/* * Copyright(c) 2015-2017 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #define OPA_NUM_PKEY_BLOCKS_PER_SMP (OPA_SMP_DR_DATA_SIZE \ / (OPA_PARTITION_TABLE_BLK_SIZE * sizeof(u16))) #include "hfi.h" #include "mad.h" #include "trace.h" #include "qp.h" #include "vnic.h" /* the reset value from the FM is supposed to be 0xffff, handle both */ #define OPA_LINK_WIDTH_RESET_OLD 0x0fff #define OPA_LINK_WIDTH_RESET 0xffff struct trap_node { struct list_head list; struct opa_mad_notice_attr data; __be64 tid; int len; u32 retry; u8 in_use; u8 repress; }; static int smp_length_check(u32 data_size, u32 request_len) { if (unlikely(request_len < data_size)) return -EINVAL; return 0; } static int reply(struct ib_mad_hdr *smp) { /* * The verbs framework will handle the directed/LID route * packet changes. */ smp->method = IB_MGMT_METHOD_GET_RESP; if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) smp->status |= IB_SMP_DIRECTION; return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_REPLY; } static inline void clear_opa_smp_data(struct opa_smp *smp) { void *data = opa_get_smp_data(smp); size_t size = opa_get_smp_data_size(smp); memset(data, 0, size); } void hfi1_event_pkey_change(struct hfi1_devdata *dd, u8 port) { struct ib_event event; event.event = IB_EVENT_PKEY_CHANGE; event.device = &dd->verbs_dev.rdi.ibdev; event.element.port_num = port; ib_dispatch_event(&event); } /* * If the port is down, clean up all pending traps. We need to be careful * with the given trap, because it may be queued. */ static void cleanup_traps(struct hfi1_ibport *ibp, struct trap_node *trap) { struct trap_node *node, *q; unsigned long flags; struct list_head trap_list; int i; for (i = 0; i < RVT_MAX_TRAP_LISTS; i++) { spin_lock_irqsave(&ibp->rvp.lock, flags); list_replace_init(&ibp->rvp.trap_lists[i].list, &trap_list); ibp->rvp.trap_lists[i].list_len = 0; spin_unlock_irqrestore(&ibp->rvp.lock, flags); /* * Remove all items from the list, freeing all the non-given * traps. */ list_for_each_entry_safe(node, q, &trap_list, list) { list_del(&node->list); if (node != trap) kfree(node); } } /* * If this wasn't on one of the lists it would not be freed. If it * was on the list, it is now safe to free. */ kfree(trap); } static struct trap_node *check_and_add_trap(struct hfi1_ibport *ibp, struct trap_node *trap) { struct trap_node *node; struct trap_list *trap_list; unsigned long flags; unsigned long timeout; int found = 0; unsigned int queue_id; static int trap_count; queue_id = trap->data.generic_type & 0x0F; if (queue_id >= RVT_MAX_TRAP_LISTS) { trap_count++; pr_err_ratelimited("hfi1: Invalid trap 0x%0x dropped. Total dropped: %d\n", trap->data.generic_type, trap_count); kfree(trap); return NULL; } /* * Since the retry (handle timeout) does not remove a trap request * from the list, all we have to do is compare the node. */ spin_lock_irqsave(&ibp->rvp.lock, flags); trap_list = &ibp->rvp.trap_lists[queue_id]; list_for_each_entry(node, &trap_list->list, list) { if (node == trap) { node->retry++; found = 1; break; } } /* If it is not on the list, add it, limited to RVT-MAX_TRAP_LEN. */ if (!found) { if (trap_list->list_len < RVT_MAX_TRAP_LEN) { trap_list->list_len++; list_add_tail(&trap->list, &trap_list->list); } else { pr_warn_ratelimited("hfi1: Maximum trap limit reached for 0x%0x traps\n", trap->data.generic_type); kfree(trap); } } /* * Next check to see if there is a timer pending. If not, set it up * and get the first trap from the list. */ node = NULL; if (!timer_pending(&ibp->rvp.trap_timer)) { /* * o14-2 * If the time out is set we have to wait until it expires * before the trap can be sent. * This should be > RVT_TRAP_TIMEOUT */ timeout = (RVT_TRAP_TIMEOUT * (1UL << ibp->rvp.subnet_timeout)) / 1000; mod_timer(&ibp->rvp.trap_timer, jiffies + usecs_to_jiffies(timeout)); node = list_first_entry(&trap_list->list, struct trap_node, list); node->in_use = 1; } spin_unlock_irqrestore(&ibp->rvp.lock, flags); return node; } static void subn_handle_opa_trap_repress(struct hfi1_ibport *ibp, struct opa_smp *smp) { struct trap_list *trap_list; struct trap_node *trap; unsigned long flags; int i; if (smp->attr_id != IB_SMP_ATTR_NOTICE) return; spin_lock_irqsave(&ibp->rvp.lock, flags); for (i = 0; i < RVT_MAX_TRAP_LISTS; i++) { trap_list = &ibp->rvp.trap_lists[i]; trap = list_first_entry_or_null(&trap_list->list, struct trap_node, list); if (trap && trap->tid == smp->tid) { if (trap->in_use) { trap->repress = 1; } else { trap_list->list_len--; list_del(&trap->list); kfree(trap); } break; } } spin_unlock_irqrestore(&ibp->rvp.lock, flags); } static void hfi1_update_sm_ah_attr(struct hfi1_ibport *ibp, struct rdma_ah_attr *attr, u32 dlid) { rdma_ah_set_dlid(attr, dlid); rdma_ah_set_port_num(attr, ppd_from_ibp(ibp)->port); if (dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) { struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); rdma_ah_set_ah_flags(attr, IB_AH_GRH); grh->sgid_index = 0; grh->hop_limit = 1; grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; grh->dgid.global.interface_id = OPA_MAKE_ID(dlid); } } static int hfi1_modify_qp0_ah(struct hfi1_ibport *ibp, struct rvt_ah *ah, u32 dlid) { struct rdma_ah_attr attr; struct rvt_qp *qp0; int ret = -EINVAL; memset(&attr, 0, sizeof(attr)); attr.type = ah->ibah.type; hfi1_update_sm_ah_attr(ibp, &attr, dlid); rcu_read_lock(); qp0 = rcu_dereference(ibp->rvp.qp[0]); if (qp0) ret = rdma_modify_ah(&ah->ibah, &attr); rcu_read_unlock(); return ret; } static struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u32 dlid) { struct rdma_ah_attr attr; struct ib_ah *ah = ERR_PTR(-EINVAL); struct rvt_qp *qp0; struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct hfi1_devdata *dd = dd_from_ppd(ppd); u8 port_num = ppd->port; memset(&attr, 0, sizeof(attr)); attr.type = rdma_ah_find_type(&dd->verbs_dev.rdi.ibdev, port_num); hfi1_update_sm_ah_attr(ibp, &attr, dlid); rcu_read_lock(); qp0 = rcu_dereference(ibp->rvp.qp[0]); if (qp0) ah = rdma_create_ah(qp0->ibqp.pd, &attr); rcu_read_unlock(); return ah; } static void send_trap(struct hfi1_ibport *ibp, struct trap_node *trap) { struct ib_mad_send_buf *send_buf; struct ib_mad_agent *agent; struct opa_smp *smp; unsigned long flags; int pkey_idx; u32 qpn = ppd_from_ibp(ibp)->sm_trap_qp; agent = ibp->rvp.send_agent; if (!agent) { cleanup_traps(ibp, trap); return; } /* o14-3.2.1 */ if (driver_lstate(ppd_from_ibp(ibp)) != IB_PORT_ACTIVE) { cleanup_traps(ibp, trap); return; } /* Add the trap to the list if necessary and see if we can send it */ trap = check_and_add_trap(ibp, trap); if (!trap) return; pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); if (pkey_idx < 0) { pr_warn("%s: failed to find limited mgmt pkey, defaulting 0x%x\n", __func__, hfi1_get_pkey(ibp, 1)); pkey_idx = 1; } send_buf = ib_create_send_mad(agent, qpn, pkey_idx, 0, IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA, GFP_ATOMIC, IB_MGMT_BASE_VERSION); if (IS_ERR(send_buf)) return; smp = send_buf->mad; smp->base_version = OPA_MGMT_BASE_VERSION; smp->mgmt_class = IB_MGMT_CLASS_SUBN_LID_ROUTED; smp->class_version = OPA_SM_CLASS_VERSION; smp->method = IB_MGMT_METHOD_TRAP; /* Only update the transaction ID for new traps (o13-5). */ if (trap->tid == 0) { ibp->rvp.tid++; /* make sure that tid != 0 */ if (ibp->rvp.tid == 0) ibp->rvp.tid++; trap->tid = cpu_to_be64(ibp->rvp.tid); } smp->tid = trap->tid; smp->attr_id = IB_SMP_ATTR_NOTICE; /* o14-1: smp->mkey = 0; */ memcpy(smp->route.lid.data, &trap->data, trap->len); spin_lock_irqsave(&ibp->rvp.lock, flags); if (!ibp->rvp.sm_ah) { if (ibp->rvp.sm_lid != be16_to_cpu(IB_LID_PERMISSIVE)) { struct ib_ah *ah; ah = hfi1_create_qp0_ah(ibp, ibp->rvp.sm_lid); if (IS_ERR(ah)) { spin_unlock_irqrestore(&ibp->rvp.lock, flags); return; } send_buf->ah = ah; ibp->rvp.sm_ah = ibah_to_rvtah(ah); } else { spin_unlock_irqrestore(&ibp->rvp.lock, flags); return; } } else { send_buf->ah = &ibp->rvp.sm_ah->ibah; } /* * If the trap was repressed while things were getting set up, don't * bother sending it. This could happen for a retry. */ if (trap->repress) { list_del(&trap->list); spin_unlock_irqrestore(&ibp->rvp.lock, flags); kfree(trap); ib_free_send_mad(send_buf); return; } trap->in_use = 0; spin_unlock_irqrestore(&ibp->rvp.lock, flags); if (ib_post_send_mad(send_buf, NULL)) ib_free_send_mad(send_buf); } void hfi1_handle_trap_timer(unsigned long data) { struct hfi1_ibport *ibp = (struct hfi1_ibport *)data; struct trap_node *trap = NULL; unsigned long flags; int i; /* Find the trap with the highest priority */ spin_lock_irqsave(&ibp->rvp.lock, flags); for (i = 0; !trap && i < RVT_MAX_TRAP_LISTS; i++) { trap = list_first_entry_or_null(&ibp->rvp.trap_lists[i].list, struct trap_node, list); } spin_unlock_irqrestore(&ibp->rvp.lock, flags); if (trap) send_trap(ibp, trap); } static struct trap_node *create_trap_node(u8 type, __be16 trap_num, u32 lid) { struct trap_node *trap; trap = kzalloc(sizeof(*trap), GFP_ATOMIC); if (!trap) return NULL; INIT_LIST_HEAD(&trap->list); trap->data.generic_type = type; trap->data.prod_type_lsb = IB_NOTICE_PROD_CA; trap->data.trap_num = trap_num; trap->data.issuer_lid = cpu_to_be32(lid); return trap; } /* * Send a bad P_Key trap (ch. 14.3.8). */ void hfi1_bad_pkey(struct hfi1_ibport *ibp, u32 key, u32 sl, u32 qp1, u32 qp2, u32 lid1, u32 lid2) { struct trap_node *trap; u32 lid = ppd_from_ibp(ibp)->lid; ibp->rvp.n_pkt_drops++; ibp->rvp.pkey_violations++; trap = create_trap_node(IB_NOTICE_TYPE_SECURITY, OPA_TRAP_BAD_P_KEY, lid); if (!trap) return; /* Send violation trap */ trap->data.ntc_257_258.lid1 = cpu_to_be32(lid1); trap->data.ntc_257_258.lid2 = cpu_to_be32(lid2); trap->data.ntc_257_258.key = cpu_to_be32(key); trap->data.ntc_257_258.sl = sl << 3; trap->data.ntc_257_258.qp1 = cpu_to_be32(qp1); trap->data.ntc_257_258.qp2 = cpu_to_be32(qp2); trap->len = sizeof(trap->data); send_trap(ibp, trap); } /* * Send a bad M_Key trap (ch. 14.3.9). */ static void bad_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, __be64 mkey, __be32 dr_slid, u8 return_path[], u8 hop_cnt) { struct trap_node *trap; u32 lid = ppd_from_ibp(ibp)->lid; trap = create_trap_node(IB_NOTICE_TYPE_SECURITY, OPA_TRAP_BAD_M_KEY, lid); if (!trap) return; /* Send violation trap */ trap->data.ntc_256.lid = trap->data.issuer_lid; trap->data.ntc_256.method = mad->method; trap->data.ntc_256.attr_id = mad->attr_id; trap->data.ntc_256.attr_mod = mad->attr_mod; trap->data.ntc_256.mkey = mkey; if (mad->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { trap->data.ntc_256.dr_slid = dr_slid; trap->data.ntc_256.dr_trunc_hop = IB_NOTICE_TRAP_DR_NOTICE; if (hop_cnt > ARRAY_SIZE(trap->data.ntc_256.dr_rtn_path)) { trap->data.ntc_256.dr_trunc_hop |= IB_NOTICE_TRAP_DR_TRUNC; hop_cnt = ARRAY_SIZE(trap->data.ntc_256.dr_rtn_path); } trap->data.ntc_256.dr_trunc_hop |= hop_cnt; memcpy(trap->data.ntc_256.dr_rtn_path, return_path, hop_cnt); } trap->len = sizeof(trap->data); send_trap(ibp, trap); } /* * Send a Port Capability Mask Changed trap (ch. 14.3.11). */ void hfi1_cap_mask_chg(struct rvt_dev_info *rdi, u8 port_num) { struct trap_node *trap; struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); struct hfi1_devdata *dd = dd_from_dev(verbs_dev); struct hfi1_ibport *ibp = &dd->pport[port_num - 1].ibport_data; u32 lid = ppd_from_ibp(ibp)->lid; trap = create_trap_node(IB_NOTICE_TYPE_INFO, OPA_TRAP_CHANGE_CAPABILITY, lid); if (!trap) return; trap->data.ntc_144.lid = trap->data.issuer_lid; trap->data.ntc_144.new_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); trap->data.ntc_144.cap_mask3 = cpu_to_be16(ibp->rvp.port_cap3_flags); trap->len = sizeof(trap->data); send_trap(ibp, trap); } /* * Send a System Image GUID Changed trap (ch. 14.3.12). */ void hfi1_sys_guid_chg(struct hfi1_ibport *ibp) { struct trap_node *trap; u32 lid = ppd_from_ibp(ibp)->lid; trap = create_trap_node(IB_NOTICE_TYPE_INFO, OPA_TRAP_CHANGE_SYSGUID, lid); if (!trap) return; trap->data.ntc_145.new_sys_guid = ib_hfi1_sys_image_guid; trap->data.ntc_145.lid = trap->data.issuer_lid; trap->len = sizeof(trap->data); send_trap(ibp, trap); } /* * Send a Node Description Changed trap (ch. 14.3.13). */ void hfi1_node_desc_chg(struct hfi1_ibport *ibp) { struct trap_node *trap; u32 lid = ppd_from_ibp(ibp)->lid; trap = create_trap_node(IB_NOTICE_TYPE_INFO, OPA_TRAP_CHANGE_CAPABILITY, lid); if (!trap) return; trap->data.ntc_144.lid = trap->data.issuer_lid; trap->data.ntc_144.change_flags = cpu_to_be16(OPA_NOTICE_TRAP_NODE_DESC_CHG); trap->len = sizeof(trap->data); send_trap(ibp, trap); } static int __subn_get_opa_nodedesc(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct opa_node_description *nd; if (am || smp_length_check(sizeof(*nd), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } nd = (struct opa_node_description *)data; memcpy(nd->data, ibdev->node_desc, sizeof(nd->data)); if (resp_len) *resp_len += sizeof(*nd); return reply((struct ib_mad_hdr *)smp); } static int __subn_get_opa_nodeinfo(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct opa_node_info *ni; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ ni = (struct opa_node_info *)data; /* GUID 0 is illegal */ if (am || pidx >= dd->num_pports || ibdev->node_guid == 0 || smp_length_check(sizeof(*ni), max_len) || get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX) == 0) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ni->port_guid = get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX); ni->base_version = OPA_MGMT_BASE_VERSION; ni->class_version = OPA_SM_CLASS_VERSION; ni->node_type = 1; /* channel adapter */ ni->num_ports = ibdev->phys_port_cnt; /* This is already in network order */ ni->system_image_guid = ib_hfi1_sys_image_guid; ni->node_guid = ibdev->node_guid; ni->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); ni->device_id = cpu_to_be16(dd->pcidev->device); ni->revision = cpu_to_be32(dd->minrev); ni->local_port_num = port; ni->vendor_id[0] = dd->oui1; ni->vendor_id[1] = dd->oui2; ni->vendor_id[2] = dd->oui3; if (resp_len) *resp_len += sizeof(*ni); return reply((struct ib_mad_hdr *)smp); } static int subn_get_nodeinfo(struct ib_smp *smp, struct ib_device *ibdev, u8 port) { struct ib_node_info *nip = (struct ib_node_info *)&smp->data; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */ /* GUID 0 is illegal */ if (smp->attr_mod || pidx >= dd->num_pports || ibdev->node_guid == 0 || get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX) == 0) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } nip->port_guid = get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX); nip->base_version = OPA_MGMT_BASE_VERSION; nip->class_version = OPA_SM_CLASS_VERSION; nip->node_type = 1; /* channel adapter */ nip->num_ports = ibdev->phys_port_cnt; /* This is already in network order */ nip->sys_guid = ib_hfi1_sys_image_guid; nip->node_guid = ibdev->node_guid; nip->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd)); nip->device_id = cpu_to_be16(dd->pcidev->device); nip->revision = cpu_to_be32(dd->minrev); nip->local_port_num = port; nip->vendor_id[0] = dd->oui1; nip->vendor_id[1] = dd->oui2; nip->vendor_id[2] = dd->oui3; return reply((struct ib_mad_hdr *)smp); } static void set_link_width_enabled(struct hfi1_pportdata *ppd, u32 w) { (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_ENB, w); } static void set_link_width_downgrade_enabled(struct hfi1_pportdata *ppd, u32 w) { (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_DG_ENB, w); } static void set_link_speed_enabled(struct hfi1_pportdata *ppd, u32 s) { (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_SPD_ENB, s); } static int check_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad, int mad_flags, __be64 mkey, __be32 dr_slid, u8 return_path[], u8 hop_cnt) { int valid_mkey = 0; int ret = 0; /* Is the mkey in the process of expiring? */ if (ibp->rvp.mkey_lease_timeout && time_after_eq(jiffies, ibp->rvp.mkey_lease_timeout)) { /* Clear timeout and mkey protection field. */ ibp->rvp.mkey_lease_timeout = 0; ibp->rvp.mkeyprot = 0; } if ((mad_flags & IB_MAD_IGNORE_MKEY) || ibp->rvp.mkey == 0 || ibp->rvp.mkey == mkey) valid_mkey = 1; /* Unset lease timeout on any valid Get/Set/TrapRepress */ if (valid_mkey && ibp->rvp.mkey_lease_timeout && (mad->method == IB_MGMT_METHOD_GET || mad->method == IB_MGMT_METHOD_SET || mad->method == IB_MGMT_METHOD_TRAP_REPRESS)) ibp->rvp.mkey_lease_timeout = 0; if (!valid_mkey) { switch (mad->method) { case IB_MGMT_METHOD_GET: /* Bad mkey not a violation below level 2 */ if (ibp->rvp.mkeyprot < 2) break; case IB_MGMT_METHOD_SET: case IB_MGMT_METHOD_TRAP_REPRESS: if (ibp->rvp.mkey_violations != 0xFFFF) ++ibp->rvp.mkey_violations; if (!ibp->rvp.mkey_lease_timeout && ibp->rvp.mkey_lease_period) ibp->rvp.mkey_lease_timeout = jiffies + ibp->rvp.mkey_lease_period * HZ; /* Generate a trap notice. */ bad_mkey(ibp, mad, mkey, dr_slid, return_path, hop_cnt); ret = 1; } } return ret; } /* * The SMA caches reads from LCB registers in case