327 lines
9.4 KiB
C
Executable File
327 lines
9.4 KiB
C
Executable File
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_POWERPC_PGTABLE_RADIX_H
|
|
#define _ASM_POWERPC_PGTABLE_RADIX_H
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <asm/cmpxchg.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
#include <asm/book3s/64/radix-64k.h>
|
|
#else
|
|
#include <asm/book3s/64/radix-4k.h>
|
|
#endif
|
|
|
|
/*
|
|
* For P9 DD1 only, we need to track whether the pte's huge.
|
|
*/
|
|
#define R_PAGE_LARGE _RPAGE_RSV1
|
|
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <asm/book3s/64/tlbflush-radix.h>
|
|
#include <asm/cpu_has_feature.h>
|
|
#endif
|
|
|
|
/* An empty PTE can still have a R or C writeback */
|
|
#define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED)
|
|
|
|
/* Bits to set in a RPMD/RPUD/RPGD */
|
|
#define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
|
|
#define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
|
|
#define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
|
|
|
|
/* Don't have anything in the reserved bits and leaf bits */
|
|
#define RADIX_PMD_BAD_BITS 0x60000000000000e0UL
|
|
#define RADIX_PUD_BAD_BITS 0x60000000000000e0UL
|
|
#define RADIX_PGD_BAD_BITS 0x60000000000000e0UL
|
|
|
|
/*
|
|
* Size of EA range mapped by our pagetables.
|
|
*/
|
|
#define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \
|
|
RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
|
|
#define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
|
|
|
|
/*
|
|
* We support 52 bit address space, Use top bit for kernel
|
|
* virtual mapping. Also make sure kernel fit in the top
|
|
* quadrant.
|
|
*
|
|
* +------------------+
|
|
* +------------------+ Kernel virtual map (0xc008000000000000)
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* 0b11......+------------------+ Kernel linear map (0xc....)
|
|
* | |
|
|
* | 2 quadrant |
|
|
* | |
|
|
* 0b10......+------------------+
|
|
* | |
|
|
* | 1 quadrant |
|
|
* | |
|
|
* 0b01......+------------------+
|
|
* | |
|
|
* | 0 quadrant |
|
|
* | |
|
|
* 0b00......+------------------+
|
|
*
|
|
*
|
|
* 3rd quadrant expanded:
|
|
* +------------------------------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +------------------------------+ Kernel IO map end (0xc010000000000000)
|
|
* | |
|
|
* | |
|
|
* | 1/2 of virtual map |
|
|
* | |
|
|
* | |
|
|
* +------------------------------+ Kernel IO map start
|
|
* | |
|
|
* | 1/4 of virtual map |
|
|
* | |
|
|
* +------------------------------+ Kernel vmemap start
|
|
* | |
|
|
* | 1/4 of virtual map |
|
|
* | |
|
|
* +------------------------------+ Kernel virt start (0xc008000000000000)
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +------------------------------+ Kernel linear (0xc.....)
|
|
*/
|
|
|
|
#define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
|
|
#define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000)
|
|
|
|
/*
|
|
* The vmalloc space starts at the beginning of that region, and
|
|
* occupies a quarter of it on radix config.
|
|
* (we keep a quarter for the virtual memmap)
|
|
*/
|
|
#define RADIX_VMALLOC_START RADIX_KERN_VIRT_START
|
|
#define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2)
|
|
#define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
|
|
/*
|
|
* Defines the address of the vmemap area, in its own region on
|
|
* hash table CPUs.
|
|
*/
|
|
#define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END)
|
|
|
|
#define RADIX_KERN_IO_START (RADIX_KERN_VIRT_START + (RADIX_KERN_VIRT_SIZE >> 1))
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
|
|
#define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
|
|
#define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
|
|
#define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
|
|
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
extern void radix__mark_rodata_ro(void);
|
|
extern void radix__mark_initmem_nx(void);
|
|
#endif
|
|
|
|
static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
pte_t pte;
|
|
unsigned long old_pte, new_pte;
|
|
|
|
do {
|
|
pte = READ_ONCE(*ptep);
|
|
old_pte = pte_val(pte);
|
|
new_pte = (old_pte | set) & ~clr;
|
|
|
|
} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
|
|
|
|
return old_pte;
|
|
}
|
|
|
|
|
|
static inline unsigned long radix__pte_update(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, unsigned long clr,
|
|
unsigned long set,
|
|
int huge)
|
|
{
|
|
unsigned long old_pte;
|
|
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
|
|
|
|
unsigned long new_pte;
|
|
|
|
old_pte = __radix_pte_update(ptep, ~0ul, 0);
|
|
/*
|
|
* new value of pte
|
|
*/
|
|
new_pte = (old_pte | set) & ~clr;
|
|
radix__flush_tlb_pte_p9_dd1(old_pte, mm, addr);
|
|
if (new_pte)
|
|
__radix_pte_update(ptep, 0, new_pte);
|
|
} else
|
|
old_pte = __radix_pte_update(ptep, clr, set);
|
|
if (!huge)
|
|
assert_pte_locked(mm, addr);
|
|
|
|
return old_pte;
|
|
}
|
|
|
|
static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, int full)
|
|
{
|
|
unsigned long old_pte;
|
|
|
|
if (full) {
|
|
/*
|
|
* If we are trying to clear the pte, we can skip
|
|
* the DD1 pte update sequence and batch the tlb flush. The
|
|
* tlb flush batching is done by mmu gather code. We
|
|
* still keep the cmp_xchg update to make sure we get
|
|
* correct R/C bit which might be updated via Nest MMU.
