/* QLogic qede NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and /or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "qede_ptp.h" #include #include "qede.h" /********************************* * Content also used by slowpath * *********************************/ int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy) { struct sw_rx_data *sw_rx_data; struct eth_rx_bd *rx_bd; dma_addr_t mapping; struct page *data; /* In case lazy-allocation is allowed, postpone allocation until the * end of the NAPI run. We'd still need to make sure the Rx ring has * sufficient buffers to guarantee an additional Rx interrupt. */ if (allow_lazy && likely(rxq->filled_buffers > 12)) { rxq->filled_buffers--; return 0; } data = alloc_pages(GFP_ATOMIC, 0); if (unlikely(!data)) return -ENOMEM; /* Map the entire page as it would be used * for multiple RX buffer segment size mapping. */ mapping = dma_map_page(rxq->dev, data, 0, PAGE_SIZE, rxq->data_direction); if (unlikely(dma_mapping_error(rxq->dev, mapping))) { __free_page(data); return -ENOMEM; } sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; sw_rx_data->page_offset = 0; sw_rx_data->data = data; sw_rx_data->mapping = mapping; /* Advance PROD and get BD pointer */ rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); WARN_ON(!rx_bd); rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) + rxq->rx_headroom); rxq->sw_rx_prod++; rxq->filled_buffers++; return 0; } /* Unmap the data and free skb */ int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len) { u16 idx = txq->sw_tx_cons; struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; struct eth_tx_1st_bd *first_bd; struct eth_tx_bd *tx_data_bd; int bds_consumed = 0; int nbds; bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD; int i, split_bd_len = 0; if (unlikely(!skb)) { DP_ERR(edev, "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", idx, txq->sw_tx_cons, txq->sw_tx_prod); return -1; } *len = skb->len; first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); bds_consumed++; nbds = first_bd->data.nbds; if (data_split) { struct eth_tx_bd *split = (struct eth_tx_bd *) qed_chain_consume(&txq->tx_pbl); split_bd_len = BD_UNMAP_LEN(split); bds_consumed++; } dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); /* Unmap the data of the skb frags */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { tx_data_bd = (struct eth_tx_bd *) qed_chain_consume(&txq->tx_pbl); dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); } while (bds_consumed++ < nbds) qed_chain_consume(&txq->tx_pbl); /* Free skb */ dev_kfree_skb_any(skb); txq->sw_tx_ring.skbs[idx].skb = NULL; txq->sw_tx_ring.skbs[idx].flags = 0; return 0; } /* Unmap the data and free skb when mapping failed during start_xmit */ static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq, struct eth_tx_1st_bd *first_bd, int nbd, bool data_split) { u16 idx = txq->sw_tx_prod; struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; struct eth_tx_bd *tx_data_bd; int i, split_bd_len = 0; /* Return prod to its position before this skb was handled */ qed_chain_set_prod(&txq->tx_pbl, le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); if (data_split) { struct eth_tx_bd *split = (struct eth_tx_bd *) qed_chain_produce(&txq->tx_pbl); split_bd_len = BD_UNMAP_LEN(split); nbd--; } dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd), BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); /* Unmap the data of the skb frags */ for (i = 0; i < nbd; i++) { tx_data_bd = (struct eth_tx_bd *) qed_chain_produce(&txq->tx_pbl); if (tx_data_bd->nbytes) dma_unmap_page(txq->dev, BD_UNMAP_ADDR(tx_data_bd), BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); } /* Return again prod to its position before this skb was handled */ qed_chain_set_prod(&txq->tx_pbl, le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); /* Free skb */ dev_kfree_skb_any(skb); txq->sw_tx_ring.skbs[idx].skb = NULL; txq->sw_tx_ring.skbs[idx].flags = 0; } static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext) { u32 rc = XMIT_L4_CSUM; __be16 l3_proto; if (skb->ip_summed != CHECKSUM_PARTIAL) return XMIT_PLAIN; l3_proto = vlan_get_protocol(skb); if (l3_proto == htons(ETH_P_IPV6) && (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) *ipv6_ext = 1; if (skb->encapsulation) { rc |= XMIT_ENC; if (skb_is_gso(skb)) { unsigned short gso_type = skb_shinfo(skb)->gso_type; if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) || (gso_type & SKB_GSO_GRE_CSUM)) rc |= XMIT_ENC_GSO_L4_CSUM; rc |= XMIT_LSO; return rc; } } if (skb_is_gso(skb)) rc |= XMIT_LSO; return rc; } static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, struct eth_tx_2nd_bd *second_bd, struct eth_tx_3rd_bd *third_bd) { u8 l4_proto; u16 bd2_bits1 = 0, bd2_bits2 = 0; bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) l4_proto = ipv6_hdr(skb)->nexthdr; else l4_proto = ip_hdr(skb)->protocol; if (l4_proto == IPPROTO_UDP) bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; if (third_bd) third_bd->data.bitfields |= cpu_to_le16(((tcp_hdrlen(skb) / 4) & ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); } static int map_frag_to_bd(struct qede_tx_queue *txq, skb_frag_t *frag, struct eth_tx_bd *bd) { dma_addr_t mapping; /* Map skb non-linear frag data for DMA */ mapping = skb_frag_dma_map(txq->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(txq->dev, mapping))) return -ENOMEM; /* Setup the data pointer of the frag data */ BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); return 0; } static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) { if (is_encap_pkt) return (skb_inner_transport_header(skb) + inner_tcp_hdrlen(skb) - skb->data); else return (skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data); } /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type) { int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; if (xmit_type & XMIT_LSO) { int hlen; hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); /* linear payload would require its own BD */ if (skb_headlen(skb) > hlen) allowed_frags--; } return (skb_shinfo(skb)->nr_frags > allowed_frags); } #endif static inline void qede_update_tx_producer(struct qede_tx_queue *txq) { /* wmb makes sure that the BDs data is updated before updating the * producer, otherwise FW may read old data from the BDs. */ wmb(); barrier(); writel(txq->tx_db.raw, txq->doorbell_addr); /* Fence required to flush the write combined buffer, since another * CPU may write to the same doorbell address and data may be lost * due to relaxed order nature of write combined bar. */ wmb(); } static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp, struct sw_rx_data *metadata, u16 padding, u16 length) { struct qede_tx_queue *txq = fp->xdp_tx; struct eth_tx_1st_bd *first_bd; u16 idx = txq->sw_tx_prod; u16 val; if (!qed_chain_get_elem_left(&txq->tx_pbl)) { txq->stopped_cnt++; return -ENOMEM; } first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); memset(first_bd, 0, sizeof(*first_bd)); first_bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT); val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; first_bd->data.bitfields |= cpu_to_le16(val); first_bd->data.nbds = 1; /* We can safely ignore the offset, as it's 0 for XDP */ BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length); /* Synchronize the buffer back to device, as program [probably] * has changed it. */ dma_sync_single_for_device(&edev->pdev->dev, metadata->mapping + padding, length, PCI_DMA_TODEVICE); txq->sw_tx_ring.xdp[idx].page = metadata->data; txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping; txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; /* Mark the fastpath for future XDP doorbell */ fp->xdp_xmit = 1; return 0; } int qede_txq_has_work(struct qede_tx_queue *txq) { u16 hw_bd_cons; /* Tell compiler that consumer and producer can change */ barrier(); hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) return 0; return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); } static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) { u16 hw_bd_cons, idx; hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); barrier(); while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { qed_chain_consume(&txq->tx_pbl); idx = txq->sw_tx_cons; dma_unmap_page(&edev->pdev->dev, txq->sw_tx_ring.xdp[idx].mapping, PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(txq->sw_tx_ring.xdp[idx].page); txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; txq->xmit_pkts++; } } static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) { struct netdev_queue *netdev_txq; u16 hw_bd_cons; unsigned int pkts_compl = 0, bytes_compl = 0; int rc; netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); barrier(); while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { int len = 0; rc = qede_free_tx_pkt(edev, txq, &len); if (rc) { DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", hw_bd_cons, qed_chain_get_cons_idx(&txq->tx_pbl)); break; } bytes_compl += len; pkts_compl++; txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; txq->xmit_pkts++; } netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); /* Need to make the tx_bd_cons update visible to start_xmit() * before checking for netif_tx_queue_stopped(). Without the * memory barrier, there is a small possibility that * start_xmit() will miss it and cause the queue to be stopped * forever. * On the other hand we need an rmb() here to ensure the proper * ordering of bit testing in the following * netif_tx_queue_stopped(txq) call. */ smp_mb(); if (unlikely(netif_tx_queue_stopped(netdev_txq))) { /* Taking tx_lock is needed to prevent reenabling the queue * while it's empty. This could have happen if rx_action() gets * suspended in qede_tx_int() after the condition before * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): * * stops the queue->sees fresh tx_bd_cons->releases the queue-> * sends some packets consuming the whole queue again-> * stops the queue */ __netif_tx_lock(netdev_txq, smp_processor_id()); if ((netif_tx_queue_stopped(netdev_txq)) && (edev->state == QEDE_STATE_OPEN) && (qed_chain_get_elem_left(&txq->tx_pbl) >= (MAX_SKB_FRAGS + 