node;
int value, ret;
int check_flag = 0;
ret = of_property_read_u32(node, "phy_refsel_clockcore", &value);
if (ret == 0 && value == 1) {
phy_drd->usbphy_info.refsel = USBPHY_REFSEL_CLKCORE;
phy_drd->usbphy_sub_info.refsel = USBPHY_REFSEL_CLKCORE;
} else if (ret < 0) {
dev_err(dev, "can't get phy_refsel_clockcore, error = %d\n", ret);
return ret;
} else {
check_flag++;
}
ret = of_property_read_u32(node, "phy_refsel_ext_osc", &value);
if (ret == 0 && value == 1) {
phy_drd->usbphy_info.refsel = USBPHY_REFSEL_EXT_OSC;
phy_drd->usbphy_sub_info.refsel = USBPHY_REFSEL_EXT_OSC;
} else if (ret < 0) {
dev_err(dev, "can't get phy_refsel_ext_osc, error = %d\n", ret);
return ret;
} else {
check_flag++;
}
ret = of_property_read_u32(node, "phy_refsel_xtal", &value);
if (ret == 0 && value == 1) {
phy_drd->usbphy_info.refsel = USBPHY_REFSEL_EXT_XTAL;
phy_drd->usbphy_sub_info.refsel = USBPHY_REFSEL_EXT_XTAL;
} else if (ret < 0) {
dev_err(dev, "can't get phy_refsel_xtal, error = %d\n", ret);
return ret;
} else {
check_flag++;
}
ret = of_property_read_u32(node, "phy_refsel_diff_pad", &value);
if (ret == 0 && value == 1) {
phy_drd->usbphy_info.refsel = USBPHY_REFSEL_DIFF_PAD;
phy_drd->usbphy_sub_info.refsel = USBPHY_REFSEL_DIFF_PAD;
} else if (ret < 0) {
dev_err(dev, "can't get phy_refsel_diff_pad, error = %d\n", ret);
return ret;
} else {
check_flag++;
}
ret = of_property_read_u32(node, "phy_refsel_diff_internal", &value);
if (ret == 0 && value == 1) {
phy_drd->usbphy_info.refsel = USBPHY_REFSEL_DIFF_INTERNAL;
phy_drd->usbphy_sub_info.refsel = USBPHY_REFSEL_DIFF_INTERNAL;
} else if (ret < 0) {
dev_err(dev, "can't get phy_refsel_diff_internal, error = %d\n", ret);
return ret;
} else {
check_flag++;
}
ret = of_property_read_u32(node, "phy_refsel_diff_single", &value);
if (ret == 0 && value == 1) {
phy_drd->usbphy_info.refsel = USBPHY_REFSEL_DIFF_SINGLE;
phy_drd->usbphy_sub_info.refsel = USBPHY_REFSEL_DIFF_SINGLE;
} else if (ret < 0) {
dev_err(dev, "can't get phy_refsel_diff_single, error = %d\n", ret);
return ret;
} else {
check_flag++;
}
if (check_flag > 5) {
dev_err(dev, "USB refsel Must be choosed\n");
return -EINVAL;
}
return 0;
}
static int exynos_usbdrd_get_sub_phyinfo(struct exynos_usbdrd_phy *phy_drd)
{
struct device *dev = phy_drd->dev;
struct device_node *tune_node;
int ret;
int value;
if (!of_property_read_u32(dev->of_node, "sub_phy_version", &value)) {
phy_drd->usbphy_sub_info.version = value;
} else {
dev_err(dev, "can't get sub_phy_version\n");
return -EINVAL;
}
phy_drd->usbphy_sub_info.refclk = phy_drd->extrefclk;
phy_drd->usbphy_sub_info.regs_base = phy_drd->reg_phy2;
/* Temporary WA, CAL code modification is needed */
phy_drd->usbphy_info.regs_base_2nd = phy_drd->reg_phy2;
phy_drd->usbphy_sub_info.regs_base_2nd = phy_drd->reg_phy3;
usbdp_combo_phy_reg = phy_drd->usbphy_sub_info.regs_base;
tune_node = of_parse_phandle(dev->of_node, "ss_tune_param", 0);
if (tune_node != NULL) {
ret = exynos_usbdrd_fill_sstune_param(phy_drd, tune_node);
if (ret < 0) {
dev_err(dev, "can't fill super speed tuning param\n");
return -EINVAL;
}
} else
