215 lines
7.1 KiB
C
Executable File
215 lines
7.1 KiB
C
Executable File
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
|
|
#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
|
|
|
|
#define H_PTE_INDEX_SIZE 8
|
|
#define H_PMD_INDEX_SIZE 10
|
|
#define H_PUD_INDEX_SIZE 7
|
|
#define H_PGD_INDEX_SIZE 8
|
|
|
|
/*
|
|
* 64k aligned address free up few of the lower bits of RPN for us
|
|
* We steal that here. For more deatils look at pte_pfn/pfn_pte()
|
|
*/
|
|
#define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */
|
|
#define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */
|
|
/*
|
|
* We need to differentiate between explicit huge page and THP huge
|
|
* page, since THP huge page also need to track real subpage details
|
|
*/
|
|
#define H_PAGE_THP_HUGE H_PAGE_4K_PFN
|
|
|
|
/*
|
|
* Used to track subpage group valid if H_PAGE_COMBO is set
|
|
* This overloads H_PAGE_F_GIX and H_PAGE_F_SECOND
|
|
*/
|
|
#define H_PAGE_COMBO_VALID (H_PAGE_F_GIX | H_PAGE_F_SECOND)
|
|
|
|
/* PTE flags to conserve for HPTE identification */
|
|
#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_F_SECOND | \
|
|
H_PAGE_F_GIX | H_PAGE_HASHPTE | H_PAGE_COMBO)
|
|
/*
|
|
* we support 16 fragments per PTE page of 64K size.
|
|
*/
|
|
#define H_PTE_FRAG_NR 16
|
|
/*
|
|
* We use a 2K PTE page fragment and another 2K for storing
|
|
* real_pte_t hash index
|
|
*/
|
|
#define H_PTE_FRAG_SIZE_SHIFT 12
|
|
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <asm/errno.h>
|
|
|
|
/*
|
|
* With 64K pages on hash table, we have a special PTE format that
|
|
* uses a second "half" of the page table to encode sub-page information
|
|
* in order to deal with 64K made of 4K HW pages. Thus we override the
|
|
* generic accessors and iterators here
|
|
*/
|
|
#define __real_pte __real_pte
|
|
static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep)
|
|
{
|
|
real_pte_t rpte;
|
|
unsigned long *hidxp;
|
|
|
|
rpte.pte = pte;
|
|
rpte.hidx = 0;
|
|
if (pte_val(pte) & H_PAGE_COMBO) {
|
|
/*
|
|
* Make sure we order the hidx load against the H_PAGE_COMBO
|
|
* check. The store side ordering is done in __hash_page_4K
|
|
*/
|
|
smp_rmb();
|
|
hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
|
|
rpte.hidx = *hidxp;
|
|
}
|
|
return rpte;
|
|
}
|
|
|
|
static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
|
|
{
|
|
if ((pte_val(rpte.pte) & H_PAGE_COMBO))
|
|
return (rpte.hidx >> (index<<2)) & 0xf;
|
|
return (pte_val(rpte.pte) >> H_PAGE_F_GIX_SHIFT) & 0xf;
|
|
}
|
|
|
|
#define __rpte_to_pte(r) ((r).pte)
|
|
extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
|
|
/*
|
|
* Trick: we set __end to va + 64k, which happens works for
|
|
* a 16M page as well as we want only one iteration
|
|
*/
|
|
#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
|
|
do { \
|
|
unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
|
|
unsigned __split = (psize == MMU_PAGE_4K || \
|
|
psize == MMU_PAGE_64K_AP); \
|
|
shift = mmu_psize_defs[psize].shift; \
|
|
for (index = 0; vpn < __end; index++, \
|
|
vpn += (1L << (shift - VPN_SHIFT))) { \
|
|
if (!__split || __rpte_sub_valid(rpte, index)) \
|
|
do {
|
|
|
|
#define pte_iterate_hashed_end() } while(0); } } while(0)
|
|
|
|
#define pte_pagesize_index(mm, addr, pte) \
|
|
(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
|
|
|
|
extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
|
|
unsigned long pfn, unsigned long size, pgprot_t);
|
|
static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
|
|
WARN(1, "remap_4k_pfn called with wrong pfn value\n");
|
|
return -EINVAL;
|
|
}
|
|
return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
|
|
__pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
|
|
}
|
|
|
|
#define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
|
|
(sizeof(unsigned long) << PMD_INDEX_SIZE))
|
|
#else
|
|
#define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
|
|
#endif
|
|
#define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
|
|
#define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline char *get_hpte_slot_array(pmd_t *pmdp)
|
|
{
|
|
/*
|
|
* The hpte hindex is stored in the pgtable whose address is in the
|
|
* second half of the PMD
|
|
*
|
|
* Order this load with the test for pmd_trans_huge in the caller
|
|
*/
|
|
smp_rmb();
|
|
return *(char **)(pmdp + PTRS_PER_PMD);
|
|
|
|
|
|
}
|
|
/*
|
|
* The linux hugepage PMD now include the pmd entries followed by the address
|
|
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
|
|
* [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
|
|
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
|
|
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
|
|
*
|
|
* The top three bits are intentionally left as zero. This memory location
|
|
* are also used as normal page PTE pointers. So if we have any pointers
|
|
* left around while we collapse a hugepage, we need to make sure
|
|
* _PAGE_PRESENT bit of that is zero when we look at them
|
|
*/
|
|
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
|
|
{
|
|
return hpte_slot_array[index] & 0x1;
|
|
}
|
|
|
|
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
|
|
int index)
|
|
{
|
|
return hpte_slot_array[index] >> 1;
|
|
}
|
|
|
|
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
|
|
unsigned int index, unsigned int hidx)
|
|
{
|
|
hpte_slot_array[index] = (hidx << 1) | 0x1;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
|
|
* page. The hugetlbfs page table walking and mangling paths are totally
|
|
* separated form the core VM paths and they're differentiated by
|
|
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
|
|
*
|
|
* pmd_trans_huge() is defined as false at build time if
|
|
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
|
|
* time in such case.
|
|
*
|
|
* For ppc64 we need to differntiate from explicit hugepages from THP, because
|
|
* for THP we also track the subpage details at the pmd level. We don't do
|
|
* that for explicit huge pages.
|
|
*
|
|
*/
|
|
static inline int hash__pmd_trans_huge(pmd_t pmd)
|
|
{
|
|
return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
|
|
(_PAGE_PTE | H_PAGE_THP_HUGE));
|
|
}
|
|
|
|
static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
{
|
|
return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
|
|
}
|
|
|
|
static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
|
|
{
|
|
return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
|
|
}
|
|
|
|
extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp,
|
|
unsigned long clr, unsigned long set);
|
|
extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable);
|
|
extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
|
|
extern void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp);
|
|
extern int hash__has_transparent_hugepage(void);
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
|