1))) { netif_tx_wake_queue(netdev_txq); DP_VERBOSE(edev, NETIF_MSG_TX_DONE, "Wake queue was called\n"); } __netif_tx_unlock(netdev_txq); } return 0; } bool qede_has_rx_work(struct qede_rx_queue *rxq) { u16 hw_comp_cons, sw_comp_cons; /* Tell compiler that status block fields can change */ barrier(); hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); return hw_comp_cons != sw_comp_cons; } static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) { qed_chain_consume(&rxq->rx_bd_ring); rxq->sw_rx_cons++; } /* This function reuses the buffer(from an offset) from * consumer index to producer index in the bd ring */ static inline void qede_reuse_page(struct qede_rx_queue *rxq, struct sw_rx_data *curr_cons) { struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); struct sw_rx_data *curr_prod; dma_addr_t new_mapping; curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; *curr_prod = *curr_cons; new_mapping = curr_prod->mapping + curr_prod->page_offset; rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) + rxq->rx_headroom); rxq->sw_rx_prod++; curr_cons->data = NULL; } /* In case of allocation failures reuse buffers * from consumer index to produce buffers for firmware */ void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count) { struct sw_rx_data *curr_cons; for (; count > 0; count--) { curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; qede_reuse_page(rxq, curr_cons); qede_rx_bd_ring_consume(rxq); } } static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq, struct sw_rx_data *curr_cons) { /* Move to the next segment in the page */ curr_cons->page_offset += rxq->rx_buf_seg_size; if (curr_cons->page_offset == PAGE_SIZE) { if (unlikely(qede_alloc_rx_buffer(rxq, true))) { /* Since we failed to allocate new buffer * current buffer can be used again. */ curr_cons->page_offset -= rxq->rx_buf_seg_size; return -ENOMEM; } dma_unmap_page(rxq->dev, curr_cons->mapping, PAGE_SIZE, rxq->data_direction); } else { /* Increment refcount of the page as we don't want * network stack to take the ownership of the page * which can be recycled multiple times by the driver. */ page_ref_inc(curr_cons->data); qede_reuse_page(rxq, curr_cons); } return 0; } void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) { u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); struct eth_rx_prod_data rx_prods = {0}; /* Update producers */ rx_prods.bd_prod = cpu_to_le16(bd_prod); rx_prods.cqe_prod = cpu_to_le16(cqe_prod); /* Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. */ wmb(); internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), (u32 *)&rx_prods); /* mmiowb is needed to synchronize doorbell writes from more than one * processor. It guarantees that the write arrives to the device before * the napi lock is released and another qede_poll is called (possibly * on another CPU). Without this barrier, the next doorbell can bypass * this doorbell. This is applicable to IA64/Altix systems. */ mmiowb(); } static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash) { enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; enum rss_hash_type htype; u32 hash = 0; htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); if (htype) { hash_type = ((htype == RSS_HASH_TYPE_IPV4) || (htype == RSS_HASH_TYPE_IPV6)) ? PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; hash = le32_to_cpu(rss_hash); } skb_set_hash(skb, hash, hash_type); } static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) { skb_checksum_none_assert(skb); if (csum_flag & QEDE_CSUM_UNNECESSARY) skb->ip_summed = CHECKSUM_UNNECESSARY; if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) { skb->csum_level = 1; skb->encapsulation = 1; } } static inline void qede_skb_receive(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_rx_queue *rxq, struct sk_buff *skb, u16 vlan_tag) { if (vlan_tag) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); napi_gro_receive(&fp->napi, skb); } static void qede_set_gro_params(struct qede_dev *edev, struct sk_buff *skb, struct eth_fast_path_rx_tpa_start_cqe *cqe) { u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; else skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - cqe->header_len; } static int qede_fill_frag_skb(struct qede_dev *edev, struct qede_rx_queue *rxq, u8 tpa_agg_index, u16 len_on_bd) { struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; struct sk_buff *skb = tpa_info->skb; if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) goto out; /* Add one frag and update the appropriate fields in the skb */ skb_fill_page_desc(skb, tpa_info->frag_id++, current_bd->data, current_bd->page_offset, len_on_bd); if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) { /* Incr page ref count to reuse on allocation failure * so that it doesn't get freed while freeing SKB. */ page_ref_inc(current_bd->data); goto out; } qed_chain_consume(&rxq->rx_bd_ring); rxq->sw_rx_cons++; skb->data_len += len_on_bd; skb->truesize += rxq->rx_buf_seg_size; skb->len += len_on_bd; return 0; out: tpa_info->state = QEDE_AGG_STATE_ERROR; qede_recycle_rx_bd_ring(rxq, 1); return -ENOMEM; } static bool qede_tunn_exist(u16 flag) { return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); } static u8 qede_check_tunn_csum(u16 flag) { u16 csum_flag = 0; u8 tcsum = 0; if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; tcsum = QEDE_TUNN_CSUM_UNNECESSARY; } csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; if (csum_flag & flag) return QEDE_CSUM_ERROR; return QEDE_CSUM_UNNECESSARY | tcsum; } static void qede_tpa_start(struct qede_dev *edev, struct qede_rx_queue *rxq, struct eth_fast_path_rx_tpa_start_cqe *cqe) { struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); struct sw_rx_data *replace_buf = &tpa_info->buffer; dma_addr_t mapping = tpa_info->buffer_mapping; struct sw_rx_data *sw_rx_data_cons; struct sw_rx_data *sw_rx_data_prod; sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; /* Use pre-allocated replacement buffer - we can't release the agg. * start until its over and we don't want to risk allocation failing * here, so re-allocate when aggregation will be over. */ sw_rx_data_prod->mapping = replace_buf->mapping; sw_rx_data_prod->data = replace_buf->data; rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); sw_rx_data_prod->page_offset = replace_buf->page_offset; rxq->sw_rx_prod++; /* move partial skb from cons to pool (don't unmap yet) * save mapping, incase we drop the packet later on. */ tpa_info->buffer = *sw_rx_data_cons; mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), le32_to_cpu(rx_bd_cons->addr.lo)); tpa_info->buffer_mapping = mapping; rxq->sw_rx_cons++; /* set tpa state to start only if we are able to allocate skb * for this aggregation, otherwise mark as error and aggregation will * be dropped */ tpa_info->skb = netdev_alloc_skb(edev->ndev, le16_to_cpu(cqe->len_on_first_bd)); if (unlikely(!tpa_info->skb)) { DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); tpa_info->state = QEDE_AGG_STATE_ERROR; goto cons_buf; } /* Start filling in the aggregation info */ skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); tpa_info->frag_id = 0; tpa_info->state = QEDE_AGG_STATE_START; /* Store some information from first CQE */ tpa_info->start_cqe_placement_offset = cqe->placement_offset; tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd); if ((le16_to_cpu(cqe->pars_flags.flags) >> PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); else tpa_info->vlan_tag = 0; qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash); /* This is needed in order to enable forwarding support */ qede_set_gro_params(edev, tpa_info->skb, cqe); cons_buf: /* We still need to handle bd_len_list to consume buffers */ if (likely(cqe->ext_bd_len_list[0])) qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, le16_to_cpu(cqe->ext_bd_len_list[0])); if (unlikely(cqe->ext_bd_len_list[1])) { DP_ERR(edev, "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); tpa_info->state = QEDE_AGG_STATE_ERROR; } } #ifdef CONFIG_INET static void qede_gro_ip_csum(struct sk_buff *skb) { const struct iphdr *iph = ip_hdr(skb); struct tcphdr *th; skb_set_transport_header(skb, sizeof(struct iphdr)); th = tcp_hdr(skb); th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), iph->saddr, iph->daddr, 0); tcp_gro_complete(skb); } static void qede_gro_ipv6_csum(struct sk_buff *skb) { struct ipv6hdr *iph = ipv6_hdr(skb); struct tcphdr *th; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); th = tcp_hdr(skb); th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), &iph->saddr, &iph->daddr, 0); tcp_gro_complete(skb); } #endif static void qede_gro_receive(struct qede_dev *edev, struct qede_fastpath *fp, struct sk_buff *skb, u16 vlan_tag) { /* FW can send a single MTU sized packet from gro flow * due to aggregation timeout/last segment etc. which * is not expected to be a gro packet. If a skb has zero * frags then simply push it in the stack as non gso skb. */ if (unlikely(!skb->data_len)) { skb_shinfo(skb)->gso_type = 0; skb_shinfo(skb)->gso_size = 0; goto send_skb; } #ifdef CONFIG_INET if (skb_shinfo(skb)->gso_size) { skb_reset_network_header(skb); switch (skb->protocol) { case htons(ETH_P_IP): qede_gro_ip_csum(skb); break; case htons(ETH_P_IPV6): qede_gro_ipv6_csum(skb); break; default: DP_ERR(edev, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", ntohs(skb->protocol)); } } #endif send_skb: skb_record_rx_queue(skb, fp->rxq->rxq_id); qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag); } static inline void qede_tpa_cont(struct qede_dev *edev, struct qede_rx_queue *rxq, struct eth_fast_path_rx_tpa_cont_cqe *cqe) { int i; for (i = 0; cqe->len_list[i]; i++) qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, le16_to_cpu(cqe->len_list[i])); if (unlikely(i > 1)) DP_ERR(edev, "Strange - TPA cont with more than a single len_list entry\n"); } static int qede_tpa_end(struct qede_dev *edev, struct qede_fastpath *fp, struct eth_fast_path_rx_tpa_end_cqe *cqe) { struct qede_rx_queue *rxq = fp->rxq; struct qede_agg_info *tpa_info; struct sk_buff *skb; int i; tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; skb = tpa_info->skb; for (i = 