lineage_kernel_xcoverpro/drivers/net/wireless/ath/ath9k/eeprom_9287.c

987 lines
30 KiB
C
Executable File

/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <asm/unaligned.h>
#include "hw.h"
#include "ar9002_phy.h"
#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
{
u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
return (version & AR5416_EEP_VER_MAJOR_MASK) >>
AR5416_EEP_VER_MAJOR_SHIFT;
}
static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
{
u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
return version & AR5416_EEP_VER_MINOR_MASK;
}
static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
u16 *eep_data;
int addr, eep_start_loc = AR9287_EEP_START_LOC;
eep_data = (u16 *)eep;
for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
return false;
eep_data++;
}
return true;
}
static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
{
u16 *eep_data = (u16 *)&ah->eeprom.map9287;
ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
AR9287_HTC_EEP_START_LOC,
SIZE_EEPROM_AR9287);
return true;
}
static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
if (!ath9k_hw_use_flash(ah)) {
ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
}
if (common->bus_ops->ath_bus_type == ATH_USB)
return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
else
return __ath9k_hw_ar9287_fill_eeprom(ah);
}
#ifdef CONFIG_ATH9K_COMMON_DEBUG
static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
struct modal_eep_ar9287_header *modal_hdr)
{
PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
PR_EEP("Switch Settle", modal_hdr->switchSettling);
PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
PR_EEP("CCA Threshold)", modal_hdr->thresh62);
PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
PR_EEP("xpdGain", modal_hdr->xpdGain);
PR_EEP("External PD", modal_hdr->xpd);
PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
PR_EEP("AR92x7 Version", modal_hdr->version);
PR_EEP("DriverBias1", modal_hdr->db1);
PR_EEP("DriverBias2", modal_hdr->db1);
PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
return len;
}
static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
if (!dump_base_hdr) {
len += scnprintf(buf + len, size - len,
"%20s :\n", "2GHz modal Header");
len = ar9287_dump_modal_eeprom(buf, len, size,
&eep->modalHeader);
goto out;
}
PR_EEP("Major Version", ath9k_hw_ar9287_get_eeprom_ver(ah));
PR_EEP("Minor Version", ath9k_hw_ar9287_get_eeprom_rev(ah));
PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
PR_EEP("Length", le16_to_cpu(pBase->length));
PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
PR_EEP("TX Mask", pBase->txMask);
PR_EEP("RX Mask", pBase->rxMask);
PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_2G_HT20));
PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_2G_HT40));
PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_5G_HT20));
PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_5G_HT40));
PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
PR_EEP("Power Table Offset", pBase->pwrTableOffset);
PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
pBase->macAddr);
out:
if (len > size)
len = size;
return len;
}
#else
static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
return 0;
}
#endif
static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
{
u32 el;
int i, err;
bool need_swap;
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287);
if (err)
return err;
if (need_swap)
el = swab16((__force u16)eep->baseEepHeader.length);
else
el = le16_to_cpu(eep->baseEepHeader.length);
el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
if (!ath9k_hw_nvram_validate_checksum(ah, el))
return -EINVAL;
if (need_swap) {
EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
for (i = 0; i < AR9287_MAX_CHAINS; i++)
EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
EEPROM_FIELD_SWAB16(
eep->modalHeader.spurChans[i].spurChan);
}
if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
AR5416_EEP_NO_BACK_VER))
return -EINVAL;
return 0;
}
#undef SIZE_EEPROM_AR9287
static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
enum eeprom_param param)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
u16 ver_minor = ath9k_hw_ar9287_get_eeprom_rev(ah);
switch (param) {
case EEP_NFTHRESH_2:
return pModal->noiseFloorThreshCh[0];
case EEP_MAC_LSW:
return get_unaligned_be16(pBase->macAddr);
case EEP_MAC_MID:
return get_unaligned_be16(pBase->macAddr + 2);
case EEP_MAC_MSW:
return get_unaligned_be16(pBase->macAddr + 4);