dev_info(dev, "don't need usbphy tuning param for high speed\n");
return 0;
}
static int exynos_usbdrd_get_phyinfo(struct exynos_usbdrd_phy *phy_drd)
{
struct device *dev = phy_drd->dev;
struct device_node *tune_node;
int ret;
int value;
phy_drd->usbphy_info.hs_rewa = 1;
if (!of_property_read_u32(dev->of_node, "phy_version", &value)) {
phy_drd->usbphy_info.version = value;
} else {
dev_err(dev, "can't get phy_version\n");
return -EINVAL;
}
if (!of_property_read_u32(dev->of_node, "use_io_for_ovc", &value)) {
phy_drd->usbphy_info.use_io_for_ovc = value ? true : false;
} else {
dev_err(dev, "can't get io_for_ovc\n");
return -EINVAL;
}
if (!of_property_read_u32(dev->of_node, "common_block_disable", &value)) {
phy_drd->usbphy_info.common_block_disable = value ? true : false;
} else {
dev_err(dev, "can't get common_block_disable\n");
return -EINVAL;
}
phy_drd->usbphy_info.refclk = phy_drd->extrefclk;
phy_drd->usbphy_info.regs_base = phy_drd->reg_phy;
if (!of_property_read_u32(dev->of_node, "is_not_vbus_pad", &value)) {
phy_drd->usbphy_info.not_used_vbus_pad = value ? true : false;
} else {
dev_err(dev, "can't get vbus_pad\n");
return -EINVAL;
}
if (!of_property_read_u32(dev->of_node, "used_phy_port", &value)) {
phy_drd->usbphy_info.used_phy_port = value ? true : false;
} else {
dev_err(dev, "can't get used_phy_port\n");
return -EINVAL;
}
ret = exynos_usbdrd_get_phy_refsel(phy_drd);
if (ret < 0)
dev_err(dev, "can't get phy refsel\n");
tune_node = of_parse_phandle(dev->of_node, "ss_tune_info", 0);
if (tune_node == NULL)
dev_info(dev, "don't need usbphy tuning value for super speed\n");
if (of_device_is_available(tune_node)) {
ret = exynos_usbdrd_fill_sstune(phy_drd, tune_node);
if (ret < 0) {
dev_err(dev, "can't fill super speed tuning value\n");
return -EINVAL;
}
}
tune_node = of_parse_phandle(dev->of_node, "hs_tune_info", 0);
if (tune_node == NULL)
dev_info(dev, "don't need usbphy tuning value for high speed\n");
if (of_device_is_available(tune_node)) {
ret = exynos_usbdrd_fill_hstune(phy_drd, tune_node);
if (ret < 0) {
dev_err(dev, "can't fill high speed tuning value\n");
return -EINVAL;
}
}
tune_node = of_parse_phandle(dev->of_node, "hs_tune_param", 0);
if (tune_node != NULL) {
ret = exynos_usbdrd_fill_hstune_param(phy_drd, tune_node);
if (ret < 0) {
dev_err(dev, "can't fill high speed tuning param\n");
return -EINVAL;
}
} else
dev_info(dev, "don't need usbphy tuning param for high speed\n");
dev_info(phy_drd->dev, "usbphy info: version:0x%x, refclk:0x%x\n",
phy_drd->usbphy_info.version, phy_drd->usbphy_info.refclk);
return 0;
}
static int exynos_usbdrd_get_iptype(struct exynos_usbdrd_phy *phy_drd)
{
struct device *dev = phy_drd->dev;
int ret, value;
ret = of_property_read_u32(dev->of_node, "ip_type", &value);
if (ret) {
dev_err(dev, "can't get ip type");
return ret;
}
switch (value) {
case TYPE_USB3DRD:
phy_drd->ip_type = TYPE_USB3DRD;
dev_info(dev, "It is TYPE USB3DRD");
break;
case TYPE_USB3HOST:
phy_drd->ip_type = TYPE_USB3HOST;
dev_info(dev, "It is TYPE USB3HOST");
break;
case TYPE_USB2DRD:
phy_drd->ip_type = TYPE_USB2DRD;
dev_info(dev, "It is TYPE USB2DRD");
break;
case TYPE_USB2HOST:
