/* * This contains encryption functions for per-file encryption. * * Copyright (C) 2015, Google, Inc. * Copyright (C) 2015, Motorola Mobility * * Written by Michael Halcrow, 2014. * * Filename encryption additions * Uday Savagaonkar, 2014 * Encryption policy handling additions * Ildar Muslukhov, 2014 * Add fscrypt_pullback_bio_page() * Jaegeuk Kim, 2015. * * This has not yet undergone a rigorous security audit. * * The usage of AES-XTS should conform to recommendations in NIST * Special Publication 800-38E and IEEE P1619/D16. */ #include #include #include #include #include #include #include #include #include #include "fscrypt_private.h" #ifdef CONFIG_FSCRYPT_SDP #include "sdp/sdp_crypto.h" #endif static unsigned int num_prealloc_crypto_pages = 32; static unsigned int num_prealloc_crypto_ctxs = 128; module_param(num_prealloc_crypto_pages, uint, 0444); MODULE_PARM_DESC(num_prealloc_crypto_pages, "Number of crypto pages to preallocate"); module_param(num_prealloc_crypto_ctxs, uint, 0444); MODULE_PARM_DESC(num_prealloc_crypto_ctxs, "Number of crypto contexts to preallocate"); static mempool_t *fscrypt_bounce_page_pool = NULL; static LIST_HEAD(fscrypt_free_ctxs); static DEFINE_SPINLOCK(fscrypt_ctx_lock); static struct workqueue_struct *fscrypt_read_workqueue; static DEFINE_MUTEX(fscrypt_init_mutex); static struct kmem_cache *fscrypt_ctx_cachep; struct kmem_cache *fscrypt_info_cachep; void fscrypt_enqueue_decrypt_work(struct work_struct *work) { queue_work(fscrypt_read_workqueue, work); } EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); /** * fscrypt_release_ctx() - Releases an encryption context * @ctx: The encryption context to release. * * If the encryption context was allocated from the pre-allocated pool, returns * it to that pool. Else, frees it. * * If there's a bounce page in the context, this frees that. */ void fscrypt_release_ctx(struct fscrypt_ctx *ctx) { unsigned long flags; if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); ctx->w.bounce_page = NULL; } ctx->w.control_page = NULL; if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { kmem_cache_free(fscrypt_ctx_cachep, ctx); } else { spin_lock_irqsave(&fscrypt_ctx_lock, flags); list_add(&ctx->free_list, &fscrypt_free_ctxs); spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); } } EXPORT_SYMBOL(fscrypt_release_ctx); /** * fscrypt_get_ctx() - Gets an encryption context * @inode: The inode for which we are doing the crypto * @gfp_flags: The gfp flag for memory allocation * * Allocates and initializes an encryption context. * * Return: An allocated and initialized encryption context on success; error * value or NULL otherwise. */ struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) { struct fscrypt_ctx *ctx = NULL; struct fscrypt_info *ci = inode->i_crypt_info; unsigned long flags; if (ci == NULL) return ERR_PTR(-ENOKEY); BUG_ON(__fscrypt_inline_encrypted(inode)); /* * We first try getting the ctx from a free list because in * the common case the ctx will have an allocated and * initialized crypto tfm, so it's probably a worthwhile * optimization. For the bounce page, we first try getting it * from the kernel allocator because that's just about as fast * as getting it from a list and because a cache of free pages * should generally be a "last resort" option for a filesystem * to be able to do its job. */ spin_lock_irqsave(&fscrypt_ctx_lock, flags); ctx = list_first_entry_or_null(&fscrypt_free_ctxs, struct fscrypt_ctx, free_list); if (ctx) list_del(&ctx->free_list); spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); if (!ctx) { ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); if (!ctx) return ERR_PTR(-ENOMEM); ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; } else { ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; } ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; return ctx; } EXPORT_SYMBOL(fscrypt_get_ctx); void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, const struct fscrypt_info *ci) { memset(iv, 0, ci->ci_mode->ivsize); iv->lblk_num = cpu_to_le64(lblk_num); if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY) memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE); if (ci->ci_essiv_tfm != NULL) crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw); } int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, u64 lblk_num, struct page *src_page, struct page *dest_page, unsigned int len, unsigned int offs, gfp_t gfp_flags) { union fscrypt_iv iv; struct skcipher_request *req = NULL; DECLARE_CRYPTO_WAIT(wait); struct scatterlist dst, src; struct fscrypt_info *ci = inode->i_crypt_info; struct crypto_skcipher *tfm = ci->ci_ctfm; int res = 0; #ifdef CONFIG_FSCRYPT_SDP sdp_fs_command_t *cmd = NULL; #endif BUG_ON(len == 0); fscrypt_generate_iv(&iv, lblk_num, ci); req = skcipher_request_alloc(tfm, gfp_flags); if (!req) return -ENOMEM; skcipher_request_set_callback( req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); sg_init_table(&dst, 1); sg_set_page(&dst, dest_page, len, offs); sg_init_table(&src, 1); sg_set_page(&src, src_page, len, offs); skcipher_request_set_crypt(req, &src, &dst, len, &iv); if (rw == FS_DECRYPT) res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); else res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); skcipher_request_free(req); if (res) { fscrypt_err(inode->i_sb, "%scryption failed for inode %lu, block %llu: %d", (rw == FS_DECRYPT ? "de" : "en"), inode->i_ino, lblk_num, res); #ifdef CONFIG_FSCRYPT_SDP if (ci->ci_sdp_info) { if (ci->ci_sdp_info->sdp_flags & SDP_DEK_IS_SENSITIVE) { printk("Record audit log in case of a failure during en/decryption of sensitive file\n"); if (rw == FS_DECRYPT) { cmd = sdp_fs_command_alloc(FSOP_AUDIT_FAIL_DECRYPT, current->tgid, ci->ci_sdp_info->engine_id, -1, inode->i_ino, res, GFP_KERNEL); } else { cmd = sdp_fs_command_alloc(FSOP_AUDIT_FAIL_ENCRYPT, current->tgid, ci->ci_sdp_info->engine_id, -1, inode->i_ino, res, GFP_KERNEL); } if (cmd) { sdp_fs_request(cmd, NULL); sdp_fs_command_free(cmd); } } } #endif return res; } return 0; } struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags) { void *pool = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); if (pool == NULL) return ERR_PTR(-ENOMEM); if (ctx) { ctx->w.bounce_page = pool; ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; } return pool; } void fscrypt_free_bounce_page(void *pool) { mempool_free(pool, fscrypt_bounce_page_pool); } /** * fscypt_encrypt_page() - Encrypts a page * @inode: The inode for which the encryption should take place * @page: The page to encrypt. Must be locked for bounce-page * encryption. * @len: Length of data to encrypt in @page and encrypted * data in returned page. * @offs: Offset of data within @page and returned * page holding encrypted data. * @lblk_num: Logical block number. This must be unique for multiple * calls with same inode, except when overwriting * previously written data. * @gfp_flags: The gfp flag for memory allocation * * Encrypts @page using the ctx encryption context. Performs encryption * either in-place or into a newly allocated bounce page. * Called on the page write path. * * Bounce page allocation is the default. * In this case, the contents of @page are encrypted and stored in an * allocated bounce page. @page has to be locked and the caller must call * fscrypt_restore_control_page() on the returned ciphertext page to * release the bounce buffer and the encryption context. * * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in * fscrypt_operations. Here, the input-page is returned with its content * encrypted. * * Return: A page with the encrypted content on success. Else, an * error value or NULL. */ struct page *fscrypt_encrypt_page(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags) { struct fscrypt_ctx *ctx; struct page *ciphertext_page = page; int err; BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { /* with inplace-encryption we just encrypt the page */ err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, ciphertext_page, len, offs, gfp_flags); if (err) return ERR_PTR(err); return ciphertext_page; } BUG_ON(!PageLocked(page)); ctx = fscrypt_get_ctx(inode, gfp_flags); if (IS_ERR(ctx)) return (struct page *)ctx; /* The encryption operation will require a bounce page. */ ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); if (IS_ERR(ciphertext_page)) goto errout; ctx->w.control_page = page; err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, ciphertext_page, len, offs, gfp_flags); if (err) { ciphertext_page = ERR_PTR(err); goto errout; } SetPagePrivate(ciphertext_page); set_page_private(ciphertext_page, (unsigned long)ctx); lock_page(ciphertext_page); return ciphertext_page; errout: fscrypt_release_ctx(ctx); return ciphertext_page; } EXPORT_SYMBOL(fscrypt_encrypt_page); /** * fscrypt_decrypt_page() - Decrypts a page in-place * @inode: The corresponding inode for the page to decrypt. * @page: The page to decrypt. Must be locked in case * it is a writeback page (FS_CFLG_OWN_PAGES unset). * @len: Number of bytes in @page to be decrypted. * @offs: Start of data in @page. * @lblk_num: Logical block number. * * Decrypts page in-place using the ctx encryption context. * * Called from the read completion callback. * * Return: Zero on success, non-zero otherwise. */ int fscrypt_decrypt_page(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num) { if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) BUG_ON(!PageLocked(page)); return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, len, offs, GFP_NOFS); } EXPORT_SYMBOL(fscrypt_decrypt_page); /* * Validate dentries for encrypted directories to make sure we aren't * potentially caching stale data after a key has