/* * s2mu004_fuelgauge.c * Samsung S2MU004 Fuel Gauge Driver * * Copyright (C) 2015 Samsung Electronics * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define DEBUG #define SINGLE_BYTE 1 #define TABLE_SIZE 22 #define FAKE_TEMP 1 #include #include static enum power_supply_property s2mu004_fuelgauge_props[] = { }; static int s2mu004_get_vbat(struct s2mu004_fuelgauge_data *fuelgauge); static int s2mu004_get_ocv(struct s2mu004_fuelgauge_data *fuelgauge); static int s2mu004_get_current(struct s2mu004_fuelgauge_data *fuelgauge); static int s2mu004_get_avgcurrent(struct s2mu004_fuelgauge_data *fuelgauge); static int s2mu004_get_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge); static int s2mu004_get_monout_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge); static int s2mu004_write_reg_byte(struct i2c_client *client, int reg, u8 data) { int ret, i = 0; ret = i2c_smbus_write_byte_data(client, reg, data); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, reg, data); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } return ret; } static int s2mu004_write_reg(struct i2c_client *client, int reg, u8 *buf) { #if SINGLE_BYTE int ret = 0; s2mu004_write_reg_byte(client, reg, buf[0]); s2mu004_write_reg_byte(client, reg+1, buf[1]); #else int ret, i = 0; ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } #endif return ret; } static int s2mu004_read_reg_byte(struct i2c_client *client, int reg, void *data) { int ret = 0; ret = i2c_smbus_read_byte_data(client, reg); if (ret < 0) return ret; *(u8 *)data = (u8)ret; return ret; } static int s2mu004_read_reg(struct i2c_client *client, int reg, u8 *buf) { #if SINGLE_BYTE int ret = 0; u8 data1 = 0, data2 = 0; s2mu004_read_reg_byte(client, reg, &data1); s2mu004_read_reg_byte(client, reg+1, &data2); buf[0] = data1; buf[1] = data2; #else int ret = 0, i = 0; ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } #endif return ret; } static void s2mu004_fg_test_read(struct i2c_client *client) { u8 data; char str[1016] = {0,}; int i; /* address 0x00 ~ 0x1f */ for (i = 0x0; i <= 0x1F; i++) { s2mu004_read_reg_byte(client, i, &data); sprintf(str+strlen(str), "0x%02x:0x%02x, ", i, data); } /* address 0x25 */ s2mu004_read_reg_byte(client, 0x25, &data); sprintf(str+strlen(str), "0x25:0x%02x, ", data); /* address 0x27 */ s2mu004_read_reg_byte(client, 0x27, &data); sprintf(str+strlen(str), "0x27:0x%02x, ", data); /* print buffer */ pr_info("[FG]%s: %s\n", __func__, str); } static void WA_0_issue_at_init(struct s2mu004_fuelgauge_data *fuelgauge) { int a = 0; u8 v_4e = 0, v_4f = 0, temp1, temp2; int FG_volt, UI_volt, offset; u8 v_40 = 0; u8 temp_REG26 = 0, temp_REG27 = 0, temp = 0; /* Step 1: [Surge test] get UI voltage (0.1mV)*/ UI_volt = s2mu004_get_ocv(fuelgauge); /* current fix for soc */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27); temp = temp_REG27; temp |= 0x0F; s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp); s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26); s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, 0xFF); /* avgvbat factor value set to 0xFF */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x40, &v_40); s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0xFF); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F); msleep(50); /* Step 2: [Surge test] get FG voltage (0.1mV) */ FG_volt = s2mu004_get_vbat(fuelgauge) * 10; /* Step 3: [Surge test] get offset */ offset = UI_volt - FG_volt; pr_err("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n", __func__, UI_volt, FG_volt, offset); /* Step 4: [Surge test] */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &v_4f); s2mu004_read_reg_byte(fuelgauge->i2c, 0x4e, &v_4e); pr_err("%s: v_4f(0x%x), v_4e(0x%x)\n", __func__, v_4f, v_4e); a = (v_4f & 0x0F) << 8; a += v_4e; pr_err("%s: a before add offset (0x%x)\n", __func__, a); /* 2`s complement */ if (a & (0x01 << 11)) a = (-10000 * ((a^0xFFF) + 1)) >> 13; else a = (10000 * a) >> 13; a = a + offset; pr_err("%s: a after add offset (0x%x)\n", __func__, a); /* limit upper/lower offset */ if (a > 2490) a = 2490; if (a < (-2490)) a = -2490; a = (a << 13) / 10000; if (a < 0) a = -1*((a^0xFFF)+1); pr_err("%s: a after add offset (0x%x)\n", __func__, a); a &= 0xfff; pr_err("%s: (a)&0xFFF (0x%x)\n", __func__, a); /* modify 0x4f[3:0] */ temp1 = v_4f & 0xF0; temp2 = (u8)((a&0xF00) >> 8); temp1 |= temp2; s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1); /* modify 0x4e[7:0] */ temp2 = (u8)(a & 0xFF); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, temp2); /* restart and dumpdone */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F); msleep(300); /* restore current register */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp_REG27); s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, temp_REG26); /* recovery 0x4e and 0x4f */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &temp1); temp1 &= 0xF0; temp1 |= (v_4f & 0x0F); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, v_4e); /* restore monout avgvbat factor value */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, v_40); } static int s2mu004_get_soc_from_ocv(struct s2mu004_fuelgauge_data *fuelgauge, int target_ocv) { /* 22 values of