phy_drd->ip_type = TYPE_USB2HOST;
dev_info(dev, "It is TYPE USB2HOST");
default:
break;
}
return 0;
}
static void exynos_usbdrd_pipe3_init(struct exynos_usbdrd_phy *phy_drd)
{
#if defined(USB_SS_ENABLED)
int value, ret;
if (gpio_is_valid(phy_drd->phy_port)) {
value = !gpio_get_value(phy_drd->phy_port);
phy_drd->usbphy_info.used_phy_port = phy_drd->usbphy_sub_info.used_phy_port = value;
dev_info(phy_drd->dev, "%s: phy port[%d]\n", __func__,
phy_drd->usbphy_info.used_phy_port);
} else {
dev_info(phy_drd->dev, "%s: phy port fail retry\n", __func__);
phy_drd->phy_port = of_get_named_gpio(phy_drd->dev->of_node,
"phy,gpio_phy_port", 0);
if (gpio_is_valid(phy_drd->phy_port)) {
dev_err(phy_drd->dev, "PHY CON Selection OK\n");
ret = gpio_request(phy_drd->phy_port, "PHY_CON");
if (ret)
dev_err(phy_drd->dev, "fail to request gpio %s:%d\n", "PHY_CON", ret);
else
gpio_direction_input(phy_drd->phy_port);
value = !gpio_get_value(phy_drd->phy_port);
phy_drd->usbphy_info.used_phy_port = phy_drd->usbphy_sub_info.used_phy_port = value;
dev_info(phy_drd->dev, "%s: phy port1[%d]\n", __func__,
phy_drd->usbphy_info.used_phy_port);
} else {
dev_err(phy_drd->dev, "non-DT: PHY CON Selection\n");
}
}
/* Fill USBDP Combo phy init */
phy_exynos_usb_v3p1_pma_ready(&phy_drd->usbphy_info);
phy_exynos_usbdp_enable(&phy_drd->usbphy_sub_info);
phy_exynos_usb_v3p1_pma_sw_rst_release(&phy_drd->usbphy_info);
#endif
}
static void exynos_usbdrd_utmi_init(struct exynos_usbdrd_phy *phy_drd)
{
int ret;
#if IS_ENABLED(CONFIG_EXYNOS_OTP)
struct tune_bits *otp_data;
u8 otp_type;
u8 otp_index;
u8 i;
#endif
pr_info("%s: +++\n", __func__);
ret = exynos_usbdrd_clk_enable(phy_drd, false);
if (ret) {
dev_err(phy_drd->dev, "%s: Failed to enable clk\n", __func__);
return;
}
phy_exynos_usb_v3p1_enable(&phy_drd->usbphy_info);
phy_exynos_usb_v3p1_pipe_ovrd(&phy_drd->usbphy_info);
if (phy_drd->use_phy_umux) {
/* USB User MUX enable */
ret = exynos_usbdrd_clk_enable(phy_drd, true);
if (ret) {
dev_err(phy_drd->dev, "%s: Failed to enable clk\n", __func__);
return;
}
}
#if IS_ENABLED(CONFIG_EXYNOS_OTP)
if (phy_drd->ip_type < TYPE_USB2DRD) {
otp_type = phy_drd->otp_type[OTP_USB3PHY_INDEX];
otp_index = phy_drd->otp_index[OTP_USB3PHY_INDEX];
otp_data = phy_drd->otp_data[OTP_USB3PHY_INDEX];
} else {
otp_type = phy_drd->otp_type[OTP_USB2PHY_INDEX];
otp_index = phy_drd->otp_index[OTP_USB2PHY_INDEX];
otp_data = phy_drd->otp_data[OTP_USB2PHY_INDEX];
}
for (i = 0; i < otp_index; i++) {
samsung_exynos_cal_usb3phy_write_register(
&phy_drd->usbphy_info,
otp_data[i].index * otp_type,
otp_data[i].value);
}
#endif
pr_info("%s: ---\n", __func__);
}
static int exynos_usbdrd_phy_init(struct phy *phy)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
/* UTMI or PIPE3 specific init */
inst->phy_cfg->phy_init(phy_drd);
return 0;
}
static void __exynos_usbdrd_phy_shutdown(struct exynos_usbdrd_phy *phy_drd)
{
phy_exynos_usb_v3p1_disable(&phy_drd->usbphy_info);
phy_exynos_usbdp_disable(&phy_drd->usbphy_sub_info);
}
static void exynos_usbdrd_pipe3_exit(struct exynos_usbdrd_phy *phy_drd)
{
/* pipe3 phy diable is exucuted in utmi_exit.