the LCB is unavailable. * (The LCB is unavailable in certain link states, for example.) */ struct lcb_datum { u32 off; u64 val; }; static struct lcb_datum lcb_cache[] = { { DC_LCB_STS_ROUND_TRIP_LTP_CNT, 0 }, }; static int write_lcb_cache(u32 off, u64 val) { int i; for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { if (lcb_cache[i].off == off) { lcb_cache[i].val = val; return 0; } } pr_warn("%s bad offset 0x%x\n", __func__, off); return -1; } static int read_lcb_cache(u32 off, u64 *val) { int i; for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { if (lcb_cache[i].off == off) { *val = lcb_cache[i].val; return 0; } } pr_warn("%s bad offset 0x%x\n", __func__, off); return -1; } void read_ltp_rtt(struct hfi1_devdata *dd) { u64 reg; if (read_lcb_csr(dd, DC_LCB_STS_ROUND_TRIP_LTP_CNT, ®)) dd_dev_err(dd, "%s: unable to read LTP RTT\n", __func__); else write_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, reg); } static int __subn_get_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { int i; struct hfi1_devdata *dd; struct hfi1_pportdata *ppd; struct hfi1_ibport *ibp; struct opa_port_info *pi = (struct opa_port_info *)data; u8 mtu; u8 credit_rate; u8 is_beaconing_active; u32 state; u32 num_ports = OPA_AM_NPORT(am); u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); u32 buffer_units; u64 tmp = 0; if (num_ports != 1 || smp_length_check(sizeof(*pi), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } dd = dd_from_ibdev(ibdev); /* IB numbers ports from 1, hw from 0 */ ppd = dd->pport + (port - 1); ibp = &ppd->ibport_data; if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || ppd->vls_supported > ARRAY_SIZE(dd->vld)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } pi->lid = cpu_to_be32(ppd->lid); /* Only return the mkey if the protection field allows it. */ if (!(smp->method == IB_MGMT_METHOD_GET && ibp->rvp.mkey != smp->mkey && ibp->rvp.mkeyprot == 1)) pi->mkey = ibp->rvp.mkey; pi->subnet_prefix = ibp->rvp.gid_prefix; pi->sm_lid = cpu_to_be32(ibp->rvp.sm_lid); pi->ib_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags); pi->mkey_lease_period = cpu_to_be16(ibp->rvp.mkey_lease_period); pi->sm_trap_qp = cpu_to_be32(ppd->sm_trap_qp); pi->sa_qp = cpu_to_be32(ppd->sa_qp); pi->link_width.enabled = cpu_to_be16(ppd->link_width_enabled); pi->link_width.supported = cpu_to_be16(ppd->link_width_supported); pi->link_width.active = cpu_to_be16(ppd->link_width_active); pi->link_width_downgrade.supported = cpu_to_be16(ppd->link_width_downgrade_supported); pi->link_width_downgrade.enabled = cpu_to_be16(ppd->link_width_downgrade_enabled); pi->link_width_downgrade.tx_active = cpu_to_be16(ppd->link_width_downgrade_tx_active); pi->link_width_downgrade.rx_active = cpu_to_be16(ppd->link_width_downgrade_rx_active); pi->link_speed.supported = cpu_to_be16(ppd->link_speed_supported); pi->link_speed.active = cpu_to_be16(ppd->link_speed_active); pi->link_speed.enabled = cpu_to_be16(ppd->link_speed_enabled); state = driver_lstate(ppd); if (start_of_sm_config && (state == IB_PORT_INIT)) ppd->is_sm_config_started = 1; pi->port_phys_conf = (ppd->port_type & 0xf); pi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; pi->port_states.ledenable_offlinereason |= ppd->is_sm_config_started << 5; /* * This pairs with the memory barrier in hfi1_start_led_override to * ensure that we read the correct state of LED beaconing represented * by led_override_timer_active */ smp_rmb(); is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); pi->port_states.ledenable_offlinereason |= is_beaconing_active << 6; pi->port_states.ledenable_offlinereason |= ppd->offline_disabled_reason; pi->port_states.portphysstate_portstate = (driver_pstate(ppd) << 4) | state; pi->mkeyprotect_lmc = (ibp->rvp.mkeyprot << 6) | ppd->lmc; memset(pi->neigh_mtu.pvlx_to_mtu, 0, sizeof(pi->neigh_mtu.pvlx_to_mtu)); for (i = 0; i < ppd->vls_supported; i++) { mtu = mtu_to_enum(dd->vld[i].mtu, HFI1_DEFAULT_ACTIVE_MTU); if ((i % 2) == 0) pi->neigh_mtu.pvlx_to_mtu[i / 2] |= (mtu << 4); else pi->neigh_mtu.pvlx_to_mtu[i / 2] |= mtu; } /* don't forget VL 15 */ mtu = mtu_to_enum(dd->vld[15].mtu, 2048); pi->neigh_mtu.pvlx_to_mtu[15 / 2] |= mtu; pi->smsl = ibp->rvp.sm_sl & OPA_PI_MASK_SMSL; pi->operational_vls = hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS); pi->partenforce_filterraw |= (ppd->linkinit_reason & OPA_PI_MASK_LINKINIT_REASON); if (ppd->part_enforce & HFI1_PART_ENFORCE_IN) pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_IN; if (ppd->part_enforce & HFI1_PART_ENFORCE_OUT) pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_OUT; pi->mkey_violations = cpu_to_be16(ibp->rvp.mkey_violations); /* P_KeyViolations are counted by hardware. */ pi->pkey_violations = cpu_to_be16(ibp->rvp.pkey_violations); pi->qkey_violations = cpu_to_be16(ibp->rvp.qkey_violations); pi->vl.cap = ppd->vls_supported; pi->vl.high_limit = cpu_to_be16(ibp->rvp.vl_high_limit); pi->vl.arb_high_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_CAP); pi->vl.arb_low_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_LOW_CAP); pi->clientrereg_subnettimeout = ibp->rvp.subnet_timeout; pi->port_link_mode = cpu_to_be16(OPA_PORT_LINK_MODE_OPA << 10 | OPA_PORT_LINK_MODE_OPA << 5 | OPA_PORT_LINK_MODE_OPA); pi->port_ltp_crc_mode = cpu_to_be16(ppd->port_ltp_crc_mode); pi->port_mode = cpu_to_be16( ppd->is_active_optimize_enabled ? OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE : 0); pi->port_packet_format.supported = cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B | OPA_PORT_PACKET_FORMAT_16B); pi->port_packet_format.enabled = cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B | OPA_PORT_PACKET_FORMAT_16B); /* flit_control.interleave is (OPA V1, version .76): * bits use * ---- --- * 2 res * 2 DistanceSupported * 2 DistanceEnabled * 5 MaxNextLevelTxEnabled * 5 MaxNestLevelRxSupported * * HFI supports only "distance mode 1" (see OPA V1, version .76, * section 9.6.2), so set DistanceSupported, DistanceEnabled * to 0x1. */ pi->flit_control.interleave = cpu_to_be16(0x1400); pi->link_down_reason = ppd->local_link_down_reason.sma; pi->neigh_link_down_reason = ppd->neigh_link_down_reason.sma; pi->port_error_action = cpu_to_be32(ppd->port_error_action); pi->mtucap = mtu_to_enum(hfi1_max_mtu, IB_MTU_4096); /* 32.768 usec. response time (guessing) */ pi->resptimevalue = 3; pi->local_port_num = port; /* buffer info for FM */ pi->overall_buffer_space = cpu_to_be16(dd->link_credits); pi->neigh_node_guid = cpu_to_be64(ppd->neighbor_guid); pi->neigh_port_num = ppd->neighbor_port_number; pi->port_neigh_mode = (ppd->neighbor_type & OPA_PI_MASK_NEIGH_NODE_TYPE) | (ppd->mgmt_allowed ? OPA_PI_MASK_NEIGH_MGMT_ALLOWED : 0) | (ppd->neighbor_fm_security ? OPA_PI_MASK_NEIGH_FW_AUTH_BYPASS : 0); /* HFIs shall always return VL15 credits to their * neighbor in a timely manner, without any credit return pacing. */ credit_rate = 0; buffer_units = (dd->vau) & OPA_PI_MASK_BUF_UNIT_BUF_ALLOC; buffer_units |= (dd->vcu << 3) & OPA_PI_MASK_BUF_UNIT_CREDIT_ACK; buffer_units |= (credit_rate << 6) & OPA_PI_MASK_BUF_UNIT_VL15_CREDIT_RATE; buffer_units |= (dd->vl15_init << 11) & OPA_PI_MASK_BUF_UNIT_VL15_INIT; pi->buffer_units = cpu_to_be32(buffer_units); pi->opa_cap_mask = cpu_to_be16(ibp->rvp.port_cap3_flags); pi->collectivemask_multicastmask = ((OPA_COLLECTIVE_NR & 0x7) << 3 | (OPA_MCAST_NR & 0x7)); /* HFI supports a replay buffer 128 LTPs in size */ pi->replay_depth.buffer = 0x80; /* read the cached value of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ read_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, &tmp); /* * this counter is 16 bits wide, but the replay_depth.wire * variable is only 8 bits */ if (tmp > 0xff) tmp = 0xff; pi->replay_depth.wire = tmp; if (resp_len) *resp_len += sizeof(struct opa_port_info); return reply((struct ib_mad_hdr *)smp); } /** * get_pkeys - return the PKEY table * @dd: the hfi1_ib device * @port: the IB port number * @pkeys: the pkey table is placed here */ static int get_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) { struct hfi1_pportdata *ppd = dd->pport + port - 1; memcpy(pkeys, ppd->pkeys, sizeof(ppd->pkeys)); return 0; } static int __subn_get_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); u32 n_blocks_req = OPA_AM_NBLK(am); u32 start_block = am & 0x7ff; __be16 *p; u16 *q; int i; u16 n_blocks_avail; unsigned npkeys = hfi1_get_npkeys(dd); size_t size; if (n_blocks_req == 0) { pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", port, start_block, n_blocks_req); smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; size = (n_blocks_req * OPA_PARTITION_TABLE_BLK_SIZE) * sizeof(u16); if (smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } if (start_block + n_blocks_req > n_blocks_avail || n_blocks_req > OPA_NUM_PKEY_BLOCKS_PER_SMP) { pr_warn("OPA Get PKey AM Invalid : s 0x%x; req 0x%x; " "avail 0x%x; blk/smp 0x%lx\n", start_block, n_blocks_req, n_blocks_avail, OPA_NUM_PKEY_BLOCKS_PER_SMP); smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } p = (__be16 *)data; q = (u16 *)data; /* get the real pkeys if we are requesting the first block */ if (start_block == 0) { get_pkeys(dd, port, q); for (i = 0; i < npkeys; i++) p[i] = cpu_to_be16(q[i]); if (resp_len) *resp_len += size; } else { smp->status |= IB_SMP_INVALID_FIELD; } return reply((struct ib_mad_hdr *)smp); } enum { HFI_TRANSITION_DISALLOWED, HFI_TRANSITION_IGNORED, HFI_TRANSITION_ALLOWED, HFI_TRANSITION_UNDEFINED, }; /* * Use shortened names to improve readability of * {logical,physical}_state_transitions */ enum { __D = HFI_TRANSITION_DISALLOWED, __I = HFI_TRANSITION_IGNORED, __A = HFI_TRANSITION_ALLOWED, __U = HFI_TRANSITION_UNDEFINED, }; /* * IB_PORTPHYSSTATE_POLLING (2) through OPA_PORTPHYSSTATE_MAX (11) are * represented in physical_state_transitions. */ #define __N_PHYSTATES (OPA_PORTPHYSSTATE_MAX - IB_PORTPHYSSTATE_POLLING + 1) /* * Within physical_state_transitions, rows represent "old" states, * columns "new" states, and physical_state_transitions.allowed[old][new] * indicates if the transition from old state to new state is legal (see * OPAg1v1, Table 6-4). */ static const struct { u8 allowed[__N_PHYSTATES][__N_PHYSTATES]; } physical_state_transitions = { { /* 2 3 4 5 6 7 8 9 10 11 */ /* 2 */ { __A, __A, __D, __D, __D, __D, __D, __D, __D, __D }, /* 3 */ { __A, __I, __D, __D, __D, __D, __D, __D, __D, __A }, /* 4 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, /* 5 */ { __A, __A, __D, __I, __D, __D, __D, __D, __D, __D }, /* 6 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, /* 7 */ { __D, __A, __D, __D, __D, __I, __D, __D, __D, __D }, /* 8 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, /* 9 */ { __I, __A, __D, __D, __D, __D, __D, __I, __D, __D }, /*10 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U }, /*11 */ { __D, __A, __D, __D, __D, __D, __D, __D, __D, __I }, } }; /* * IB_PORT_DOWN (1) through IB_PORT_ACTIVE_DEFER (5) are represented * logical_state_transitions */ #define __N_LOGICAL_STATES (IB_PORT_ACTIVE_DEFER - IB_PORT_DOWN + 1) /* * Within logical_state_transitions rows represent "old" states, * columns "new" states, and logical_state_transitions.allowed[old][new] * indicates if the transition from old state to new state is legal (see * OPAg1v1, Table 9-12). */ static const struct { u8 