mapping table for EVT1*/ int *soc_arr; int *ocv_arr; int soc = 0; int ocv = target_ocv * 10; int high_index = TABLE_SIZE - 1; int low_index = 0; int mid_index = 0; soc_arr = fuelgauge->info.soc_arr_val; ocv_arr = fuelgauge->info.ocv_arr_val; pr_err("%s: soc_arr(%d) ocv_arr(%d)\n", __func__, *soc_arr, *ocv_arr); if (ocv <= ocv_arr[TABLE_SIZE - 1]) { soc = soc_arr[TABLE_SIZE - 1]; goto soc_ocv_mapping; } else if (ocv >= ocv_arr[0]) { soc = soc_arr[0]; goto soc_ocv_mapping; } while (low_index <= high_index) { mid_index = (low_index + high_index) >> 1; if (ocv_arr[mid_index] > ocv) low_index = mid_index + 1; else if (ocv_arr[mid_index] < ocv) high_index = mid_index - 1; else { soc = soc_arr[mid_index]; goto soc_ocv_mapping; } } soc = soc_arr[high_index]; soc += ((soc_arr[low_index] - soc_arr[high_index]) * (ocv - ocv_arr[high_index])) / (ocv_arr[low_index] - ocv_arr[high_index]); soc_ocv_mapping: dev_info(&fuelgauge->i2c->dev, "%s: ocv (%d), soc (%d)\n", __func__, ocv, soc); return soc; } static void WA_0_issue_at_init1(struct s2mu004_fuelgauge_data *fuelgauge, int target_ocv) { int a = 0; u8 v_4e = 0, v_4f = 0, temp1, temp2; int FG_volt, UI_volt, offset; u8 v_40 = 0; u8 temp_REG26 = 0, temp_REG27 = 0, temp = 0; /* Step 1: [Surge test] get UI voltage (0.1mV)*/ UI_volt = target_ocv * 10; /* avgvbat factor value set to 0xFF */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x40, &v_40); s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0xFF); /* current fix for soc */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27); temp = temp_REG27; temp |= 0x0F; s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp); s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26); s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, 0xFF); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F); msleep(50); /* Step 2: [Surge test] get FG voltage (0.1mV) */ FG_volt = s2mu004_get_vbat(fuelgauge) * 10; /* Step 3: [Surge test] get offset */ offset = UI_volt - FG_volt; pr_err("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n", __func__, UI_volt, FG_volt, offset); /* Step 4: [Surge test] */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &v_4f); s2mu004_read_reg_byte(fuelgauge->i2c, 0x4e, &v_4e); pr_err("%s: v_4f(0x%x), v_4e(0x%x)\n", __func__, v_4f, v_4e); a = (v_4f & 0x0F) << 8; a += v_4e; pr_err("%s: a before add offset (0x%x)\n", __func__, a); /* 2`s complement */ if (a & (0x01 << 11)) a = (-10000 * ((a^0xFFF) + 1)) >> 13; else a = (10000 * a) >> 13; a = a + offset; pr_err("%s: a after add offset (0x%x)\n", __func__, a); /* limit upper/lower offset */ if (a > 2490) a = 2490; if (a < (-2490)) a = -2490; a = (a << 13) / 10000; if (a < 0) a = -1*((a^0xFFF)+1); pr_err("%s: a after add offset (0x%x)\n", __func__, a); a &= 0xfff; pr_err("%s: (a)&0xFFF (0x%x)\n", __func__, a); /* modify 0x4f[3:0] */ temp1 = v_4f & 0xF0; temp2 = (u8)((a&0xF00) >> 8); temp1 |= temp2; s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1); /* modify 0x4e[7:0] */ temp2 = (u8)(a & 0xFF); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, temp2); /* restart and dumpdone */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F); msleep(300); /* restore current register */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp_REG27); s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, temp_REG26); pr_info("%s: S2MU004 VBAT : %d\n", __func__, s2mu004_get_vbat(fuelgauge) * 10); /* recovery 0x4e and 0x4f */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &temp1); temp1 &= 0xF0; temp1 |= (v_4f & 0x0F); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, v_4e); /* restore monout avgvbat factor value */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, v_40); } static void s2mu004_reset_fg(struct s2mu004_fuelgauge_data *fuelgauge) { int i; u8 temp = 0; /* step 0: [Surge test] initialize register of FG */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x0E, fuelgauge->info.batcap[0]); s2mu004_write_reg_byte(fuelgauge->i2c, 0x0F, fuelgauge->info.batcap[1]); s2mu004_write_reg_byte(fuelgauge->i2c, 0x10, fuelgauge->info.batcap[2]); s2mu004_write_reg_byte(fuelgauge->i2c, 0x11, fuelgauge->info.batcap[3]); for (i = 0x92; i <= 0xe9; i++) s2mu004_write_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table3[i - 0x92]); for (i = 0xea; i <= 0xff; i++) s2mu004_write_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table4[i - 0xea]); s2mu004_write_reg_byte(fuelgauge->i2c, 0x21, 0x13); s2mu004_write_reg_byte(fuelgauge->i2c, 0x14, 0x40); s2mu004_read_reg_byte(fuelgauge->i2c, 0x45, &temp); temp &= 0xF0; temp |= fuelgauge->info.accum[0]; s2mu004_write_reg_byte(fuelgauge->i2c, 0x45, temp); s2mu004_write_reg_byte(fuelgauge->i2c, 0x44, fuelgauge->info.accum[1]); s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp); temp |= 0x10; s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp); /* Interrupt source reference at mixed mode */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x43, &temp); temp &= 0xF3; temp |= 0x08; s2mu004_write_reg_byte(fuelgauge->i2c, 0x43, temp); /* Charger top off current sensing method change for int. 0x49[7]=0 */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x49, &temp); temp &= 