been added or * removed. */ static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) { struct dentry *dir; int dir_has_key, cached_with_key; if (flags & LOOKUP_RCU) return -ECHILD; dir = dget_parent(dentry); if (!IS_ENCRYPTED(d_inode(dir))) { dput(dir); return 0; } spin_lock(&dentry->d_lock); cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; spin_unlock(&dentry->d_lock); dir_has_key = (d_inode(dir)->i_crypt_info != NULL); dput(dir); /* * If the dentry was cached without the key, and it is a * negative dentry, it might be a valid name. We can't check * if the key has since been made available due to locking * reasons, so we fail the validation so ext4_lookup() can do * this check. * * We also fail the validation if the dentry was created with * the key present, but we no longer have the key, or vice versa. */ if ((!cached_with_key && d_is_negative(dentry)) || (!cached_with_key && dir_has_key) || (cached_with_key && !dir_has_key)) return 0; return 1; } #ifdef CONFIG_FSCRYPT_SDP static int fscrypt_sdp_d_delete(const struct dentry *dentry) { return fscrypt_sdp_d_delete_wrapper(dentry); } #endif const struct dentry_operations fscrypt_d_ops = { .d_revalidate = fscrypt_d_revalidate, #ifdef CONFIG_FSCRYPT_SDP .d_delete = fscrypt_sdp_d_delete, #endif }; void fscrypt_restore_control_page(struct page *page) { struct fscrypt_ctx *ctx; ctx = (struct fscrypt_ctx *)page_private(page); set_page_private(page, (unsigned long)NULL); ClearPagePrivate(page); unlock_page(page); fscrypt_release_ctx(ctx); } EXPORT_SYMBOL(fscrypt_restore_control_page); static void fscrypt_destroy(void) { struct fscrypt_ctx *pos, *n; list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) kmem_cache_free(fscrypt_ctx_cachep, pos); INIT_LIST_HEAD(&fscrypt_free_ctxs); mempool_destroy(fscrypt_bounce_page_pool); fscrypt_bounce_page_pool = NULL; } /** * fscrypt_initialize() - allocate major buffers for fs encryption. * @cop_flags: fscrypt operations flags * * We only call this when we start accessing encrypted files, since it * results in memory getting allocated that wouldn't otherwise be used. * * Return: Zero on success, non-zero otherwise. */ int fscrypt_initialize(unsigned int cop_flags) { int i, res = -ENOMEM; /* No need to allocate a bounce page pool if this FS won't use it. */ if (cop_flags & FS_CFLG_OWN_PAGES) return 0; mutex_lock(&fscrypt_init_mutex); if (fscrypt_bounce_page_pool) goto already_initialized; for (i = 0; i < num_prealloc_crypto_ctxs; i++) { struct fscrypt_ctx *ctx; ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); if (!ctx) goto fail; list_add(&ctx->free_list, &fscrypt_free_ctxs); } fscrypt_bounce_page_pool = mempool_create_page_pool(num_prealloc_crypto_pages, 0); if (!fscrypt_bounce_page_pool) goto fail; already_initialized: mutex_unlock(&fscrypt_init_mutex); return 0; fail: fscrypt_destroy(); mutex_unlock(&fscrypt_init_mutex); return res; } void fscrypt_msg(struct super_block *sb, const char *level, const char *fmt, ...) { static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); struct va_format vaf; va_list args; if (!__ratelimit(&rs)) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (sb) printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf); else printk("%sfscrypt: %pV\n", level, &vaf); va_end(args); } /** * fscrypt_init() - Set up for fs encryption. */ static int __init fscrypt_init(void) { /* * Use an unbound workqueue to allow bios to be decrypted in parallel * even when they happen to complete on the same CPU. This sacrifices * locality, but it's worthwhile since decryption is CPU-intensive. * * Also use a high-priority workqueue to prioritize decryption work, * which blocks reads from completing, over regular application tasks. */ fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", WQ_UNBOUND | WQ_HIGHPRI, num_online_cpus()); if (!fscrypt_read_workqueue) goto fail; fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); if (!fscrypt_ctx_cachep) goto fail_free_queue; fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); if (!fscrypt_info_cachep) goto fail_free_ctx; #ifdef CONFIG_FSCRYPT_SDP sdp_crypto_init(); if (!fscrypt_sdp_init_sdp_info_cachep()) goto fail_free_info; #endif return 0; fail_free_info: kmem_cache_destroy(fscrypt_info_cachep); fail_free_ctx: kmem_cache_destroy(fscrypt_ctx_cachep); fail_free_queue: destroy_workqueue(fscrypt_read_workqueue); fail: return -ENOMEM; } module_init(fscrypt_init) /** * fscrypt_exit() - Shutdown the fs encryption system */ static void __exit fscrypt_exit(void) { fscrypt_destroy(); if (fscrypt_read_workqueue) destroy_workqueue(fscrypt_read_workqueue); kmem_cache_destroy(fscrypt_ctx_cachep); kmem_cache_destroy(fscrypt_info_cachep); #ifdef CONFIG_FSCRYPT_SDP sdp_crypto_exit(); fscrypt_sdp_release_sdp_info_cachep(); #endif fscrypt_essiv_cleanup(); } module_exit(fscrypt_exit); MODULE_LICENSE("GPL");