Later divide the exit of main and sub phy if necessary */
return;
}
static void exynos_usbdrd_utmi_exit(struct exynos_usbdrd_phy *phy_drd)
{
if (phy_drd->use_phy_umux) {
/*USB User MUX disable */
exynos_usbdrd_clk_disable(phy_drd, true);
}
phy_exynos_usb_v3p1_disable(&phy_drd->usbphy_info);
phy_exynos_usbdp_disable(&phy_drd->usbphy_sub_info);
exynos_usbdrd_clk_disable(phy_drd, false);
}
static int exynos_usbdrd_phy_exit(struct phy *phy)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
/* UTMI or PIPE3 specific exit */
inst->phy_cfg->phy_exit(phy_drd);
return 0;
}
static void exynos_usbdrd_utmi_ilbk(struct exynos_usbdrd_phy *phy_drd)
{
dev_info(phy_drd->dev, "%s\n", __func__);
}
static void exynos_usbdrd_pipe3_ilbk(struct exynos_usbdrd_phy *phy_drd)
{
dev_info(phy_drd->dev, "%s\n", __func__);
phy_exynos_usbdp_ilbk(&phy_drd->usbphy_sub_info);
}
static int exynos_usbdrd_pipe3_vendor_set(struct exynos_usbdrd_phy *phy_drd,
int is_enable, int is_cancel)
{
dev_info(phy_drd->dev, "%s \n",__func__);
return 0;
}
static int exynos_usbdrd_utmi_vendor_set(struct exynos_usbdrd_phy *phy_drd,
int is_enable, int is_cancel)
{
int ret = 0;
dev_info(phy_drd->dev, "rewa irq : %d, enable: %d, cancel: %d\n",
phy_drd->is_irq_enabled, is_enable, is_cancel);
if (is_cancel) {
if (is_enable) {
if (phy_drd->is_irq_enabled == 1) {
dev_info(phy_drd->dev, "[%s] REWA CANCEL\n", __func__);
phy_exynos_usb3p1_rewa_cancel(&phy_drd->usbphy_info);
dev_info(phy_drd->dev, "REWA wakeup/conn IRQ disable\n");
disable_irq_nosync(phy_drd->irq_wakeup);
disable_irq_nosync(phy_drd->irq_conn);
phy_drd->is_irq_enabled = 0;
} else {
dev_info(phy_drd->dev, "Vendor set by interrupt, Do not REWA cancel\n");
}
}
} else {
if (is_enable) {
ret = phy_exynos_usb3p1_rewa_enable(&phy_drd->usbphy_info);
if (ret) {
dev_err(phy_drd->dev, "REWA ENABLE FAIL, ret : %d \n", ret);
return ret;
}
dev_info(phy_drd->dev, "REWA ENABLE Complete\n");
if (phy_drd->is_irq_enabled == 0) {
enable_irq(phy_drd->irq_wakeup);
enable_irq(phy_drd->irq_conn);
phy_drd->is_irq_enabled = 1;
} else {
dev_info(phy_drd->dev, "rewa irq already enabled\n");
}
} else {
dev_info(phy_drd->dev, "REWA Disconn & Wakeup IRQ DISABLE\n");
ret = phy_exynos_usb3p1_rewa_disable(&phy_drd->usbphy_info);
if (ret) {
dev_err(phy_drd->dev, "REWA DISABLE FAIL, ret : %d \n", ret);
return ret;
}
dev_info(phy_drd->dev, "REWA DISABLE Complete\n");
}
}
return ret;
}
static void exynos_usbdrd_pipe3_tune(struct exynos_usbdrd_phy *phy_drd,
int phy_state)
{
struct exynos_usb_tune_param *ss_tune_param = phy_drd->usbphy_sub_info.tune_param;
int i;
dev_info(phy_drd->dev, "%s\n", __func__);
if (phy_state >= OTG_STATE_A_IDLE) {
/* for host mode */
for (i = 0; ss_tune_param[i].value != EXYNOS_USB_TUNE_LAST; i++) {
if (i == EXYNOS_DRD_MAX_TUNEPARAM_NUM)
break;
ss_tune_param[i].value = phy_drd->ss_tune_param_value[i][USBPHY_MODE_HOST];
}
} else {
/* for device mode */
for (i = 0; ss_tune_param[i].value != EXYNOS_USB_TUNE_LAST; i++) {
if (i == EXYNOS_DRD_MAX_TUNEPARAM_NUM)
break;
ss_tune_param[i].value = phy_drd->ss_tune_param_value[i][USBPHY_MODE_DEV];
}
}
phy_exynos_usbdp_tune(&phy_drd->usbphy_sub_info);
}
static void exynos_usbdrd_utmi_tune(struct exynos_usbdrd_phy *phy_drd,
int phy_state)
{
struct exynos_usb_tune_param *hs_tune_param = phy_drd->usbphy_info.tune_param;
int i;
dev_info(phy_drd->dev, "%s\n", __func__);
if (phy_state >= OTG_STATE_A_IDLE) {