0x7F; s2mu004_write_reg_byte(fuelgauge->i2c, 0x49, temp); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4B, 0x0B); s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10); s2mu004_read_reg_byte(fuelgauge->i2c, 0x03, &temp); temp |= 0x10; s2mu004_write_reg_byte(fuelgauge->i2c, 0x03, temp); s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0x08); WA_0_issue_at_init(fuelgauge); pr_err("%s: Reset FG completed\n", __func__); } static void s2mu004_restart_gauging(struct s2mu004_fuelgauge_data *fuelgauge) { u8 temp = 0, temp_REG26 = 0, temp_REG27 = 0; u8 data[2], r_data[2]; u8 v_40; pr_err("%s: Re-calculate SOC and voltage\n", __func__); s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_IRQ, data); pr_info("%s: irq_reg data (%02x%02x)\n", __func__, data[1], data[0]); /* store data for interrupt mask */ r_data[0] = data[0]; r_data[1] = data[1]; /* disable irq for unwanted interrupt */ data[1] |= 0x0f; s2mu004_write_reg(fuelgauge->i2c, S2MU004_REG_IRQ, data); s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27); temp = temp_REG27; temp |= 0x0F; s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp); s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26); s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, 0xFF); /* avgvbat factor value set to 0xFF */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x40, &v_40); s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0xFF); /* restart gauge */ /* s2mu004_write_reg_byte(fuelgauge->i2c, 0x1f, 0x01); */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x21, 0x13); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F); msleep(300); s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp_REG27); s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, temp_REG26); s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp); pr_info("%s: 0x27 : %02x\n", __func__, temp); s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp); pr_info("%s: 0x26 : %02x\n", __func__, temp); /* restore monout avgvbat factor value */ s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, v_40); /* enable irq after reset */ s2mu004_write_reg(fuelgauge->i2c, S2MU004_REG_IRQ, r_data); pr_info("%s: re-store irq_reg data (%02x%02x)\n", __func__, r_data[1], r_data[0]); } static void s2mu004_init_regs(struct s2mu004_fuelgauge_data *fuelgauge) { u8 temp = 0; pr_err("%s: s2mu004 fuelgauge initialize\n", __func__); /* Reduce top-off current difference between * Power on charging and Power off charging */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp); temp |= 0x10; s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp); /* Interrupt source reference at mixed mode */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x43, &temp); temp &= 0xF3; temp |= 0x08; s2mu004_write_reg_byte(fuelgauge->i2c, 0x43, temp); /* Charger top off current sensing method change for int. 0x49[7]=0 */ s2mu004_read_reg_byte(fuelgauge->i2c, 0x49, &temp); temp &= 0x7F; s2mu004_write_reg_byte(fuelgauge->i2c, 0x49, temp); s2mu004_read_reg_byte(fuelgauge->i2c, 0x4F, &temp); fuelgauge->reg_OTP_4F = temp; s2mu004_read_reg_byte(fuelgauge->i2c, 0x4E, &temp); fuelgauge->reg_OTP_4E = temp; } static void s2mu004_alert_init(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2]; /* VBAT Threshold setting */ data[0] = ((fuelgauge->pdata->fuel_alert_vol - 2800) / 50) & 0x0f; /* SOC Threshold setting */ data[0] = data[0] | (fuelgauge->pdata->fuel_alert_soc << 4); data[1] = 0x00; s2mu004_write_reg(fuelgauge->i2c, S2MU004_REG_IRQ_LVL, data); pr_info("%s: irq_lvl(vbat:0x%x, soc:0x%x)\n", __func__, data[0] & 0x0F, data[0] & 0xF0); } static int s2mu004_set_temperature(struct s2mu004_fuelgauge_data *fuelgauge, int temperature) { /* * s5mu004 include temperature sensor so, * do not need to set temperature value. */ return temperature; } static int s2mu004_get_temperature(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; s32 temperature = 0; /* * use monitor regiser. * monitor register default setting is temperature */ mutex_lock(&fuelgauge->fg_lock); s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x10); if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); /* data[] store 2's compliment format number */ if (compliment & (0x1 << 15)) { /* Negative */ temperature = -1 * ((~compliment & 0xFFFF) + 1); } else { temperature = compliment & 0x7FFF; } temperature = ((temperature * 100) >> 8)/10; dev_dbg(&fuelgauge->i2c->dev, "%s: temperature (%d)\n", __func__, temperature); /* For test, return room temperature */ /* To use IC's value, check there is NTC & register setting is right*/ #if FAKE_TEMP temperature = 250; #endif return temperature; err: mutex_unlock(&fuelgauge->fg_lock); return -ERANGE; } static int s2mu004_get_rawsoc(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2], check_data[2]; u16 compliment; int rsoc, i; u8 por_state = 0; u8 reg = S2MU004_REG_RSOC; u8 reg_OTP_4E = 0, reg_OTP_4F = 0; int fg_reset = 0; bool charging_enabled = false; union power_supply_propval value; int force_power_off_voltage = 0; int rbat = 0; int avg_current = 0, avg_vbat = 0, vbat = 0, curr = 0, avg_monout_vbat = 0; int ocv_pwroff = 0, ocv_pwr_voltagemode = 0; int target_soc = 0; /* SOC VM Monitoring For debugging