/* * RTC subsystem, base class * * Copyright (C) 2005 Tower Technologies * Author: Alessandro Zummo * * class skeleton from drivers/hwmon/hwmon.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "rtc-core.h" static DEFINE_IDA(rtc_ida); struct class *rtc_class; static void rtc_device_release(struct device *dev) { struct rtc_device *rtc = to_rtc_device(dev); ida_simple_remove(&rtc_ida, rtc->id); kfree(rtc); } #ifdef CONFIG_RTC_HCTOSYS_DEVICE /* Result of the last RTC to system clock attempt. */ int rtc_hctosys_ret = -ENODEV; #endif #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) /* * On suspend(), measure the delta between one RTC and the * system's wall clock; restore it on resume(). */ static struct timespec64 old_rtc, old_system, old_delta; static int rtc_suspend(struct device *dev) { struct rtc_device *rtc = to_rtc_device(dev); #ifdef CONFIG_RTC_HIGH_RES struct rtc_hrtime tm; #else struct rtc_time tm; #endif struct timespec64 delta, delta_delta; int err; if (timekeeping_rtc_skipsuspend()) return 0; if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) return 0; /* snapshot the current RTC and system time at suspend*/ #ifdef CONFIG_RTC_HIGH_RES err = rtc_read_hrtime(rtc, &tm); #else err = rtc_read_time(rtc, &tm); #endif if (err < 0) { pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); return 0; } getnstimeofday64(&old_system); #ifdef CONFIG_RTC_HIGH_RES old_rtc.tv_sec = rtc_hrtm_to_time64(&tm); old_rtc.tv_nsec = tm.tm_msec * NSEC_PER_MSEC; #else old_rtc.tv_sec = rtc_tm_to_time64(&tm); #endif /* * To avoid drift caused by repeated suspend/resumes, * which each can add ~1 second drift error, * try to compensate so the difference in system time * and rtc time stays close to constant. */ delta = timespec64_sub(old_system, old_rtc); delta_delta = timespec64_sub(delta, old_delta); if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { /* * if delta_delta is too large, assume time correction * has occured and set old_delta to the current delta. */ old_delta = delta; } else { /* Otherwise try to adjust old_system to compensate */ old_system = timespec64_sub(old_system, delta_delta); } return 0; } static int rtc_resume(struct device *dev) { struct rtc_device *rtc = to_rtc_device(dev); #ifdef CONFIG_RTC_HIGH_RES struct rtc_hrtime tm; #else struct rtc_time tm; #endif struct timespec64 new_system, new_rtc; struct timespec64 sleep_time; int err; if (timekeeping_rtc_skipresume()) return 0; rtc_hctosys_ret = -ENODEV; if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) return 0; /* snapshot the current rtc and system time at resume */ getnstimeofday64(&new_system); #ifdef CONFIG_RTC_HIGH_RES err = rtc_read_hrtime(rtc, &tm); #else err = rtc_read_time(rtc, &tm); #endif if (err < 0) { pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); return 0; } #ifdef CONFIG_RTC_HIGH_RES new_rtc.tv_sec = rtc_hrtm_to_time64(&tm); new_rtc.tv_nsec = tm.tm_msec * NSEC_PER_MSEC; #else new_rtc.tv_sec = rtc_tm_to_time64(&tm); new_rtc.tv_nsec = 0; #endif if (new_rtc.tv_sec < old_rtc.tv_sec) { pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); return 0; } /* calculate the RTC time delta (sleep time)*/ sleep_time = timespec64_sub(new_rtc, old_rtc); /* * Since these RTC suspend/resume handlers are not called * at the very end of suspend or the start of resume, * some run-time may pass on either sides of the sleep time * so subtract kernel run-time between rtc_suspend to rtc_resume * to keep things accurate. */ sleep_time = timespec64_sub(sleep_time, timespec64_sub(new_system, old_system)); if (sleep_time.tv_sec >= 