0; cqe->len_list[i]; i++) qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, le16_to_cpu(cqe->len_list[i])); if (unlikely(i > 1)) DP_ERR(edev, "Strange - TPA emd with more than a single len_list entry\n"); if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) goto err; /* Sanity */ if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) DP_ERR(edev, "Strange - TPA had %02x BDs, but SKB has only %d frags\n", cqe->num_of_bds, tpa_info->frag_id); if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) DP_ERR(edev, "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", le16_to_cpu(cqe->total_packet_len), skb->len); memcpy(skb->data, page_address(tpa_info->buffer.data) + tpa_info->start_cqe_placement_offset + tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len); /* Finalize the SKB */ skb->protocol = eth_type_trans(skb, edev->ndev); skb->ip_summed = CHECKSUM_UNNECESSARY; /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count * to skb_shinfo(skb)->gso_segs */ NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); tpa_info->state = QEDE_AGG_STATE_NONE; return 1; err: tpa_info->state = QEDE_AGG_STATE_NONE; dev_kfree_skb_any(tpa_info->skb); tpa_info->skb = NULL; return 0; } static u8 qede_check_notunn_csum(u16 flag) { u16 csum_flag = 0; u8 csum = 0; if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; csum = QEDE_CSUM_UNNECESSARY; } csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; if (csum_flag & flag) return QEDE_CSUM_ERROR; return csum; } static u8 qede_check_csum(u16 flag) { if (!qede_tunn_exist(flag)) return qede_check_notunn_csum(flag); else return qede_check_tunn_csum(flag); } static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, u16 flag) { u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) return true; return false; } /* Return true iff packet is to be passed to stack */ static bool qede_rx_xdp(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_rx_queue *rxq, struct bpf_prog *prog, struct sw_rx_data *bd, struct eth_fast_path_rx_reg_cqe *cqe, u16 *data_offset, u16 *len) { struct xdp_buff xdp; enum xdp_action act; xdp.data_hard_start = page_address(bd->data); xdp.data = xdp.data_hard_start + *data_offset; xdp.data_end = xdp.data + *len; /* Queues always have a full reset currently, so for the time * being until there's atomic program replace just mark read * side for map helpers. */ rcu_read_lock(); act = bpf_prog_run_xdp(prog, &xdp); rcu_read_unlock(); /* Recalculate, as XDP might have changed the headers */ *data_offset = xdp.data - xdp.data_hard_start; *len = xdp.data_end - xdp.data; if (act == XDP_PASS) return true; /* Count number of packets not to be passed to stack */ rxq->xdp_no_pass++; switch (act) { case XDP_TX: /* We need the replacement buffer before transmit. */ if (qede_alloc_rx_buffer(rxq, true)) { qede_recycle_rx_bd_ring(rxq, 1); trace_xdp_exception(edev->ndev, prog, act); return false; } /* Now if there's a transmission problem, we'd still have to * throw current buffer, as replacement was already allocated. */ if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) { dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(bd->data); trace_xdp_exception(edev->ndev, prog, act); } /* Regardless, we've consumed an Rx BD */ qede_rx_bd_ring_consume(rxq); return false; default: bpf_warn_invalid_xdp_action(act); case XDP_ABORTED: trace_xdp_exception(edev->ndev, prog, act); case XDP_DROP: qede_recycle_rx_bd_ring(rxq, cqe->bd_num); } return false; } static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev, struct qede_rx_queue *rxq, struct sw_rx_data *bd, u16 len, u16 pad) { unsigned int offset = bd->page_offset + pad; struct skb_frag_struct *frag; struct page *page = bd->data; unsigned int pull_len; struct sk_buff *skb; unsigned char *va; /* Allocate a new SKB with a sufficient large header len */ skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); if (unlikely(!skb)) return NULL; /* Copy data into SKB - if it's small, we can simply copy it and * re-use the already allcoated & mapped memory. */ if (len + pad <= edev->rx_copybreak) { skb_put_data(skb, page_address(page) + offset, len); qede_reuse_page(rxq, bd); goto out; } frag = &skb_shinfo(skb)->frags[0]; skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len, rxq->rx_buf_seg_size); va = skb_frag_address(frag); pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); /* Align the pull_len to optimize memcpy */ memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); /* Correct the skb & frag sizes offset after the pull */ skb_frag_size_sub(frag, pull_len); frag->page_offset += pull_len; skb->data_len -= pull_len; skb->tail += pull_len; if (unlikely(qede_realloc_rx_buffer(rxq, bd))) { /* Incr page ref count to reuse on allocation failure so * that it doesn't get freed while freeing SKB [as its * already mapped there]. */ page_ref_inc(page); dev_kfree_skb_any(skb); return NULL; } out: /* We've consumed the first BD and prepared an SKB */ qede_rx_bd_ring_consume(rxq); return skb; } static int qede_rx_build_jumbo(struct qede_dev *edev, struct qede_rx_queue *rxq, struct sk_buff *skb, struct