SOC error */ u8 r_monoutsel; u8 mount_data[2]; u32 mount_compliment; int rvmsoc; struct power_supply *psy; int ret; s2mu004_read_reg_byte(fuelgauge->i2c, 0x1F, &por_state); s2mu004_read_reg_byte(fuelgauge->i2c, 0x4F, ®_OTP_4F); s2mu004_read_reg_byte(fuelgauge->i2c, 0x4E, ®_OTP_4E); dev_err(&fuelgauge->i2c->dev, "%s: OTP 4E(%02x) 4F(%02x) current 4E(%02x) 4F(%02x)\n", __func__, fuelgauge->reg_OTP_4E, fuelgauge->reg_OTP_4F, reg_OTP_4E, reg_OTP_4F); if ((por_state & 0x10) || (fuelgauge->probe_done == true && (fuelgauge->reg_OTP_4E != reg_OTP_4E || fuelgauge->reg_OTP_4F != reg_OTP_4F))) { /* check charging enable */ psy = power_supply_get_by_name("s2mu004-charger"); if (!psy) return -EINVAL; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); charging_enabled = value.intval; value.intval = S2MU00X_BAT_CHG_MODE_CHARGING_OFF; psy = power_supply_get_by_name("s2mu004-charger"); if (!psy) return -EINVAL; ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); if (fuelgauge->reg_OTP_4E != reg_OTP_4E || fuelgauge->reg_OTP_4F != reg_OTP_4F) { psy = power_supply_get_by_name("s2mu004-charger"); if (!psy) return -EINVAL; ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_FUELGAUGE_RESET, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x40); msleep(50); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x01); s2mu004_read_reg_byte(fuelgauge->i2c, 0x4F, ®_OTP_4F); s2mu004_read_reg_byte(fuelgauge->i2c, 0x4E, ®_OTP_4E); dev_err(&fuelgauge->i2c->dev, "1st reset after %s: OTP 4E(%02x) 4F(%02x) current 4E(%02x) 4F(%02x)\n", __func__, fuelgauge->reg_OTP_4E, fuelgauge->reg_OTP_4F, reg_OTP_4E, reg_OTP_4F); if (fuelgauge->reg_OTP_4E != reg_OTP_4E || fuelgauge->reg_OTP_4F != reg_OTP_4F) { psy = power_supply_get_by_name("s2mu004-charger"); if (!psy) return -EINVAL; ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_FUELGAUGE_RESET, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x40); msleep(50); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x01); dev_err(&fuelgauge->i2c->dev, "%s : 2nd reset\n", __func__); } } dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__); s2mu004_reset_fg(fuelgauge); por_state &= ~0x10; s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, por_state); fg_reset = 1; } mutex_lock(&fuelgauge->fg_lock); reg = S2MU004_REG_RSOC; for (i = 0; i < 50; i++) { if (s2mu004_read_reg(fuelgauge->i2c, reg, data) < 0) goto err; if (s2mu004_read_reg(fuelgauge->i2c, reg, check_data) < 0) goto err; dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]); if ((data[0] == check_data[0]) && (data[1] == check_data[1])) break; } /* SOC VM Monitoring For debugging SOC error */ s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, &r_monoutsel); s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x02); mdelay(10); s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, mount_data); s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, r_monoutsel); mutex_unlock(&fuelgauge->fg_lock); /* SOC VM Monitoring For debugging SOC error */ mount_compliment = ((mount_data[0] + (mount_data[1] << 8)) * 10000) >> 12; rvmsoc = mount_compliment; dev_dbg(&fuelgauge->i2c->dev, "%s: vm soc raw data0 (%d) data1 (%d)\n", __func__, mount_data[0], mount_data[1]); dev_info(&fuelgauge->i2c->dev, "%s: vm soc (%d)\n", __func__, rvmsoc); if (fg_reset && charging_enabled) { value.intval = S2MU00X_BAT_CHG_MODE_CHARGING; psy = power_supply_get_by_name("s2mu004-charger"); if (!psy) return -EINVAL; ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); } compliment = (data[1] << 8) | (data[0]); /* data[] store 2's compliment format number */ if (compliment & (0x1 << 15)) { /* Negative */ rsoc = ((~compliment) & 0xFFFF) + 1; rsoc = (rsoc * (-10000)) / (0x1 << 14); } else { rsoc = compliment & 0x7FFF; rsoc = ((rsoc * 10000) / (0x1 << 14)); } if (fg_reset) fuelgauge->diff_soc = fuelgauge->info.soc - rsoc; dev_info(&fuelgauge->i2c->dev, "%s: current_soc (%d), previous soc (%d), diff (%d), FG_mode(%d)\n", __func__, rsoc, fuelgauge->info.soc, fuelgauge->diff_soc, fuelgauge->mode); fuelgauge->info.soc = rsoc + fuelgauge->diff_soc; avg_current = s2mu004_get_avgcurrent(fuelgauge); avg_monout_vbat = s2mu004_get_monout_avgvbat(fuelgauge); ocv_pwr_voltagemode = avg_monout_vbat - avg_current*30 / 100; if (avg_current < (-500)) rbat = 10; else rbat = 30; ocv_pwr_voltagemode = avg_monout_vbat - avg_current*rbat / 100; /* switch to voltage mocd for accuracy */ if ((fuelgauge->info.soc <= 300) || ((ocv_pwr_voltagemode <= 3600) && (avg_current < 10))) { if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */ fuelgauge->mode = LOW_SOC_VOLTAGE_MODE; s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0xFF); dev_info(&fuelgauge->i2c->dev, "%s: FG is in low soc voltage mode\n", __func__); } } else if ((fuelgauge->info.soc > 325) && ((ocv_pwr_voltagemode > 3650) || (avg_current >= 10))) { if (fuelgauge->mode == LOW_SOC_VOLTAGE_MODE) { fuelgauge->mode = CURRENT_MODE; s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10); dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__); } } psy = power_supply_get_by_name("battery"); if (!psy) return -EINVAL; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); if (value.intval >= 