allowed[__N_LOGICAL_STATES][__N_LOGICAL_STATES]; } logical_state_transitions = { { /* 1 2 3 4 5 */ /* 1 */ { __I, __D, __D, __D, __U}, /* 2 */ { __D, __I, __A, __D, __U}, /* 3 */ { __D, __D, __I, __A, __U}, /* 4 */ { __D, __D, __I, __I, __U}, /* 5 */ { __U, __U, __U, __U, __U}, } }; static int logical_transition_allowed(int old, int new) { if (old < IB_PORT_NOP || old > IB_PORT_ACTIVE_DEFER || new < IB_PORT_NOP || new > IB_PORT_ACTIVE_DEFER) { pr_warn("invalid logical state(s) (old %d new %d)\n", old, new); return HFI_TRANSITION_UNDEFINED; } if (new == IB_PORT_NOP) return HFI_TRANSITION_ALLOWED; /* always allowed */ /* adjust states for indexing into logical_state_transitions */ old -= IB_PORT_DOWN; new -= IB_PORT_DOWN; if (old < 0 || new < 0) return HFI_TRANSITION_UNDEFINED; return logical_state_transitions.allowed[old][new]; } static int physical_transition_allowed(int old, int new) { if (old < IB_PORTPHYSSTATE_NOP || old > OPA_PORTPHYSSTATE_MAX || new < IB_PORTPHYSSTATE_NOP || new > OPA_PORTPHYSSTATE_MAX) { pr_warn("invalid physical state(s) (old %d new %d)\n", old, new); return HFI_TRANSITION_UNDEFINED; } if (new == IB_PORTPHYSSTATE_NOP) return HFI_TRANSITION_ALLOWED; /* always allowed */ /* adjust states for indexing into physical_state_transitions */ old -= IB_PORTPHYSSTATE_POLLING; new -= IB_PORTPHYSSTATE_POLLING; if (old < 0 || new < 0) return HFI_TRANSITION_UNDEFINED; return physical_state_transitions.allowed[old][new]; } static int port_states_transition_allowed(struct hfi1_pportdata *ppd, u32 logical_new, u32 physical_new) { u32 physical_old = driver_pstate(ppd); u32 logical_old = driver_lstate(ppd); int ret, logical_allowed, physical_allowed; ret = logical_transition_allowed(logical_old, logical_new); logical_allowed = ret; if (ret == HFI_TRANSITION_DISALLOWED || ret == HFI_TRANSITION_UNDEFINED) { pr_warn("invalid logical state transition %s -> %s\n", opa_lstate_name(logical_old), opa_lstate_name(logical_new)); return ret; } ret = physical_transition_allowed(physical_old, physical_new); physical_allowed = ret; if (ret == HFI_TRANSITION_DISALLOWED || ret == HFI_TRANSITION_UNDEFINED) { pr_warn("invalid physical state transition %s -> %s\n", opa_pstate_name(physical_old), opa_pstate_name(physical_new)); return ret; } if (logical_allowed == HFI_TRANSITION_IGNORED && physical_allowed == HFI_TRANSITION_IGNORED) return HFI_TRANSITION_IGNORED; /* * A change request of Physical Port State from * 'Offline' to 'Polling' should be ignored. */ if ((physical_old == OPA_PORTPHYSSTATE_OFFLINE) && (physical_new == IB_PORTPHYSSTATE_POLLING)) return HFI_TRANSITION_IGNORED; /* * Either physical_allowed or logical_allowed is * HFI_TRANSITION_ALLOWED. */ return HFI_TRANSITION_ALLOWED; } static int set_port_states(struct hfi1_pportdata *ppd, struct opa_smp *smp, u32 logical_state, u32 phys_state, int suppress_idle_sma) { struct hfi1_devdata *dd = ppd->dd; u32 link_state; int ret; ret = port_states_transition_allowed(ppd, logical_state, phys_state); if (ret == HFI_TRANSITION_DISALLOWED || ret == HFI_TRANSITION_UNDEFINED) { /* error message emitted above */ smp->status |= IB_SMP_INVALID_FIELD; return 0; } if (ret == HFI_TRANSITION_IGNORED) return 0; if ((phys_state != IB_PORTPHYSSTATE_NOP) && !(logical_state == IB_PORT_DOWN || logical_state == IB_PORT_NOP)){ pr_warn("SubnSet(OPA_PortInfo) port state invalid: logical_state 0x%x physical_state 0x%x\n", logical_state, phys_state); smp->status |= IB_SMP_INVALID_FIELD; } /* * Logical state changes are summarized in OPAv1g1 spec., * Table 9-12; physical state changes are summarized in * OPAv1g1 spec., Table 6.4. */ switch (logical_state) { case IB_PORT_NOP: if (phys_state == IB_PORTPHYSSTATE_NOP) break; /* FALLTHROUGH */ case IB_PORT_DOWN: if (phys_state == IB_PORTPHYSSTATE_NOP) { link_state = HLS_DN_DOWNDEF; } else if (phys_state == IB_PORTPHYSSTATE_POLLING) { link_state = HLS_DN_POLL; set_link_down_reason(ppd, OPA_LINKDOWN_REASON_FM_BOUNCE, 0, OPA_LINKDOWN_REASON_FM_BOUNCE); } else if (phys_state == IB_PORTPHYSSTATE_DISABLED) { link_state = HLS_DN_DISABLE; } else { pr_warn("SubnSet(OPA_PortInfo) invalid physical state 0x%x\n", phys_state); smp->status |= IB_SMP_INVALID_FIELD; break; } if ((link_state == HLS_DN_POLL || link_state == HLS_DN_DOWNDEF)) { /* * Going to poll. No matter what the current state, * always move offline first, then tune and start the * link. This correctly handles a FM link bounce and * a link enable. Going offline is a no-op if already * offline. */ set_link_state(ppd, HLS_DN_OFFLINE); start_link(ppd); } else { set_link_state(ppd, link_state); } if (link_state == HLS_DN_DISABLE && (ppd->offline_disabled_reason > HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED) || ppd->offline_disabled_reason == HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) ppd->offline_disabled_reason = HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); /* * Don't send a reply if the response would be sent * through the disabled port. */ if (link_state == HLS_DN_DISABLE && smp->hop_cnt) return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; break; case IB_PORT_ARMED: ret = set_link_state(ppd, HLS_UP_ARMED); if ((ret == 0) && (suppress_idle_sma == 0)) send_idle_sma(dd, SMA_IDLE_ARM); break; case IB_PORT_ACTIVE: if (ppd->neighbor_normal) { ret = set_link_state(ppd, HLS_UP_ACTIVE); if (ret == 0) send_idle_sma(dd, SMA_IDLE_ACTIVE); } else { pr_warn("SubnSet(OPA_PortInfo) Cannot move to Active with NeighborNormal 0\n"); smp->status |= IB_SMP_INVALID_FIELD; } break; default: pr_warn("SubnSet(OPA_PortInfo) invalid logical state 0x%x\n", logical_state); smp->status |= IB_SMP_INVALID_FIELD; } return 