/* for host mode */
for (i = 0; hs_tune_param[i].value != EXYNOS_USB_TUNE_LAST; i++) {
if (i == EXYNOS_DRD_MAX_TUNEPARAM_NUM)
break;
hs_tune_param[i].value = phy_drd->hs_tune_param_value[i][USBPHY_MODE_HOST];
}
} else {
/* for device mode */
for (i = 0; hs_tune_param[i].value != EXYNOS_USB_TUNE_LAST; i++) {
if (i == EXYNOS_DRD_MAX_TUNEPARAM_NUM)
break;
hs_tune_param[i].value = phy_drd->hs_tune_param_value[i][USBPHY_MODE_DEV];
}
}
phy_exynos_usb_v3p1_tune(&phy_drd->usbphy_info);
}
static int exynos_usbdrd_phy_tune(struct phy *phy, int phy_state)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
inst->phy_cfg->phy_tune(phy_drd, phy_state);
return 0;
}
static void exynos_usbdrd_phy_conn(struct phy *phy, int is_conn)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
if (is_conn) {
dev_info(phy_drd->dev, "USB PHY Conn Set\n");
phy_drd->is_conn = 1;
} else {
dev_info(phy_drd->dev, "USB PHY Conn Clear\n");
phy_drd->is_conn = 0;
}
return;
}
static int exynos_usbdrd_dp_ilbk(struct phy *phy)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
inst->phy_cfg->phy_ilbk(phy_drd);
return 0;
}
static int exynos_usbdrd_phy_vendor_set(struct phy *phy, int is_enable,
int is_cancel)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
int ret;
ret = inst->phy_cfg->phy_vendor_set(phy_drd, is_enable, is_cancel);
return ret;
}
static void exynos_usbdrd_pipe3_set(struct exynos_usbdrd_phy *phy_drd,
int option, void *info)
{
/* Fill USBDP Combo phy set */
return;
}
static void exynos_usbdrd_utmi_set(struct exynos_usbdrd_phy *phy_drd,
int option, void *info)
{
switch (option) {
case SET_DPPULLUP_ENABLE:
phy_exynos_usb_v3p1_enable_dp_pullup(
&phy_drd->usbphy_info);
break;
case SET_DPPULLUP_DISABLE:
phy_exynos_usb_v3p1_disable_dp_pullup(
&phy_drd->usbphy_info);
break;
case SET_DPDM_PULLDOWN:
phy_exynos_usb_v3p1_config_host_mode(
&phy_drd->usbphy_info);
default:
break;
}
}
static int exynos_usbdrd_phy_set(struct phy *phy, int option, void *info)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
inst->phy_cfg->phy_set(phy_drd, option, info);
return 0;
}
static int exynos_usbdrd_phy_power_on(struct phy *phy)
{
int ret;
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
dev_dbg(phy_drd->dev, "Request to power_on usbdrd_phy phy\n");
/* Enable VBUS supply */
if (phy_drd->vbus) {
ret = regulator_enable(phy_drd->vbus);
if (ret) {
dev_err(phy_drd->dev, "Failed to enable VBUS supply\n");
return ret;
}
}
inst->phy_cfg->phy_isol(inst, 0, inst->pmu_mask);
phy_isol_delayed = 0;
dp_use_informed = 0;
return 0;
}
static int exynos_usbdrd_phy_power_off(struct phy *phy)
{
struct phy_usb_instance *inst = phy_get_drvdata(phy);
struct exynos_usbdrd_phy *phy_drd = to_usbdrd_phy(inst);
dev_dbg(phy_drd->dev, "Request to power_off usbdrd_phy phy\n");
if (!dp_use_informed)
inst->phy_cfg->phy_isol(inst, 1, inst->pmu_mask);
else
phy_isol_delayed = 1;
/* Disable VBUS supply */
if (phy_drd->vbus)
regulator_disable(phy_drd->vbus);
return 0;
}
void exynos_usbdrd_request_phy_isol(void)
{
pr_info("[%s] phy_isol_delayed = %d\n", __func__, phy_isol_delayed);
if (!reg_pmu_delayed || !pmu_offset_dp_delayed)
return;
if (phy_isol_delayed == 1) {
regmap_update_bits(reg_pmu_delayed, pmu_offset_delayed, 1, 0);
regmap_update_bits(reg_pmu_delayed,
pmu_offset_dp_delayed, 1, 0);
phy_isol_delayed = 0;
dp_use_informed = 0;
}
}
int exynos_usbdrd_inform_dp_use(int use, int lane_cnt)