0) timekeeping_inject_sleeptime64(&sleep_time); rtc_hctosys_ret = 0; return 0; } static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) #else #define RTC_CLASS_DEV_PM_OPS NULL #endif /* Ensure the caller will set the id before releasing the device */ static struct rtc_device *rtc_allocate_device(void) { struct rtc_device *rtc; rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); if (!rtc) return NULL; device_initialize(&rtc->dev); rtc->irq_freq = 1; rtc->max_user_freq = 64; rtc->dev.class = rtc_class; rtc->dev.groups = rtc_get_dev_attribute_groups(); rtc->dev.release = rtc_device_release; mutex_init(&rtc->ops_lock); spin_lock_init(&rtc->irq_lock); spin_lock_init(&rtc->irq_task_lock); init_waitqueue_head(&rtc->irq_queue); /* Init timerqueue */ timerqueue_init_head(&rtc->timerqueue); INIT_WORK(&rtc->irqwork, rtc_timer_do_work); /* Init aie timer */ rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc); /* Init uie timer */ rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc); /* Init pie timer */ hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); rtc->pie_timer.function = rtc_pie_update_irq; rtc->pie_enabled = 0; return rtc; } static int rtc_device_get_id(struct device *dev) { int of_id = -1, id = -1; if (dev->of_node) of_id = of_alias_get_id(dev->of_node, "rtc"); else if (dev->parent && dev->parent->of_node) of_id = of_alias_get_id(dev->parent->of_node, "rtc"); if (of_id >= 0) { id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); if (id < 0) dev_warn(dev, "/aliases ID %d not available\n", of_id); } if (id < 0) id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); return id; } /** * rtc_device_register - register w/ RTC class * @dev: the device to register * * rtc_device_unregister() must be called when the class device is no * longer needed. * * Returns the pointer to the new struct class device. */ struct rtc_device *rtc_device_register(const char *name, struct device *dev, const struct rtc_class_ops *ops, struct module *owner) { struct rtc_device *rtc; struct rtc_wkalrm alrm; int id, err; id = rtc_device_get_id(dev); if (id < 0) { err = id; goto exit; } rtc = rtc_allocate_device(); if (!rtc) { err = -ENOMEM; goto exit_ida; } rtc->id = id; rtc->ops = ops; rtc->owner = owner; rtc->dev.parent = dev; dev_set_name(&rtc->dev, "rtc%d", id); /* Check to see if there is an ALARM already set in hw */ err = __rtc_read_alarm(rtc, &alrm); if (!err && !rtc_valid_tm(&alrm.time)) rtc_initialize_alarm(rtc, &alrm); rtc_dev_prepare(rtc); err = cdev_device_add(&rtc->char_dev, &rtc->dev); if (err) { dev_warn(&rtc->dev, "%s: failed to add char device %d:%d\n", name, MAJOR(rtc->dev.devt), rtc->id); /* This will free both memory and the ID */ put_device(&rtc->dev); goto exit; } else { dev_dbg(&rtc->dev, "%s: dev (%d:%d)\n", name, MAJOR(rtc->dev.devt), rtc->id); } rtc_proc_add_device(rtc); dev_info(dev, "rtc core: registered %s as %s\n", name, dev_name(&rtc->dev)); return rtc; exit_ida: ida_simple_remove(&rtc_ida, id); exit: dev_err(dev, "rtc core: unable to register %s, err = %d\n", name, err); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(rtc_device_register); /** * rtc_device_unregister - removes the previously registered RTC class device * * @rtc: the RTC class device to destroy */ void rtc_device_unregister(struct rtc_device *rtc) { rtc_nvmem_unregister(rtc); mutex_lock(&rtc->ops_lock); /* * Remove innards of this RTC, then disable it, before * letting any rtc_class_open() users access it again */ rtc_proc_del_device(rtc); cdev_device_del(&rtc->char_dev, &rtc->dev); rtc->ops = NULL; mutex_unlock(&rtc->ops_lock); put_device(&rtc->dev); } EXPORT_SYMBOL_GPL(rtc_device_unregister); static