98) { if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */ fuelgauge->mode = HIGH_SOC_VOLTAGE_MODE; s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0xFF); dev_info(&fuelgauge->i2c->dev, "%s: FG is in high soc voltage mode\n", __func__); } } else if (value.intval < 97) { if (fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) { fuelgauge->mode = CURRENT_MODE; s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10); dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__); } } avg_vbat = s2mu004_get_avgvbat(fuelgauge); vbat = s2mu004_get_vbat(fuelgauge); curr = s2mu004_get_current(fuelgauge); psy = power_supply_get_by_name("battery"); if (!psy) return -EINVAL; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); if (value.intval <= (-150)) force_power_off_voltage = 3550; else force_power_off_voltage = 3300; dev_info(&fuelgauge->i2c->dev, "%s: Fuelgauge Mode: %d, Force power-off voltage: %d\n", __func__, fuelgauge->mode, force_power_off_voltage); if (((avg_current < (-17)) && (curr < (-17))) && ((avg_monout_vbat - avg_current*rbat / 100) <= 3500) && (fuelgauge->info.soc > 100)) { ocv_pwroff = 3300; target_soc = s2mu004_get_soc_from_ocv(fuelgauge, ocv_pwroff); pr_info("%s : F/G reset Start - current flunctuation\n", __func__); WA_0_issue_at_init1(fuelgauge, ocv_pwroff); } else if (avg_current < (-60) && avg_vbat <= force_power_off_voltage) { if (fuelgauge->mode == CURRENT_MODE) { if (abs(avg_vbat - vbat) <= 20 && abs(avg_current - curr) <= 30) { ocv_pwroff = avg_vbat - avg_current * 15 / 100; target_soc = s2mu004_get_soc_from_ocv(fuelgauge, ocv_pwroff); if (abs(target_soc - fuelgauge->info.soc) > 300) { pr_info("%s : F/G reset Start - current mode: %d\n", __func__, target_soc); WA_0_issue_at_init1(fuelgauge, ocv_pwroff); } } } else { if (abs(avg_vbat - vbat) <= 20) { ocv_pwroff = avg_vbat; target_soc = s2mu004_get_soc_from_ocv(fuelgauge, ocv_pwroff); if (abs(target_soc - fuelgauge->info.soc) > 300) { pr_info("%s : F/G reset Start\n", __func__); WA_0_issue_at_init1(fuelgauge, ocv_pwroff); } } } } s2mu004_fg_test_read(fuelgauge->i2c); return min(fuelgauge->info.soc, 10000); err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu004_get_current(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int curr = 0; if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_RCUR_CC, data) < 0) return -EINVAL; compliment = (data[1] << 8) | (data[0]); dev_dbg(&fuelgauge->i2c->dev, "%s: rCUR_CC(0x%4x)\n", __func__, compliment); if (compliment & (0x1 << 15)) { /* Charging */ curr = ((~compliment) & 0xFFFF) + 1; curr = (curr * 1000) >> 12; } else { /* dischaging */ curr = compliment & 0x7FFF; curr = (curr * (-1000)) >> 12; } dev_info(&fuelgauge->i2c->dev, "%s: current (%d)mA\n", __func__, curr); return curr; } #define TABLE_SIZE 22 static int s2mu004_get_ocv(struct s2mu004_fuelgauge_data *fuelgauge) { /* 22 values of mapping table for EVT1*/ int *soc_arr; int *ocv_arr; int soc = fuelgauge->info.soc; int ocv = 0; int high_index = TABLE_SIZE - 1; int low_index = 0; int mid_index = 0; soc_arr = fuelgauge->info.soc_arr_val; ocv_arr = fuelgauge->info.ocv_arr_val; dev_err(&fuelgauge->i2c->dev, "%s: soc (%d) soc_arr[TABLE_SIZE-1] (%d) ocv_arr[TABLE_SIZE-1) (%d)\n", __func__, soc, soc_arr[TABLE_SIZE-1], ocv_arr[TABLE_SIZE-1]); if (soc <= soc_arr[TABLE_SIZE - 1]) { ocv = ocv_arr[TABLE_SIZE - 1]; goto ocv_soc_mapping; } else if (soc >= soc_arr[0]) { ocv = ocv_arr[0]; goto ocv_soc_mapping; } while (low_index <= high_index) { mid_index = (low_index + high_index) >> 1; if (soc_arr[mid_index] > soc) low_index = mid_index + 1; else if (soc_arr[mid_index] < soc) high_index = mid_index - 1; else { ocv = ocv_arr[mid_index]; goto ocv_soc_mapping; } } ocv = ocv_arr[high_index]; ocv += ((ocv_arr[low_index] - ocv_arr[high_index]) * (soc - soc_arr[high_index])) / (soc_arr[low_index] - soc_arr[high_index]); ocv_soc_mapping: dev_info(&fuelgauge->i2c->dev, "%s: soc (%d), ocv (%d)\n", __func__, soc, ocv); return ocv; } static int s2mu004_get_avgcurrent(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int curr = 0; mutex_lock(&fuelgauge->fg_lock); s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x26); if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, data) < 0) goto err; compliment = (data[1] << 8) | (data[0]); if (compliment & (0x1 << 15)) { /* Charging */ curr = ((~compliment) & 0xFFFF) + 1; curr = (curr * 1000) >> 12; } else { /* dischaging */ curr = compliment & 0x7FFF; curr = (curr * (-1000)) >> 12; } s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x10); mutex_unlock(&fuelgauge->fg_lock); dev_info(&fuelgauge->i2c->dev, "%s: MONOUT(0x%4x), avg current (%d)mA\n", __func__, compliment, curr); return curr; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu004_maintain_avgcurrent( struct s2mu004_fuelgauge_data *fuelgauge) { static int cnt; int vcell = 0; int curr = 0; curr = s2mu004_get_avgcurrent(fuelgauge); vcell = s2mu004_get_vbat(fuelgauge); if ((cnt < 10) && (curr < 0) && (fuelgauge->is_charging) && (vcell < 3500)) { curr = 1; cnt++; dev_info(&fuelgauge->i2c->dev, "%s: vcell (%d)mV, modified avg current (%d)mA\n", __func__, vcell, curr); } return curr; } static int s2mu004_get_vbat(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2]; u8 