eth_fast_path_rx_reg_cqe *cqe, u16 first_bd_len) { u16 pkt_len = le16_to_cpu(cqe->pkt_len); struct sw_rx_data *bd; u16 bd_cons_idx; u8 num_frags; pkt_len -= first_bd_len; /* We've already used one BD for the SKB. Now take care of the rest */ for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) { u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : pkt_len; if (unlikely(!cur_size)) { DP_ERR(edev, "Still got %d BDs for mapping jumbo, but length became 0\n", num_frags); goto out; } /* We need a replacement buffer for each BD */ if (unlikely(qede_alloc_rx_buffer(rxq, true))) goto out; /* Now that we've allocated the replacement buffer, * we can safely consume the next BD and map it to the SKB. */ bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; bd = &rxq->sw_rx_ring[bd_cons_idx]; qede_rx_bd_ring_consume(rxq); dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE, DMA_FROM_DEVICE); skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, bd->data, 0, cur_size); skb->truesize += PAGE_SIZE; skb->data_len += cur_size; skb->len += cur_size; pkt_len -= cur_size; } if (unlikely(pkt_len)) DP_ERR(edev, "Mapped all BDs of jumbo, but still have %d bytes\n", pkt_len); out: return num_frags; } static int qede_rx_process_tpa_cqe(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_rx_queue *rxq, union eth_rx_cqe *cqe, enum eth_rx_cqe_type type) { switch (type) { case ETH_RX_CQE_TYPE_TPA_START: qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start); return 0; case ETH_RX_CQE_TYPE_TPA_CONT: qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont); return 0; case ETH_RX_CQE_TYPE_TPA_END: return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end); default: return 0; } } static int qede_rx_process_cqe(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_rx_queue *rxq) { struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog); struct eth_fast_path_rx_reg_cqe *fp_cqe; u16 len, pad, bd_cons_idx, parse_flag; enum eth_rx_cqe_type cqe_type; union eth_rx_cqe *cqe; struct sw_rx_data *bd; struct sk_buff *skb; __le16 flags; u8 csum_flag; /* Get the CQE from the completion ring */ cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring); cqe_type = cqe->fast_path_regular.type; /* Process an unlikely slowpath event */ if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { struct eth_slow_path_rx_cqe *sp_cqe; sp_cqe = (struct eth_slow_path_rx_cqe *)cqe; edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe); return 0; } /* Handle TPA cqes */ if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type); /* Get the data from the SW ring; Consume it only after it's evident * we wouldn't recycle it. */ bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; bd = &rxq->sw_rx_ring[bd_cons_idx]; fp_cqe = &cqe->fast_path_regular; len = le16_to_cpu(fp_cqe->len_on_first_bd); pad = fp_cqe->placement_offset + rxq->rx_headroom; /* Run eBPF program if one is attached */ if (xdp_prog) if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe, &pad, &len)) return 0; /* If this is an error packet then drop it */ flags = cqe->fast_path_regular.pars_flags.flags; parse_flag = le16_to_cpu(flags); csum_flag = qede_check_csum(parse_flag); if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) rxq->rx_ip_frags++; else rxq->rx_hw_errors++; } /* Basic validation passed; Need to prepare an SKB. This would also * guarantee to finally consume the first BD upon success. */ skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad); if (!skb) { rxq->rx_alloc_errors++; qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); return 0; } /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed * by a single cqe. */ if (fp_cqe->bd_num > 1) { u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb, fp_cqe, len); if (unlikely(unmapped_frags > 0)) { qede_recycle_rx_bd_ring(rxq, unmapped_frags); dev_kfree_skb_any(skb); return 0; } } /* The SKB contains all the data. Now prepare meta-magic */ skb->protocol = eth_type_trans(skb, edev->ndev); qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash); qede_set_skb_csum(skb, csum_flag); skb_record_rx_queue(skb, rxq->rxq_id); qede_ptp_record_rx_ts(edev, cqe, skb); /* SKB is prepared - pass it to stack */ qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag)); return 1; } static int qede_rx_int(struct qede_fastpath *fp, int budget) { struct qede_rx_queue *rxq = fp->rxq; struct qede_dev *edev = fp->edev; int work_done = 0, rcv_pkts = 0; u16 hw_comp_cons, sw_comp_cons; hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); /* Memory barrier to prevent the CPU from doing speculative reads of CQE * / BD in the while-loop before reading hw_comp_cons. If the CQE is * read before it is written by FW, then FW writes CQE and SB, and then * the CPU reads the hw_comp_cons, it will use an old CQE. */ rmb(); /* Loop to complete all indicated BDs */ while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) { rcv_pkts += qede_rx_process_cqe(edev, fp, rxq); qed_chain_recycle_consumed(&rxq->rx_comp_ring); sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); work_done++; } rxq->rcv_pkts += rcv_pkts; /* Allocate replacement buffers */ while (rxq->num_rx_buffers - rxq->filled_buffers) if (qede_alloc_rx_buffer(rxq, false)) break; /* Update producers */ qede_update_rx_prod(edev, rxq); return work_done; } static bool qede_poll_is_more_work(struct qede_fastpath *fp) { qed_sb_update_sb_idx(fp->sb_info); /* *_has_*_work() reads the status block, thus we need to ensure that * status block indices have been actually read (qed_sb_update_sb_idx) * prior to this check (*_has_*_work) so that we won't write the * "newer" value of the status block to HW (if there was a DMA right * after qede_has_rx_work and if there is no rmb, the memory reading * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb). * In this case there will never be another interrupt until there is * another update of the status block, while there is still unhandled * work. */ rmb(); if (likely(fp->type & QEDE_FASTPATH_RX)) if (qede_has_rx_work(fp->rxq)) return true; if (fp->type & QEDE_FASTPATH_XDP) if (qede_txq_has_work(fp->xdp_tx)) return true; if (likely(fp->type & QEDE_FASTPATH_TX)) if (qede_txq_has_work(fp->txq)) return true; return false; } /********************* * NDO & API related * *********************/ int qede_poll(struct napi_struct *napi, int budget) { struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, napi); struct qede_dev *edev = fp->edev; int rx_work_done = 0; if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq)) qede_tx_int(edev, fp->txq); if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx)) qede_xdp_tx_int(edev, fp->xdp_tx); rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) && qede_has_rx_work(fp->rxq)) ? qede_rx_int(fp, budget) : 0; if (rx_work_done < budget) { if (!qede_poll_is_more_work(fp)) { napi_complete_done(napi, rx_work_done); /* Update and reenable interrupts */ qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1); } else { rx_work_done = budget; } } if (fp->xdp_xmit) { u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl); fp->xdp_xmit = 0; fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); qede_update_tx_producer(fp->xdp_tx); } return rx_work_done; } irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) { struct qede_fastpath *fp = fp_cookie; qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); napi_schedule_irqoff(&fp->napi); return IRQ_HANDLED; } /* Main transmit function */ netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct qede_dev *edev = netdev_priv(ndev); struct netdev_queue *netdev_txq; struct qede_tx_queue *txq; struct eth_tx_1st_bd *first_bd; struct eth_tx_2nd_bd *second_bd = NULL; struct eth_tx_3rd_bd *third_bd = NULL; struct eth_tx_bd *tx_data_bd = NULL; u16 txq_index, val = 0; u8 nbd = 0; dma_addr_t mapping; int rc, frag_idx = 0, ipv6_ext = 0; u8 xmit_type; u16 idx; u16 hlen; bool data_split = false; /* Get tx-queue context and netdev index */ txq_index = skb_get_queue_mapping(skb); WARN_ON(txq_index >= QEDE_TSS_COUNT(edev)); txq = edev->fp_array[edev->fp_num_rx + txq_index].txq; netdev_txq = netdev_get_tx_queue(ndev, txq_index); WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); xmit_type = qede_xmit_type(skb, &ipv6_ext); #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) if (qede_pkt_req_lin(skb, xmit_type)) { if (skb_linearize(skb)) { DP_NOTICE(edev, "SKB linearization failed - silently dropping this SKB\n"); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } } #endif /* Fill the entry in the SW ring and the BDs in the FW ring */ idx = txq->sw_tx_prod; txq->sw_tx_ring.skbs[idx].skb = skb; first_bd = (struct eth_tx_1st_bd *) qed_chain_produce(&txq->tx_pbl); memset(first_bd, 0, sizeof(*first_bd)); first_bd->data.bd_flags.bitfields = 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) qede_ptp_tx_ts(edev, skb); /* Map skb linear data for DMA and set in the first BD */ mapping = dma_map_single(txq->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(txq->dev, mapping))) { DP_NOTICE(edev, "SKB mapping failed\n"); qede_free_failed_tx_pkt(txq, first_bd, 0, false); qede_update_tx_producer(txq); return NETDEV_TX_OK; } nbd++; BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); /* In case there is IPv6 with extension headers or LSO we need 2nd and * 3rd BDs. */ if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { second_bd = (struct eth_tx_2nd_bd *) qed_chain_produce(&txq->tx_pbl); memset(second_bd, 0, sizeof(*second_bd)); nbd++; third_bd = (struct eth_tx_3rd_bd *) qed_chain_produce(&txq->tx_pbl); memset(third_bd, 0, sizeof(*third_bd)); nbd++; /* We need to fill in additional data in second_bd... */ tx_data_bd = (struct eth_tx_bd *)second_bd; } if (skb_vlan_tag_present(skb)) { first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; } /* Fill the parsing flags & params according to the requested offload */ if (xmit_type & XMIT_L4_CSUM) { /* We don't re-calculate IP checksum as it is already done by * the upper stack */ first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; if (xmit_type & XMIT_ENC) { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); } /* Legacy FW had flipped