|
|
*/
|
|
old_pte = __radix_pte_update(ptep, ~0ul, 0);
|
|
} else
|
|
old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);
|
|
|
|
return __pte(old_pte);
|
|
}
|
|
|
|
/*
|
|
* Set the dirty and/or accessed bits atomically in a linux PTE, this
|
|
* function doesn't need to invalidate tlb.
|
|
*/
|
|
static inline void radix__ptep_set_access_flags(struct mm_struct *mm,
|
|
pte_t *ptep, pte_t entry,
|
|
unsigned long address)
|
|
{
|
|
|
|
unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
|
|
_PAGE_RW | _PAGE_EXEC);
|
|
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
|
|
|
|
unsigned long old_pte, new_pte;
|
|
|
|
old_pte = __radix_pte_update(ptep, ~0, 0);
|
|
/*
|
|
* new value of pte
|
|
*/
|
|
new_pte = old_pte | set;
|
|
radix__flush_tlb_pte_p9_dd1(old_pte, mm, address);
|
|
__radix_pte_update(ptep, 0, new_pte);
|
|
} else
|
|
__radix_pte_update(ptep, 0, set);
|
|
asm volatile("ptesync" : : : "memory");
|
|
}
|
|
|
|
static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
|
|
{
|
|
return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
|
|
}
|
|
|
|
static inline int radix__pte_none(pte_t pte)
|
|
{
|
|
return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
|
|
}
|
|
|
|
static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte, int percpu)
|
|
{
|
|
*ptep = pte;
|
|
asm volatile("ptesync" : : : "memory");
|
|
}
|
|
|
|
static inline int radix__pmd_bad(pmd_t pmd)
|
|
{
|
|
return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
|
|
}
|
|
|
|
static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
{
|
|
return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
|
|
}
|
|
|
|
static inline int radix__pud_bad(pud_t pud)
|
|
{
|
|
return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
|
|
}
|
|
|
|
|
|
static inline int radix__pgd_bad(pgd_t pgd)
|
|
{
|
|
return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline int radix__pmd_trans_huge(pmd_t pmd)
|
|
{
|
|
return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
|
|
}
|
|
|
|
static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1))
|
|
return __pmd(pmd_val(pmd) | _PAGE_PTE | R_PAGE_LARGE);
|
|
return __pmd(pmd_val(pmd) | _PAGE_PTE);
|
|
}
|
|
static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
/* Nothing to do for radix. */
|
|
return;
|
|
}
|
|
|
|
extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, unsigned long clr,
|
|
unsigned long set);
|
|
extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable);
|
|
extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
|
|
extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp);
|
|
extern int radix__has_transparent_hugepage(void);
|
|
#endif
|
|
|
|
extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
|
|
unsigned long page_size,
|
|
unsigned long phys);
|
|
extern void radix__vmemmap_remove_mapping(unsigned long start,
|
|
unsigned long page_size);
|
|
|
|
extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags, unsigned int psz);
|
|
|
|
static inline unsigned long radix__get_tree_size(void)
|
|
{
|
|
unsigned long rts_field;
|
|
/*
|
|
* We support 52 bits, hence:
|
|
* DD1 52-28 = 24, 0b11000
|
|
* Others 52-31 = 21, 0b10101
|
|
* RTS encoding details
|
|
* bits 0 - 3 of rts -> bits 6 - 8 unsigned long
|
|
* bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1))
|
|
rts_field = (0x3UL << 61);
|
|
else {
|
|
rts_field = (0x5UL << 5); /* 6 - 8 bits */
|
|
rts_field |= (0x2UL << 61);
|
|
}
|
|
return rts_field;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int radix__create_section_mapping(unsigned long start, unsigned long end);
|
|
int radix__remove_section_mapping(unsigned long start, unsigned long end);
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif
|