case EEP_REG_0:
return le16_to_cpu(pBase->regDmn[0]);
case EEP_OP_CAP:
return le16_to_cpu(pBase->deviceCap);
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
return le16_to_cpu(pBase->rfSilent);
case EEP_TX_MASK:
return pBase->txMask;
case EEP_RX_MASK:
return pBase->rxMask;
case EEP_DEV_TYPE:
return pBase->deviceType;
case EEP_OL_PWRCTRL:
return pBase->openLoopPwrCntl;
case EEP_TEMPSENSE_SLOPE:
if (ver_minor >= AR9287_EEP_MINOR_VER_2)
return pBase->tempSensSlope;
else
return 0;
case EEP_TEMPSENSE_SLOPE_PAL_ON:
if (ver_minor >= AR9287_EEP_MINOR_VER_3)
return pBase->tempSensSlopePalOn;
else
return 0;
case EEP_ANTENNA_GAIN_2G:
return max_t(u8, pModal->antennaGainCh[0],
pModal->antennaGainCh[1]);
default:
return 0;
}
}
static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
struct ath9k_channel *chan,
struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
u8 *pCalChans, u16 availPiers, int8_t *pPwr)
{
u16 idxL = 0, idxR = 0, numPiers;
bool match;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
}
match = ath9k_hw_get_lower_upper_index(
(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
pCalChans, numPiers, &idxL, &idxR);
if (match) {
*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
} else {
*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
(int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
}
}
static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
int32_t txPower, u16 chain)
{
u32 tmpVal;
u32 a;
/* Enable OLPC for chain 0 */
tmpVal = REG_READ(ah, 0xa270);
tmpVal = tmpVal & 0xFCFFFFFF;
tmpVal = tmpVal | (0x3 << 24);
REG_WRITE(ah, 0xa270, tmpVal);
/* Enable OLPC for chain 1 */
tmpVal = REG_READ(ah, 0xb270);
tmpVal = tmpVal & 0xFCFFFFFF;
tmpVal = tmpVal | (0x3 << 24);
REG_WRITE(ah, 0xb270, tmpVal);
/* Write the OLPC ref power for chain 0 */
if (chain == 0) {
tmpVal = REG_READ(ah, 0xa398);
tmpVal = tmpVal & 0xff00ffff;
a = (txPower)&0xff;
tmpVal = tmpVal | (a << 16);
REG_WRITE(ah, 0xa398, tmpVal);
}
/* Write the OLPC ref power for chain 1 */
if (chain == 1) {
tmpVal = REG_READ(ah, 0xb398);
tmpVal = tmpVal & 0xff00ffff;
a = (txPower)&0xff;
tmpVal = tmpVal | (a << 16);
REG_WRITE(ah, 0xb398, tmpVal);
}
}
static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct cal_data_per_freq_ar9287 *pRawDataset;
struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
u8 *pCalBChans = NULL;
u16 pdGainOverlap_t2;
u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
u16 numPiers = 0, i, j;
u16 numXpdGain, xpdMask;
u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
u32 reg32, regOffset, regChainOffset, regval;
int16_t diff = 0;
struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
xpdMask = pEepData->modalHeader.xpdGain;
if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
else
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
if (IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR9287_NUM_2G_CAL_PIERS;
if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
pRawDatasetOpenLoop =
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
}
}
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(u16)(AR5416_PD_GAINS_IN_MASK-i);
numXpdGain++;
}
}
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
pRawDatasetOpenLoop =
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
int8_t txPower;
ar9287_eeprom_get_tx_gain_index(ah, chan,
pRawDatasetOpenLoop,
pCalBChans, numPiers,
&txPower);
ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
} else {
pRawDataset =
(struct cal_data_per_freq_ar9287 *)
pEepData->calPierData2G[i];
ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
gainBoundaries,
pdadcValues,
numXpdGain);
}
ENABLE_REGWRITE_BUFFER(ah);
if (i == 0) {
if (!ath9k_hw_ar9287_get_eeprom(ah,
EEP_OL_PWRCTRL)) {
regval = SM(pdGainOverlap_t2,
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
| SM(gainBoundaries[0],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
| SM(gainBoundaries[1],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
| SM(gainBoundaries[2],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
| SM(gainBoundaries[3],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
REG_WRITE(ah,
AR_PHY_TPCRG5 + regChainOffset,
regval);
}
}
if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
pEepData->baseEepHeader.pwrTableOffset) {
diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
(int32_t)AR9287_PWR_TABLE_OFFSET_DB);
diff *= 2;
for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
pdadcValues[j] = pdadcValues[j+diff];