{
int ret = 0;
pr_info("[%s] dp use = %d, lane_cnt = %d\n", __func__, use, lane_cnt);
dp_use_informed = use;
if ((use == 1) && (lane_cnt == 4)) {
ret = xhci_portsc_set(0);
udelay(1);
}
return ret;
}
static struct phy *exynos_usbdrd_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct exynos_usbdrd_phy *phy_drd = dev_get_drvdata(dev);
if (WARN_ON(args->args[0] > EXYNOS_DRDPHYS_NUM))
return ERR_PTR(-ENODEV);
return phy_drd->phys[args->args[0]].phy;
}
#if defined(USB_L2_ENABLED)
static irqreturn_t exynos_usbdrd_phy_wakeup_interrupt(int irq, void *_phydrd)
{
struct exynos_usbdrd_phy *phy_drd = (struct exynos_usbdrd_phy *)_phydrd;
int ret;
ret = phy_exynos_usb3p1_rewa_req_sys_valid(&phy_drd->usbphy_info);
dev_info(phy_drd->dev, "[%s] rewa sys vaild set : %s \n",
__func__, (ret == 1) ? "Disable" : "Disconnect");
if (phy_drd->is_irq_enabled == 1) {
disable_irq_nosync(phy_drd->irq_wakeup);
disable_irq_nosync(phy_drd->irq_conn);
phy_drd->is_irq_enabled = 0;
} else {
dev_info(phy_drd->dev, "rewa irq already disabled\n");
}
return IRQ_HANDLED;
}
static irqreturn_t exynos_usbdrd_phy_conn_interrupt(int irq, void *_phydrd)
{
struct exynos_usbdrd_phy *phy_drd = (struct exynos_usbdrd_phy *)_phydrd;
int ret;
ret = phy_exynos_usb3p1_rewa_req_sys_valid(&phy_drd->usbphy_info);
dev_info(phy_drd->dev, "[%s] rewa sys vaild set : %s \n",
__func__, (ret == 1) ? "Disable" : "Disconnect");
if (phy_drd->is_irq_enabled == 1) {
disable_irq_nosync(phy_drd->irq_wakeup);
disable_irq_nosync(phy_drd->irq_conn);
phy_drd->is_irq_enabled = 0;
} else {
dev_info(phy_drd->dev, "rewa irq already disabled\n");
}
return IRQ_HANDLED;
}
#endif
static struct phy_ops exynos_usbdrd_phy_ops = {
.init = exynos_usbdrd_phy_init,
.exit = exynos_usbdrd_phy_exit,
.tune = exynos_usbdrd_phy_tune,
.set = exynos_usbdrd_phy_set,
.vendor_set = exynos_usbdrd_phy_vendor_set,
.conn = exynos_usbdrd_phy_conn,
.ilbk = exynos_usbdrd_dp_ilbk,
.power_on = exynos_usbdrd_phy_power_on,
.power_off = exynos_usbdrd_phy_power_off,
.owner = THIS_MODULE,
};
static const struct exynos_usbdrd_phy_config phy_cfg_exynos[] = {
{
.id = EXYNOS_DRDPHY_UTMI,
.phy_isol = exynos_usbdrd_utmi_phy_isol,
.phy_init = exynos_usbdrd_utmi_init,
.phy_exit = exynos_usbdrd_utmi_exit,
.phy_tune = exynos_usbdrd_utmi_tune,
.phy_vendor_set = exynos_usbdrd_utmi_vendor_set,
.phy_ilbk = exynos_usbdrd_utmi_ilbk,
.phy_set = exynos_usbdrd_utmi_set,
.set_refclk = exynos_usbdrd_utmi_set_refclk,
},
{
.id = EXYNOS_DRDPHY_PIPE3,
.phy_isol = exynos_usbdrd_pipe3_phy_isol,
.phy_init = exynos_usbdrd_pipe3_init,
.phy_exit = exynos_usbdrd_pipe3_exit,
.phy_tune = exynos_usbdrd_pipe3_tune,
.phy_vendor_set = exynos_usbdrd_pipe3_vendor_set,
.phy_ilbk = exynos_usbdrd_pipe3_ilbk,
.phy_set = exynos_usbdrd_pipe3_set,
.set_refclk = exynos_usbdrd_pipe3_set_refclk,
},
};
static const struct exynos_usbdrd_phy_drvdata exynos_usbdrd_phy = {
.phy_cfg = phy_cfg_exynos,
};
static const struct of_device_id exynos_usbdrd_phy_of_match[] = {
{
.compatible = "samsung,exynos-usbdrd-phy",
.data = &exynos_usbdrd_phy
},
{ },
};
MODULE_DEVICE_TABLE(of, exynos5_usbdrd_phy_of_match);
void __iomem *phy_exynos_usbdp_get_address(void)
{
return usbdp_combo_phy_reg;
}
static int exynos_usbdrd_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct exynos_usbdrd_phy *phy_drd;
struct phy_provider *phy_provider;
struct resource *res;
const struct of_device_id *match;