void devm_rtc_device_release(struct device *dev, void *res) { struct rtc_device *rtc = *(struct rtc_device **)res; rtc_device_unregister(rtc); } static int devm_rtc_device_match(struct device *dev, void *res, void *data) { struct rtc **r = res; return *r == data; } /** * devm_rtc_device_register - resource managed rtc_device_register() * @dev: the device to register * @name: the name of the device * @ops: the rtc operations structure * @owner: the module owner * * @return a struct rtc on success, or an ERR_PTR on error * * Managed rtc_device_register(). The rtc_device returned from this function * are automatically freed on driver detach. See rtc_device_register() * for more information. */ struct rtc_device *devm_rtc_device_register(struct device *dev, const char *name, const struct rtc_class_ops *ops, struct module *owner) { struct rtc_device **ptr, *rtc; ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); rtc = rtc_device_register(name, dev, ops, owner); if (!IS_ERR(rtc)) { *ptr = rtc; devres_add(dev, ptr); } else { devres_free(ptr); } return rtc; } EXPORT_SYMBOL_GPL(devm_rtc_device_register); /** * devm_rtc_device_unregister - resource managed devm_rtc_device_unregister() * @dev: the device to unregister * @rtc: the RTC class device to unregister * * Deallocated a rtc allocated with devm_rtc_device_register(). Normally this * function will not need to be called and the resource management code will * ensure that the resource is freed. */ void devm_rtc_device_unregister(struct device *dev, struct rtc_device *rtc) { int rc; rc = devres_release(dev, devm_rtc_device_release, devm_rtc_device_match, rtc); WARN_ON(rc); } EXPORT_SYMBOL_GPL(devm_rtc_device_unregister); static void devm_rtc_release_device(struct device *dev, void *res) { struct rtc_device *rtc = *(struct rtc_device **)res; if (rtc->registered) rtc_device_unregister(rtc); else put_device(&rtc->dev); } struct rtc_device *devm_rtc_allocate_device(struct device *dev) { struct rtc_device **ptr, *rtc; int id, err; id = rtc_device_get_id(dev); if (id < 0) return ERR_PTR(id); ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); if (!ptr) { err = -ENOMEM; goto exit_ida; } rtc = rtc_allocate_device(); if (!rtc) { err = -ENOMEM; goto exit_devres; } *ptr = rtc; devres_add(dev, ptr); rtc->id = id; rtc->dev.parent = dev; dev_set_name(&rtc->dev, "rtc%d", id); return rtc; exit_devres: devres_free(ptr); exit_ida: ida_simple_remove(&rtc_ida, id); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); int __rtc_register_device(struct module *owner, struct rtc_device *rtc) { struct rtc_wkalrm alrm; int err; if (!rtc->ops) return -EINVAL; rtc->owner = owner; /* Check to see if there is an ALARM already set in hw */ err = __rtc_read_alarm(rtc, &alrm); if (!err && !rtc_valid_tm(&alrm.time)) rtc_initialize_alarm(rtc, &alrm); rtc_dev_prepare(rtc); err = cdev_device_add(&rtc->char_dev, &rtc->dev); if (err) dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", MAJOR(rtc->dev.devt), rtc->id); else dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", MAJOR(rtc->dev.devt), rtc->id); rtc_proc_add_device(rtc); rtc_nvmem_register(rtc); rtc->registered = true; dev_info(rtc->dev.parent, "registered as %s\n", dev_name(&rtc->dev)); return 0; } EXPORT_SYMBOL_GPL(__rtc_register_device); static int __init rtc_init(void) { rtc_class = class_create(THIS_MODULE, "rtc"); if (IS_ERR(rtc_class)) { pr_err("couldn't create class\n"); return PTR_ERR(rtc_class); } rtc_class->pm = RTC_CLASS_DEV_PM_OPS; rtc_dev_init(); return 0; } subsys_initcall(rtc_init);