for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
j < AR5416_NUM_PDADC_VALUES; j++)
pdadcValues[j] =
pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
}
if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
regOffset = AR_PHY_BASE +
(672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
REG_WRITE(ah, regOffset, reg32);
regOffset += 4;
}
}
REGWRITE_BUFFER_FLUSH(ah);
}
}
}
static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
struct ath9k_channel *chan,
int16_t *ratesArray,
u16 cfgCtl,
u16 antenna_reduction,
u16 powerLimit)
{
#define CMP_CTL \
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
pEepData->ctlIndex[i])
#define CMP_NO_CTL \
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
u16 twiceMaxEdgePower;
int i;
struct cal_ctl_data_ar9287 *rep;
struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
targetPowerCck = {0, {0, 0, 0, 0} };
struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
targetPowerCckExt = {0, {0, 0, 0, 0} };
struct cal_target_power_ht targetPowerHt20,
targetPowerHt40 = {0, {0, 0, 0, 0} };
u16 scaledPower = 0, minCtlPower;
static const u16 ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20,
CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
u16 numCtlModes = 0;
const u16 *pCtlMode = NULL;
u16 ctlMode, freq;
struct chan_centers centers;
int tx_chainmask;
u16 twiceMinEdgePower;
struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
tx_chainmask = ah->txchainmask;
ath9k_hw_get_channel_centers(ah, chan, &centers);
scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
antenna_reduction);
/*
* Get TX power from EEPROM.
*/
if (IS_CHAN_2GHZ(chan)) {
/* CTL_11B, CTL_11G, CTL_2GHT20 */
numCtlModes =
ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR9287_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCck, 4, false);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR9287_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdm, 4, false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT20,
AR9287_NUM_2G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
/* All 2G CTLs */
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT40,
AR9287_NUM_2G_40_TARGET_POWERS,
&targetPowerHt40, 8, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR9287_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCckExt, 4, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR9287_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdmExt, 4, true);
}
}
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode =
(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
twiceMaxEdgePower = MAX_RATE_POWER;
/* Walk through the CTL indices stored in EEPROM */
for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
struct cal_ctl_edges *pRdEdgesPower;
/*
* Compare test group from regulatory channel list
* with test mode from pCtlMode list
*/
if (CMP_CTL || CMP_NO_CTL) {
rep = &(pEepData->ctlData[i]);
pRdEdgesPower =
rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
pRdEdgesPower,
IS_CHAN_2GHZ(chan),
AR5416_NUM_BAND_EDGES);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
twiceMaxEdgePower = min(twiceMaxEdgePower,
twiceMinEdgePower);
} else {
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] =
(u8)min((u16)targetPowerCck.tPow2x[i],
minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] =
(u8)min((u16)targetPowerOfdm.tPow2x[i],
minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] =
(u8)min((u16)targetPowerHt20.tPow2x[i],
minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] =
(u8)min((u16)targetPowerCckExt.tPow2x[0],
minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] =
(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] =
(u8)min((u16)targetPowerHt40.tPow2x[i],
minCtlPower);
}
break;
default:
break;
}
}
/* Now set the rates array */
ratesArray[rate6mb] =
ratesArray[rate9mb] =
ratesArray[rate12mb] =
ratesArray[rate18mb] =
ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] =
ratesArray[rate2l] = targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] =
ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
ratesArray[rate11s] =
ratesArray[rate11l] = targetPowerCck.tPow2x[3];
}
if (IS_CHAN_HT40(chan)) {
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IS_CHAN_2GHZ(chan))
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
}
#undef CMP_CTL
#undef CMP_NO_CTL
}
static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
struct ath9k_channel *chan, u16 cfgCtl,
u8 twiceAntennaReduction,