const struct exynos_usbdrd_phy_drvdata *drv_data;
struct regmap *reg_pmu;
u32 pmu_offset, pmu_offset_dp, pmu_mask;
int i, ret;
pr_info("%s: +++ %s %s\n", __func__, dev->init_name, pdev->name);
phy_drd = devm_kzalloc(dev, sizeof(*phy_drd), GFP_KERNEL);
if (!phy_drd)
return -ENOMEM;
dev_set_drvdata(dev, phy_drd);
phy_drd->dev = dev;
match = of_match_node(exynos_usbdrd_phy_of_match, pdev->dev.of_node);
drv_data = match->data;
phy_drd->drv_data = drv_data;
#if defined(USB_L2_ENABLED)
phy_drd->irq_wakeup = platform_get_irq(pdev, 0);
irq_set_status_flags(phy_drd->irq_wakeup, IRQ_NOAUTOEN);
ret = devm_request_irq(dev, phy_drd->irq_wakeup, exynos_usbdrd_phy_wakeup_interrupt,
IRQF_SHARED, "phydrd-wakeup", phy_drd);
if (ret) {
dev_err(dev, "failed to request irq #%d --> %d\n",
phy_drd->irq_wakeup, ret);
return ret;
}
phy_drd->irq_conn = platform_get_irq(pdev, 1);
irq_set_status_flags(phy_drd->irq_conn, IRQ_NOAUTOEN);
ret = devm_request_irq(dev, phy_drd->irq_conn, exynos_usbdrd_phy_conn_interrupt,
IRQF_SHARED, "phydrd-conn", phy_drd);
if (ret) {
dev_err(dev, "failed to request irq #%d --> %d\n",
phy_drd->irq_conn, ret);
return ret;
}
#endif
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
phy_drd->reg_phy = devm_ioremap_resource(dev, res);
if (IS_ERR(phy_drd->reg_phy))
return PTR_ERR(phy_drd->reg_phy);
/* Both has_other_phy and has_combo_phy can't be enabled at the same time. It's alternative. */
if (!of_property_read_u32(dev->of_node, "has_other_phy", &ret)) {
if (ret) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
phy_drd->reg_phy2 = devm_ioremap_resource(dev, res);
if (IS_ERR(phy_drd->reg_phy2))
return PTR_ERR(phy_drd->reg_phy2);
} else {
dev_err(dev, "It has not the other phy\n");
}
}
ret = exynos_usbdrd_get_iptype(phy_drd);
if (ret) {
dev_err(dev, "%s: Failed to get ip_type\n", __func__);
return ret;
}
ret = exynos_usbdrd_clk_get(phy_drd);
if (ret) {
dev_err(dev, "%s: Failed to get clocks\n", __func__);
return ret;
}
ret = exynos_usbdrd_clk_prepare(phy_drd);
if (ret) {
dev_err(dev, "%s: Failed to prepare clocks\n", __func__);
return ret;
}
ret = exynos_rate_to_clk(phy_drd);
if (ret) {
dev_err(phy_drd->dev, "%s: Not supported ref clock\n",
__func__);
goto err1;
}
reg_pmu = syscon_regmap_lookup_by_phandle(dev->of_node,
"samsung,pmu-syscon");
if (IS_ERR(reg_pmu)) {
dev_err(dev, "Failed to lookup PMU regmap\n");
goto err1;
}
ret = of_property_read_u32(dev->of_node, "pmu_offset", &pmu_offset);
if (ret < 0) {
dev_err(dev, "couldn't read pmu_offset on %s node, error = %d\n",
dev->of_node->name, ret);
goto err1;
}
ret = of_property_read_u32(dev->of_node, "pmu_offset_dp", &pmu_offset_dp);
if (ret < 0) {
dev_err(dev, "couldn't read pmu_offset on %s node, error = %d\n",
dev->of_node->name, ret);
goto err1;
}
ret = of_property_read_u32(dev->of_node, "pmu_mask", &pmu_mask);
if (ret < 0) {
dev_err(dev, "couldn't read pmu_mask on %s node, error = %d\n",
dev->of_node->name, ret);
goto err1;
}
pmu_mask = (u32)BIT(pmu_mask);
dev_vdbg(dev, "Creating usbdrd_phy phy\n");
phy_drd->phy_port = of_get_named_gpio(dev->of_node,
"phy,gpio_phy_port", 0);
if (gpio_is_valid(phy_drd->phy_port)) {
dev_err(dev, "PHY CON Selection OK\n");
ret = gpio_request(phy_drd->phy_port, "PHY_CON");
if (ret)
dev_err(dev, "fail to request gpio %s:%d\n", "PHY_CON", ret);
else
gpio_direction_input(phy_drd->phy_port);
}
else
dev_err(dev, "non-DT: PHY CON Selection\n");