vbat_src; u32 vbat = 0; if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_RVBAT, data) < 0) return -EINVAL; dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]); vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13; s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_CTRL0, &vbat_src); dev_info(&fuelgauge->i2c->dev, "%s: vbat (%d), src (0x%02X)\n", __func__, vbat, (vbat_src & 0x30) >> 4); return vbat; } static int s2mu004_get_monout_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment, avg_vbat; mutex_lock(&fuelgauge->fg_lock); s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x27); mdelay(50); if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, data) < 0) goto err; compliment = (data[1] << 8) | (data[0]); avg_vbat = (compliment * 1000) >> 12; s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x10); mutex_unlock(&fuelgauge->fg_lock); dev_info(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, avg_vbat); return avg_vbat; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu004_get_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data[2]; u32 new_vbat, old_vbat = 0; int cnt; for (cnt = 0; cnt < 5; cnt++) { if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_RVBAT, data) < 0) return -EINVAL; new_vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13; if (cnt == 0) old_vbat = new_vbat; else old_vbat = new_vbat / 2 + old_vbat / 2; } dev_dbg(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, old_vbat); return old_vbat; } bool s2mu004_fuelgauge_fuelalert_init(struct i2c_client *client, int soc) { struct s2mu004_fuelgauge_data *fuelgauge = i2c_get_clientdata(client); u8 data[2]; fuelgauge->is_fuel_alerted = false; /* 1. Set s2mu004 alert configuration. */ s2mu004_alert_init(fuelgauge); if (s2mu004_read_reg(client, S2MU004_REG_IRQ, data) < 0) return -1; /*Enable VBAT, SOC */ data[1] &= 0xfc; /*Disable IDLE_ST, INIT)ST */ data[1] |= 0x0c; s2mu004_write_reg(client, S2MU004_REG_IRQ, data); dev_dbg(&client->dev, "%s: irq_reg(%02x%02x) irq(%d)\n", __func__, data[1], data[0], fuelgauge->pdata->fg_irq); return true; } static void s2mu004_fg_reset_capacity_by_jig_connection(struct s2mu004_fuelgauge_data *fuelgauge) { u8 data = 0; s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_FG_ID, &data); data &= 0xF0; data |= 0x0F; /* set model data version 0xF for next boot up initializing fuelgague */ s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_FG_ID, data); pr_info("%s: set Model data version (0x%x)\n", __func__, data & 0x0F); } static int s2mu004_fg_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct s2mu004_fuelgauge_data *fuelgauge = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_CHARGE_FULL: return -ENODATA; case POWER_SUPPLY_PROP_ENERGY_NOW: val->intval = fuelgauge->pdata->capacity_full; break; /* Cell voltage (VCELL, mV) */ case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = s2mu004_get_vbat(fuelgauge); break; /* Additional Voltage Information (mV) */ case POWER_SUPPLY_PROP_VOLTAGE_AVG: switch (val->intval) { case S2MU00X_BATTERY_VOLTAGE_AVERAGE: val->intval = s2mu004_get_monout_avgvbat(fuelgauge); break; case S2MU00X_BATTERY_VOLTAGE_OCV: val->intval = s2mu004_get_ocv(fuelgauge); break; } break; /* Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_NOW: if (val->intval == S2MU00X_BATTERY_CURRENT_UA) val->intval = s2mu004_get_current(fuelgauge) * 1000; else val->intval = s2mu004_get_current(fuelgauge); break; /* Average Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_AVG: if (val->intval == S2MU00X_BATTERY_CURRENT_UA) val->intval = s2mu004_maintain_avgcurrent(fuelgauge) * 1000; else val->intval = s2mu004_maintain_avgcurrent(fuelgauge); break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = s2mu004_get_rawsoc(fuelgauge) / 10; /* capacity should be between 0% and 100% * (0.1% degree) */ if (val->intval > 1000) val->intval = 1000; if (val->intval < 0) val->intval = 0; /* get only integer part */ val->intval /= 10; /* check whether doing the wake_unlock */ if ((val->intval > fuelgauge->pdata->fuel_alert_soc) && fuelgauge->is_fuel_alerted) { wake_unlock(&fuelgauge->fuel_alert_wake_lock); s2mu004_fuelgauge_fuelalert_init(fuelgauge->i2c, fuelgauge->pdata->fuel_alert_soc); } break; /* IFPMIC Temperature */ case POWER_SUPPLY_PROP_TEMP: case POWER_SUPPLY_PROP_TEMP_AMBIENT: val->intval = s2mu004_get_temperature(fuelgauge); break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = fuelgauge->capacity_max; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = fuelgauge->mode; break; default: return -EINVAL; } return 0; } static int s2mu004_fg_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct s2mu004_fuelgauge_data *fuelgauge = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: break; case POWER_SUPPLY_PROP_CHARGE_FULL: /*full*/ break; case POWER_SUPPLY_PROP_ONLINE: fuelgauge->cable_type = val->intval; break; case POWER_SUPPLY_PROP_CHARGING_ENABLED: if (val->intval) fuelgauge->is_charging = true; else fuelgauge->is_charging = false; break; case POWER_SUPPLY_PROP_CAPACITY: if (val->intval == S2MU00X_FUELGAUGE_CAPACITY_TYPE_RESET) { fuelgauge->initial_update_of_soc = true; s2mu004_restart_gauging(fuelgauge); } break; case