u8 powerLimit, bool test)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
int16_t ratesArray[Ar5416RateSize];
u8 ht40PowerIncForPdadc = 2;
int i;
memset(ratesArray, 0, sizeof(ratesArray));
if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
&ratesArray[0], cfgCtl,
twiceAntennaReduction,
powerLimit);
ath9k_hw_set_ar9287_power_cal_table(ah, chan);
regulatory->max_power_level = 0;
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
if (ratesArray[i] > MAX_RATE_POWER)
ratesArray[i] = MAX_RATE_POWER;
if (ratesArray[i] > regulatory->max_power_level)
regulatory->max_power_level = ratesArray[i];
}
ath9k_hw_update_regulatory_maxpower(ah);
if (test)
return;
for (i = 0; i < Ar5416RateSize; i++)
ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
ENABLE_REGWRITE_BUFFER(ah);
/* OFDM power per rate */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
ATH9K_POW_SM(ratesArray[rate18mb], 24)
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
ATH9K_POW_SM(ratesArray[rate54mb], 24)
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
/* CCK power per rate */
if (IS_CHAN_2GHZ(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
ATH9K_POW_SM(ratesArray[rate2s], 24)
| ATH9K_POW_SM(ratesArray[rate2l], 16)
| ATH9K_POW_SM(ratesArray[rateXr], 8)
| ATH9K_POW_SM(ratesArray[rate1l], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
ATH9K_POW_SM(ratesArray[rate11s], 24)
| ATH9K_POW_SM(ratesArray[rate11l], 16)
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
}
/* HT20 power per rate */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
/* HT40 power per rate */
if (IS_CHAN_HT40(chan)) {
if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
} else {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
ht40PowerIncForPdadc, 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
ht40PowerIncForPdadc, 0));
}
/* Dup/Ext power per rate */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
}
/* TPC initializations */
if (ah->tpc_enabled) {
int ht40_delta;
ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
/* Enable TPC */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
} else {
/* Disable TPC */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
}
REGWRITE_BUFFER_FLUSH(ah);
}
static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
u32 regChainOffset, regval;
u8 txRxAttenLocal;
int i;
pModal = &eep->modalHeader;
REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
le32_to_cpu(pModal->antCtrlChain[i]));
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
& ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
txRxAttenLocal = pModal->txRxAttenCh[i];
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->bswMargin[i]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->bswAtten[i]);
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN,
txRxAttenLocal);
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN,
pModal->rxTxMarginCh[i]);
}
if (IS_CHAN_HT40(chan))
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
else
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
REG_RMW_FIELD(ah, AR_PHY_CCA,
AR9280_PHY_CCA_THRESH62, pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
regval &= ~(AR9287_AN_RF2G3_DB1 |
AR9287_AN_RF2G3_DB2 |
AR9287_AN_RF2G3_OB_CCK |
AR9287_AN_RF2G3_OB_PSK |
AR9287_AN_RF2G3_OB_QAM |
AR9287_AN_RF2G3_OB_PAL_OFF);
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
regval &= ~(AR9287_AN_RF2G3_DB1 |
AR9287_AN_RF2G3_DB2 |
AR9287_AN_RF2G3_OB_CCK |
AR9287_AN_RF2G3_OB_PSK |
AR9287_AN_RF2G3_OB_QAM |
AR9287_AN_RF2G3_OB_PAL_OFF);
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
AR9287_AN_TOP2_XPABIAS_LVL,
AR9287_AN_TOP2_XPABIAS_LVL_S,
pModal->xpaBiasLvl);
}
static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
u16 i, bool is2GHz)
{
__le16 spur_ch = ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
return le16_to_cpu(spur_ch);
}
static u8 ath9k_hw_ar9287_get_eepmisc(struct ath_hw *ah)
{
return ah->eeprom.map9287.baseEepHeader.eepMisc;
}
const struct eeprom_ops eep_ar9287_ops = {
.check_eeprom = ath9k_hw_ar9287_check_eeprom,
.get_eeprom = ath9k_hw_ar9287_get_eeprom,
.fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
.dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
.get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
.get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
.set_board_values = ath9k_hw_ar9287_set_board_values,
.set_txpower = ath9k_hw_ar9287_set_txpower,
.get_spur_channel = ath9k_hw_ar9287_get_spur_channel,
.get_eepmisc = ath9k_hw_ar9287_get_eepmisc
};