ret = exynos_usbdrd_get_phyinfo(phy_drd);
if (ret)
goto err1;
if (!of_property_read_u32(dev->of_node, "has_combo_phy", &ret)) {
if (ret) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
phy_drd->reg_phy2 = devm_ioremap_resource(dev, res);
if (IS_ERR(phy_drd->reg_phy2))
return PTR_ERR(phy_drd->reg_phy2);
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
phy_drd->reg_phy3 = devm_ioremap_resource(dev, res);
if (IS_ERR(phy_drd->reg_phy3))
return PTR_ERR(phy_drd->reg_phy3);
exynos_usbdrd_get_sub_phyinfo(phy_drd);
} else {
dev_err(dev, "It has not combo phy\n");
}
}
#if IS_ENABLED(CONFIG_EXYNOS_OTP)
exynos_usbdrd_phy_get_otp_info(phy_drd);
#endif
for (i = 0; i < EXYNOS_DRDPHYS_NUM; i++) {
struct phy *phy = devm_phy_create(dev, NULL,
&exynos_usbdrd_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "Failed to create usbdrd_phy phy\n");
goto err1;
}
phy_drd->phys[i].phy = phy;
phy_drd->phys[i].index = i;
phy_drd->phys[i].reg_pmu = reg_pmu_delayed = reg_pmu;
phy_drd->phys[i].pmu_offset = pmu_offset_delayed = pmu_offset;
phy_drd->phys[i].pmu_offset_dp =
pmu_offset_dp_delayed = pmu_offset_dp;
phy_drd->phys[i].pmu_mask = pmu_mask;
phy_drd->phys[i].phy_cfg = &drv_data->phy_cfg[i];
phy_set_drvdata(phy, &phy_drd->phys[i]);
}
#if IS_ENABLED(CONFIG_PHY_EXYNOS_DEBUGFS)
ret = exynos_usbdrd_debugfs_init(phy_drd);
if (ret) {
dev_err(dev, "Failed to initialize debugfs\n");
goto err1;
}
#endif
#if IS_ENABLED(CONFIG_PHY_EXYNOS_DP_DEBUGFS)
ret = exynos_usbdrd_dp_debugfs_init(phy_drd);
if (ret) {
dev_err(dev, "Failed to initialize dp debugfs\n");
goto err1;
}
#endif
phy_provider = devm_of_phy_provider_register(dev,
exynos_usbdrd_phy_xlate);
if (IS_ERR(phy_provider)) {
dev_err(phy_drd->dev, "Failed to register phy provider\n");
goto err1;
}
phy_drd->is_irq_enabled = 0;
pr_info("%s: ---\n", __func__);
return 0;
err1:
exynos_usbdrd_clk_unprepare(phy_drd);
return ret;
}
#ifdef CONFIG_PM
static int exynos_usbdrd_phy_resume(struct device *dev)
{
int ret;
struct exynos_usbdrd_phy *phy_drd = dev_get_drvdata(dev);
/*
* There is issue, when USB3.0 PHY is in active state
* after resume. This leads to increased power consumption
* if no USB drivers use the PHY.
*
* The following code shutdowns the PHY, so it is in defined
* state (OFF) after resume. If any USB driver already got
* the PHY at this time, we do nothing and just exit.
*/
dev_info(dev, "%s\n", __func__);
if (!phy_drd->is_conn) {
dev_info(dev, "USB wasn't connected\n");
ret = exynos_usbdrd_clk_enable(phy_drd, false);
if (ret) {
dev_err(phy_drd->dev, "%s: Failed to enable clk\n", __func__);
return ret;
}
__exynos_usbdrd_phy_shutdown(phy_drd);
exynos_usbdrd_clk_disable(phy_drd, false);
} else {
dev_info(dev, "USB was connected\n");
}
return 0;
}
static const struct dev_pm_ops exynos_usbdrd_phy_dev_pm_ops = {
.resume = exynos_usbdrd_phy_resume,
};
#define EXYNOS_USBDRD_PHY_PM_OPS &(exynos_usbdrd_phy_dev_pm_ops)
#else
#define EXYNOS_USBDRD_PHY_PM_OPS NULL
#endif
static struct platform_driver phy_exynos_usbdrd = {
.probe = exynos_usbdrd_phy_probe,
.driver = {
.of_match_table = exynos_usbdrd_phy_of_match,
.name = "phy_exynos_usbdrd",
.pm = EXYNOS_USBDRD_PHY_PM_OPS,
}
};
module_platform_driver(phy_exynos_usbdrd);
MODULE_DESCRIPTION("Samsung EXYNOS SoCs USB DRD controller PHY driver");
MODULE_AUTHOR("Vivek Gautam <gautam.vivek@samsung.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:phy_exynos_usbdrd");