POWER_SUPPLY_PROP_TEMP: case POWER_SUPPLY_PROP_TEMP_AMBIENT: s2mu004_set_temperature(fuelgauge, val->intval); break; case POWER_SUPPLY_PROP_ENERGY_NOW: s2mu004_fg_reset_capacity_by_jig_connection(fuelgauge); break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: dev_dbg(&fuelgauge->i2c->dev, "%s: capacity_max changed, %d -> %d\n", __func__, fuelgauge->capacity_max, val->intval); fuelgauge->initial_update_of_soc = true; break; case POWER_SUPPLY_PROP_CHARGE_EMPTY: pr_info("%s: WA for battery 0 percent\n", __func__); s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x01); break; case POWER_SUPPLY_PROP_ENERGY_AVG: pr_info("%s: WA for power off issue: val(%d)\n", __func__, val->intval); if (val->intval) s2mu004_write_reg_byte(fuelgauge->i2c, 0x41, 0x10); /* charger start */ else s2mu004_write_reg_byte(fuelgauge->i2c, 0x41, 0x04); /* charger end */ break; default: return -EINVAL; } return 0; } static void s2mu004_fg_isr_work(struct work_struct *work) { struct s2mu004_fuelgauge_data *fuelgauge = container_of(work, struct s2mu004_fuelgauge_data, isr_work.work); u8 fg_alert_status = 0; s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_STATUS, &fg_alert_status); dev_info(&fuelgauge->i2c->dev, "%s : fg_alert_status(0x%x)\n", __func__, fg_alert_status); fg_alert_status &= 0x03; if (fg_alert_status & 0x01) pr_info("%s : Battery Level is very Low!\n", __func__); if (fg_alert_status & 0x02) { int voltage = s2mu004_get_vbat(fuelgauge); pr_info("%s : Battery Votage is very Low! (%dmV)\n", __func__, voltage); } if (!fg_alert_status) { fuelgauge->is_fuel_alerted = false; pr_info("%s : Battery Health is good!\n", __func__); wake_unlock(&fuelgauge->fuel_alert_wake_lock); } } static irqreturn_t s2mu004_fg_irq_thread(int irq, void *irq_data) { struct s2mu004_fuelgauge_data *fuelgauge = irq_data; u8 fg_irq = 0; s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_IRQ, &fg_irq); pr_info("%s: fg_irq(0x%x)\n", __func__, fg_irq); if (fuelgauge->is_fuel_alerted) { return IRQ_HANDLED; } else { wake_lock(&fuelgauge->fuel_alert_wake_lock); fuelgauge->is_fuel_alerted = true; schedule_delayed_work(&fuelgauge->isr_work, 0); } return IRQ_HANDLED; } #ifdef CONFIG_OF static int s2mu004_fuelgauge_parse_dt(struct s2mu004_fuelgauge_data *fuelgauge) { struct device_node *np = of_find_node_by_name(NULL, "s2mu004-fuelgauge"); int ret; /* reset, irq gpio info */ if (np == NULL) { pr_err("%s np NULL\n", __func__); } else { fuelgauge->pdata->fg_irq = of_get_named_gpio(np, "fuelgauge,fuel_int", 0); if (fuelgauge->pdata->fg_irq < 0) pr_err("%s error reading fg_irq = %d\n", __func__, fuelgauge->pdata->fg_irq); ret = of_property_read_u32(np, "fuelgauge,capacity_max", &fuelgauge->pdata->capacity_max); if (ret < 0) pr_err("%s error reading capacity_max %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin", &fuelgauge->pdata->capacity_max_margin); if (ret < 0) pr_err("%s error reading capacity_max_margin %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_min", &fuelgauge->pdata->capacity_min); if (ret < 0) pr_err("%s error reading capacity_min %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc", &fuelgauge->pdata->fuel_alert_soc); if (ret < 0) pr_err("%s error reading pdata->fuel_alert_soc %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_full", &fuelgauge->pdata->capacity_full); if (ret < 0) pr_err("%s error reading pdata->capacity_full %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,fuel_alert_vol", &fuelgauge->pdata->fuel_alert_vol); if (ret < 0) pr_err("%s error reading pdata->fuel_alert_vol %d\n", __func__, ret); fuelgauge->pdata->repeated_fuelalert = of_property_read_bool(np, "fuelgauge,repeated_fuelalert"); } /* get battery node */ np = of_find_node_by_name(NULL, "battery"); if (!np) { pr_err("%s battery node NULL\n", __func__); } else { /* get battery_table */ ret = of_property_read_u32_array(np, "battery,battery_table3", fuelgauge->info.battery_table3, 88); if (ret < 0) pr_err("%s error reading battery,battery_table3\n", __func__); ret = of_property_read_u32_array(np, "battery,battery_table4", fuelgauge->info.battery_table4, 22); if (ret < 0) pr_err("%s error reading battery,battery_table4\n", __func__); ret = of_property_read_u32_array(np, "battery,batcap", fuelgauge->info.batcap, 4); if (ret < 0) pr_err("%s error reading battery,batcap\n", __func__); ret = of_property_read_u32_array(np, "battery,accum", fuelgauge->info.accum, 2); if (ret < 0) pr_err("%s error reading battery,accum\n", __func__); ret = of_property_read_u32_array(np, "battery,soc_arr_val", fuelgauge->info.soc_arr_val, 22); if (ret < 0) pr_err("%s error reading battery,soc_arr_val\n", __func__); ret = of_property_read_u32_array(np, "battery,ocv_arr_val", fuelgauge->info.ocv_arr_val, 22); if (ret < 0) pr_err("%s error reading battery,ocv_arr_val\n", __func__); } return 0; } static const struct of_device_id s2mu004_fuelgauge_match_table[] = { { .compatible = "samsung,s2mu004-fuelgauge",}, {}, }; #else static int s2mu004_fuelgauge_parse_dt(struct s2mu004_fuelgauge_data *fuelgauge) { return -ENOSYS; } #define s2mu004_fuelgauge_match_table NULL #endif /* CONFIG_OF */ static int