behavior in regard to this bit - * I.e., needed to set to prevent FW from touching encapsulated * packets when it didn't need to. */ if (unlikely(txq->is_legacy)) val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); /* If the packet is IPv6 with extension header, indicate that * to FW and pass few params, since the device cracker doesn't * support parsing IPv6 with extension header/s. */ if (unlikely(ipv6_ext)) qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); } if (xmit_type & XMIT_LSO) { first_bd->data.bd_flags.bitfields |= (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); third_bd->data.lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); if (unlikely(xmit_type & XMIT_ENC)) { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; if (xmit_type & XMIT_ENC_GSO_L4_CSUM) { u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; first_bd->data.bd_flags.bitfields |= 1 << tmp; } hlen = qede_get_skb_hlen(skb, true); } else { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; hlen = qede_get_skb_hlen(skb, false); } /* @@@TBD - if will not be removed need to check */ third_bd->data.bitfields |= cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); /* Make life easier for FW guys who can't deal with header and * data on same BD. If we need to split, use the second bd... */ if (unlikely(skb_headlen(skb) > hlen)) { DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", first_bd->nbytes, first_bd->addr.hi, first_bd->addr.lo); mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), le32_to_cpu(first_bd->addr.lo)) + hlen; BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, le16_to_cpu(first_bd->nbytes) - hlen); /* this marks the BD as one that has no * individual mapping */ txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD; first_bd->nbytes = cpu_to_le16(hlen); tx_data_bd = (struct eth_tx_bd *)third_bd; data_split = true; } } else { val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT); } first_bd->data.bitfields = cpu_to_le16(val); /* Handle fragmented skb */ /* special handle for frags inside 2nd and 3rd bds.. */ while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { rc = map_frag_to_bd(txq, &skb_shinfo(skb)->frags[frag_idx], tx_data_bd); if (rc) { qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); qede_update_tx_producer(txq); return NETDEV_TX_OK; } if (tx_data_bd == (struct eth_tx_bd *)second_bd) tx_data_bd = (struct eth_tx_bd *)third_bd; else tx_data_bd = NULL; frag_idx++; } /* map last frags into 4th, 5th .... */ for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { tx_data_bd = (struct eth_tx_bd *) qed_chain_produce(&txq->tx_pbl); memset(tx_data_bd, 0, sizeof(*tx_data_bd)); rc = map_frag_to_bd(txq, &skb_shinfo(skb)->frags[frag_idx], tx_data_bd); if (rc) { qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); qede_update_tx_producer(txq); return NETDEV_TX_OK; } } /* update the first BD with the actual num BDs */ first_bd->data.nbds = nbd; netdev_tx_sent_queue(netdev_txq, skb->len); skb_tx_timestamp(skb); /* Advance packet producer only before sending the packet since mapping * of pages may fail. */ txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; /* 'next page' entries are counted in the producer value */ txq->tx_db.data.bd_prod = cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); if (!skb->xmit_more || netif_xmit_stopped(netdev_txq)) qede_update_tx_producer(txq); if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1))) { if (skb->xmit_more) qede_update_tx_producer(txq); netif_tx_stop_queue(netdev_txq); txq->stopped_cnt++; DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, "Stop queue was called\n"); /* paired memory barrier is in qede_tx_int(), we have to keep * ordering of set_bit() in netif_tx_stop_queue() and read of * fp->bd_tx_cons */ smp_mb(); if ((qed_chain_get_elem_left(&txq->tx_pbl) >= (MAX_SKB_FRAGS + 1)) && (edev->state == QEDE_STATE_OPEN)) { netif_tx_wake_queue(netdev_txq); DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, "Wake queue was called\n"); } } return NETDEV_TX_OK; } /* 8B udp header + 8B base tunnel header + 32B option length */ #define QEDE_MAX_TUN_HDR_LEN 48 netdev_features_t qede_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { if (skb->encapsulation) { u8 l4_proto = 0; switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): l4_proto = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): l4_proto = ipv6_hdr(skb)->nexthdr; break; default: return features; } /* Disable offloads for geneve tunnels, as HW can't parse * the geneve header which has option length greater than 32b * and disable offloads for the ports which are not offloaded. */ if (l4_proto == IPPROTO_UDP) { struct qede_dev *edev = netdev_priv(dev); u16 hdrlen, vxln_port, gnv_port; hdrlen = QEDE_MAX_TUN_HDR_LEN; vxln_port = edev->vxlan_dst_port; gnv_port = edev->geneve_dst_port; if ((skb_inner_mac_header(skb) - skb_transport_header(skb)) > hdrlen || (ntohs(udp_hdr(skb)->dest) != vxln_port && ntohs(udp_hdr(skb)->dest) != gnv_port)) return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } } return features; }