s2mu004_fuelgauge_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); struct s2mu004_fuelgauge_data *fuelgauge; union power_supply_propval raw_soc_val; struct power_supply_config psy_cfg = {}; int ret = 0; u8 temp = 0; pr_info("%s: S2MU004 Fuelgauge Driver Loading\n", __func__); if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) return -EIO; fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL); if (!fuelgauge) return -ENOMEM; mutex_init(&fuelgauge->fg_lock); fuelgauge->i2c = client; if (client->dev.of_node) { fuelgauge->pdata = devm_kzalloc(&client->dev, sizeof(*(fuelgauge->pdata)), GFP_KERNEL); if (!fuelgauge->pdata) { ret = -ENOMEM; goto err_parse_dt_nomem; } ret = s2mu004_fuelgauge_parse_dt(fuelgauge); if (ret < 0) goto err_parse_dt; } else { fuelgauge->pdata = client->dev.platform_data; } i2c_set_clientdata(client, fuelgauge); if (fuelgauge->pdata->fuelgauge_name == NULL) fuelgauge->pdata->fuelgauge_name = "s2mu004-fuelgauge"; fuelgauge->psy_fg_desc.name = fuelgauge->pdata->fuelgauge_name; fuelgauge->psy_fg_desc.type = POWER_SUPPLY_TYPE_UNKNOWN; fuelgauge->psy_fg_desc.get_property = s2mu004_fg_get_property; fuelgauge->psy_fg_desc.set_property = s2mu004_fg_set_property; fuelgauge->psy_fg_desc.properties = s2mu004_fuelgauge_props; fuelgauge->psy_fg_desc.num_properties = ARRAY_SIZE(s2mu004_fuelgauge_props); /* 0x48[7:4]=0010 : EVT2 */ fuelgauge->revision = 0; s2mu004_read_reg_byte(fuelgauge->i2c, 0x48, &temp); fuelgauge->revision = (temp & 0xF0) >> 4; pr_info("%s: S2MU004 Fuelgauge revision: %d, reg 0x48 = 0x%x\n", __func__, fuelgauge->revision, temp); fuelgauge->capacity_max = fuelgauge->pdata->capacity_max; fuelgauge->info.soc = 0; fuelgauge->mode = CURRENT_MODE; raw_soc_val.intval = s2mu004_get_rawsoc(fuelgauge); raw_soc_val.intval = raw_soc_val.intval / 10; s2mu004_init_regs(fuelgauge); psy_cfg.drv_data = fuelgauge; fuelgauge->psy_fg = power_supply_register(&client->dev, &fuelgauge->psy_fg_desc, &psy_cfg); if (IS_ERR(fuelgauge->psy_fg)) { pr_err("%s: Failed to Register psy_fg\n", __func__); ret = PTR_ERR(fuelgauge->psy_fg); goto err_data_free; } fuelgauge->is_fuel_alerted = false; if (fuelgauge->pdata->fuel_alert_soc >= 0) { s2mu004_fuelgauge_fuelalert_init(fuelgauge->i2c, fuelgauge->pdata->fuel_alert_soc); wake_lock_init(&fuelgauge->fuel_alert_wake_lock, WAKE_LOCK_SUSPEND, "fuel_alerted"); if (fuelgauge->pdata->fg_irq > 0) { INIT_DELAYED_WORK( &fuelgauge->isr_work, s2mu004_fg_isr_work); fuelgauge->fg_irq = gpio_to_irq(fuelgauge->pdata->fg_irq); dev_info(&client->dev, "%s : fg_irq = %d\n", __func__, fuelgauge->fg_irq); if (fuelgauge->fg_irq > 0) { ret = request_threaded_irq(fuelgauge->fg_irq, NULL, s2mu004_fg_irq_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "fuelgauge-irq", fuelgauge); if (ret) { dev_err(&client->dev, "%s: Failed to Request IRQ\n", __func__); goto err_supply_unreg; } ret = enable_irq_wake(fuelgauge->fg_irq); if (ret < 0) dev_err(&client->dev, "%s: Failed to Enable Wakeup Source(%d)\n", __func__, ret); } else { dev_err(&client->dev, "%s: Failed gpio_to_irq(%d)\n", __func__, fuelgauge->fg_irq); goto err_supply_unreg; } } } fuelgauge->sleep_initial_update_of_soc = false; fuelgauge->initial_update_of_soc = true; fuelgauge->cc_on = true; fuelgauge->probe_done = true; pr_info("%s: S2MU004 Fuelgauge Driver Loaded\n", __func__); return 0; err_supply_unreg: power_supply_unregister(fuelgauge->psy_fg); err_data_free: if (client->dev.of_node) kfree(fuelgauge->pdata); err_parse_dt: err_parse_dt_nomem: mutex_destroy(&fuelgauge->fg_lock); kfree(fuelgauge); return ret; } static const struct i2c_device_id s2mu004_fuelgauge_id[] = { {"s2mu004-fuelgauge", 0}, {} }; static void s2mu004_fuelgauge_shutdown(struct i2c_client *client) { } static int s2mu004_fuelgauge_remove(struct i2c_client *client) { struct s2mu004_fuelgauge_data *fuelgauge = i2c_get_clientdata(client); if (fuelgauge->pdata->fuel_alert_soc >= 0) wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock); return 0; } #if defined CONFIG_PM static int s2mu004_fuelgauge_suspend(struct device *dev) { return 0; } static int s2mu004_fuelgauge_resume(struct device *dev) { struct s2mu004_fuelgauge_data *fuelgauge = dev_get_drvdata(dev); fuelgauge->sleep_initial_update_of_soc = true; return 0; } #else #define s2mu004_fuelgauge_suspend NULL #define s2mu004_fuelgauge_resume NULL #endif static SIMPLE_DEV_PM_OPS(s2mu004_fuelgauge_pm_ops, s2mu004_fuelgauge_suspend, s2mu004_fuelgauge_resume); static struct i2c_driver s2mu004_fuelgauge_driver = { .driver = { .name = "s2mu004-fuelgauge", .owner = THIS_MODULE, .pm = &s2mu004_fuelgauge_pm_ops, .of_match_table = s2mu004_fuelgauge_match_table, }, .probe = s2mu004_fuelgauge_probe, .remove = s2mu004_fuelgauge_remove, .shutdown = s2mu004_fuelgauge_shutdown, .id_table = s2mu004_fuelgauge_id, }; static int __init s2mu004_fuelgauge_init(void) { pr_info("%s: S2MU004 Fuelgauge Init\n", __func__); return i2c_add_driver(&s2mu004_fuelgauge_driver); } static void __exit s2mu004_fuelgauge_exit(void) { i2c_del_driver(&s2mu004_fuelgauge_driver); } module_init(s2mu004_fuelgauge_init); module_exit(s2mu004_fuelgauge_exit); MODULE_DESCRIPTION("Samsung S2MU004 Fuel Gauge Driver"); MODULE_AUTHOR("Samsung Electronics"); MODULE_LICENSE("GPL");