0; } /** * subn_set_opa_portinfo - set port information * @smp: the incoming SM packet * @ibdev: the infiniband device * @port: the port on the device * */ static int __subn_set_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct opa_port_info *pi = (struct opa_port_info *)data; struct ib_event event; struct hfi1_devdata *dd; struct hfi1_pportdata *ppd; struct hfi1_ibport *ibp; u8 clientrereg; unsigned long flags; u32 smlid; u32 lid; u8 ls_old, ls_new, ps_new; u8 vls; u8 msl; u8 crc_enabled; u16 lse, lwe, mtu; u32 num_ports = OPA_AM_NPORT(am); u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); int ret, i, invalid = 0, call_set_mtu = 0; int call_link_downgrade_policy = 0; if (num_ports != 1 || smp_length_check(sizeof(*pi), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } lid = be32_to_cpu(pi->lid); if (lid & 0xFF000000) { pr_warn("OPA_PortInfo lid out of range: %X\n", lid); smp->status |= IB_SMP_INVALID_FIELD; goto get_only; } smlid = be32_to_cpu(pi->sm_lid); if (smlid & 0xFF000000) { pr_warn("OPA_PortInfo SM lid out of range: %X\n", smlid); smp->status |= IB_SMP_INVALID_FIELD; goto get_only; } clientrereg = (pi->clientrereg_subnettimeout & OPA_PI_MASK_CLIENT_REREGISTER); dd = dd_from_ibdev(ibdev); /* IB numbers ports from 1, hw from 0 */ ppd = dd->pport + (port - 1); ibp = &ppd->ibport_data; event.device = ibdev; event.element.port_num = port; ls_old = driver_lstate(ppd); ibp->rvp.mkey = pi->mkey; if (ibp->rvp.gid_prefix != pi->subnet_prefix) { ibp->rvp.gid_prefix = pi->subnet_prefix; event.event = IB_EVENT_GID_CHANGE; ib_dispatch_event(&event); } ibp->rvp.mkey_lease_period = be16_to_cpu(pi->mkey_lease_period); /* Must be a valid unicast LID address. */ if ((lid == 0 && ls_old > IB_PORT_INIT) || (hfi1_is_16B_mcast(lid))) { smp->status |= IB_SMP_INVALID_FIELD; pr_warn("SubnSet(OPA_PortInfo) lid invalid 0x%x\n", lid); } else if (ppd->lid != lid || ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) { if (ppd->lid != lid) hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LID_CHANGE_BIT); if (ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LMC_CHANGE_BIT); hfi1_set_lid(ppd, lid, pi->mkeyprotect_lmc & OPA_PI_MASK_LMC); event.event = IB_EVENT_LID_CHANGE; ib_dispatch_event(&event); if (HFI1_PORT_GUID_INDEX + 1 < HFI1_GUIDS_PER_PORT) { /* Manufacture GID from LID to support extended * addresses */ ppd->guids[HFI1_PORT_GUID_INDEX + 1] = be64_to_cpu(OPA_MAKE_ID(lid)); event.event = IB_EVENT_GID_CHANGE; ib_dispatch_event(&event); } } msl = pi->smsl & OPA_PI_MASK_SMSL; if (pi->partenforce_filterraw & OPA_PI_MASK_LINKINIT_REASON) ppd->linkinit_reason = (pi->partenforce_filterraw & OPA_PI_MASK_LINKINIT_REASON); /* Must be a valid unicast LID address. */ if ((smlid == 0 && ls_old > IB_PORT_INIT) || (hfi1_is_16B_mcast(smlid))) { smp->status |= IB_SMP_INVALID_FIELD; pr_warn("SubnSet(OPA_PortInfo) smlid invalid 0x%x\n", smlid); } else if (smlid != ibp->rvp.sm_lid || msl != ibp->rvp.sm_sl) { pr_warn("SubnSet(OPA_PortInfo) smlid 0x%x\n", smlid); spin_lock_irqsave(&ibp->rvp.lock, flags); if (ibp->rvp.sm_ah) { if (smlid != ibp->rvp.sm_lid) hfi1_modify_qp0_ah(ibp, ibp->rvp.sm_ah, smlid); if (msl != ibp->rvp.sm_sl) rdma_ah_set_sl(&ibp->rvp.sm_ah->attr, msl); } spin_unlock_irqrestore(&ibp->rvp.lock, flags); if (smlid != ibp->rvp.sm_lid) ibp->rvp.sm_lid = smlid; if (msl != ibp->rvp.sm_sl) ibp->rvp.sm_sl = msl; event.event = IB_EVENT_SM_CHANGE; ib_dispatch_event(&event); } if (pi->link_down_reason == 0) { ppd->local_link_down_reason.sma = 0; ppd->local_link_down_reason.latest = 0; } if (pi->neigh_link_down_reason == 0) { ppd->neigh_link_down_reason.sma = 0; ppd->neigh_link_down_reason.latest = 0; } ppd->sm_trap_qp = be32_to_cpu(pi->sm_trap_qp); ppd->sa_qp = be32_to_cpu(pi->sa_qp); ppd->port_error_action = be32_to_cpu(pi->port_error_action); lwe = be16_to_cpu(pi->link_width.enabled); if (lwe) { if (lwe == OPA_LINK_WIDTH_RESET || lwe == OPA_LINK_WIDTH_RESET_OLD) set_link_width_enabled(ppd, ppd->link_width_supported); else if ((lwe & ~ppd->link_width_supported) == 0) set_link_width_enabled(ppd, lwe); else smp->status |= IB_SMP_INVALID_FIELD; } lwe = be16_to_cpu(pi->link_width_downgrade.enabled); /* LWD.E is always applied - 0 means "disabled" */ if (lwe == OPA_LINK_WIDTH_RESET || lwe == OPA_LINK_WIDTH_RESET_OLD) { set_link_width_downgrade_enabled(ppd, ppd-> link_width_downgrade_supported ); } else if ((lwe & ~ppd->link_width_downgrade_supported) == 0) { /* only set and apply if something changed */ if (lwe != ppd->link_width_downgrade_enabled) { set_link_width_downgrade_enabled(ppd, lwe); call_link_downgrade_policy = 1; } } else { smp->status |= IB_SMP_INVALID_FIELD; } lse = be16_to_cpu(pi->link_speed.enabled); if (lse) { if (lse & be16_to_cpu(pi->link_speed.supported)) set_link_speed_enabled(ppd, lse); else smp->status |= IB_SMP_INVALID_FIELD; } ibp->rvp.mkeyprot = (pi->mkeyprotect_lmc & OPA_PI_MASK_MKEY_PROT_BIT) >> 6; ibp->rvp.vl_high_limit = be16_to_cpu(pi->vl.high_limit) & 0xFF; (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_LIMIT, ibp->rvp.vl_high_limit); if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) || ppd->vls_supported > ARRAY_SIZE(dd->vld)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < ppd->vls_supported; i++) { if ((i % 2) == 0) mtu = enum_to_mtu((pi->neigh_mtu.pvlx_to_mtu[i / 2] >> 4) & 0xF); else mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[i / 2] & 0xF); if (mtu == 0xffff) { pr_warn("SubnSet(OPA_PortInfo) mtu invalid %d (0x%x)\n", mtu, (pi->neigh_mtu.pvlx_to_mtu[0] >> 4) & 0xF); smp->status |= IB_SMP_INVALID_FIELD; mtu = hfi1_max_mtu; /* use a valid MTU */ } if (dd->vld[i].mtu != mtu) { dd_dev_info(dd, "MTU change on vl %d from %d to %d\n", i, dd->vld[i].mtu, mtu); dd->vld[i].mtu = mtu; call_set_mtu++; } } /* As per OPAV1 spec: VL15 must support and be configured * for operation with a 2048 or larger MTU. */ mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[15 / 2] & 0xF); if (mtu < 2048 || mtu == 0xffff) mtu = 2048; if (dd->vld[15].mtu != mtu) { dd_dev_info(dd, "MTU change on vl 15 from %d to %d\n", dd->vld[15].mtu, mtu); dd->vld[15].mtu = mtu; call_set_mtu++; } if (call_set_mtu) set_mtu(ppd); /* Set operational VLs */ vls = pi->operational_vls & OPA_PI_MASK_OPERATIONAL_VL; if (vls) { if (vls > ppd->vls_supported) { pr_warn("SubnSet(OPA_PortInfo) VL's supported invalid %d\n", pi->operational_vls); smp->status |= IB_SMP_INVALID_FIELD; } else { if (hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS, vls) == -EINVAL) smp->status |= IB_SMP_INVALID_FIELD; } } if (pi->mkey_violations == 0) ibp->rvp.mkey_violations = 0; if (pi->pkey_violations == 0) ibp->rvp.pkey_violations = 0; if (pi->qkey_violations == 0) ibp->rvp.qkey_violations = 0; ibp->rvp.subnet_timeout = pi->clientrereg_subnettimeout & OPA_PI_MASK_SUBNET_TIMEOUT; crc_enabled = be16_to_cpu(pi->port_ltp_crc_mode); crc_enabled >>= 4; crc_enabled &= 0xf; if (crc_enabled != 0) ppd->port_crc_mode_enabled = port_ltp_to_cap(crc_enabled); ppd->is_active_optimize_enabled = !!(be16_to_cpu(pi->port_mode) & OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE); ls_new = pi->port_states.portphysstate_portstate & OPA_PI_MASK_PORT_STATE; ps_new = (pi->port_states.portphysstate_portstate & OPA_PI_MASK_PORT_PHYSICAL_STATE) >> 4; if (ls_old == IB_PORT_INIT) { if (start_of_sm_config) { if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) ppd->is_sm_config_started = 1; } else if (ls_new == IB_PORT_ARMED) { if (ppd->is_sm_config_started == 0) invalid = 1; } } /* Handle CLIENT_REREGISTER event b/c SM asked us for it */ if (clientrereg) { event.event = IB_EVENT_CLIENT_REREGISTER; ib_dispatch_event(&event); } /* * Do the port state change now that the other link parameters * have been set. * Changing the port physical state only makes sense if the link * is down or is being set to down. */ ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); if (ret) return ret; ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len, max_len); /* restore re-reg bit per o14-12.2.1 */ pi->clientrereg_subnettimeout |= clientrereg; /* * Apply the new link downgrade policy. This may result in a link * bounce. Do this after everything else so things are settled. * Possible problem: if setting the port state above fails, then * the policy change is not applied. */ if (call_link_downgrade_policy) apply_link_downgrade_policy(ppd, 0); return ret; get_only: return __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len, max_len); } /** * set_pkeys - set the PKEY table for ctxt 0 * @dd: the hfi1_ib device * @port: the IB port number * @pkeys: the PKEY table */ static int set_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys) { struct hfi1_pportdata *ppd; int i; int changed = 0; int update_includes_mgmt_partition = 0; /* * IB port one/two always maps to context zero/one, * always a kernel context, no locking needed * If we get here with ppd setup, no need to check * that rcd is valid. */ ppd = dd->pport + (port - 1); /* * If the update does not include the management pkey, don't do it. */ for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { if (pkeys[i] == LIM_MGMT_P_KEY) { update_includes_mgmt_partition = 1; break; } } if (!update_includes_mgmt_partition) return 1; for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { u16 key = pkeys[i]; u16 okey = ppd->pkeys[i]; if (key == okey) continue; /* * The SM gives us the complete PKey table. We have * to ensure that we put the PKeys in the matching * slots. */ ppd->pkeys[i] = key; changed = 1; } if (changed) { (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); hfi1_event_pkey_change(dd, port); } return 0; } static int __subn_set_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); u32 n_blocks_sent = OPA_AM_NBLK(am); u32 start_block = am & 0x7ff; u16 *p = (u16 *)data; __be16 *q = (__be16 *)data; int i; u16 n_blocks_avail; unsigned npkeys = hfi1_get_npkeys(dd); u32 size = 0; if (n_blocks_sent == 0) { pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n", port, start_block, n_blocks_sent); smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1; size = sizeof(u16) * (n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE); if (smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } if (start_block + n_blocks_sent > n_blocks_avail || n_blocks_sent > OPA_NUM_PKEY_BLOCKS_PER_SMP) { pr_warn("OPA Set PKey AM Invalid : s 0x%x; req 0x%x; avail 0x%x; blk/smp 0x%lx\n", start_block, n_blocks_sent, n_blocks_avail, OPA_NUM_PKEY_BLOCKS_PER_SMP); smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE; i++) p[i] = be16_to_cpu(q[i]); if (start_block == 0 && set_pkeys(dd, port, p) != 0) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } return __subn_get_opa_pkeytable(smp, am, data, ibdev, port, resp_len, max_len); } #define ILLEGAL_VL 12 /* * filter_sc2vlt changes mappings to VL15 to ILLEGAL_VL (except * for SC15, which must map to VL15). If we don't remap things this * way it is possible for VL15 counters to increment when we try to * send on a SC which is mapped to an invalid VL. * When getting the table convert ILLEGAL_VL back to VL15. */ static void filter_sc2vlt(void *data, bool set) { int i; u8 *pd = data; for (i = 0; i < OPA_MAX_SCS; i++) { if (i == 15) continue; if (set) { if ((pd[i] & 0x1f) == 0xf) pd[i] = ILLEGAL_VL; } else { if ((pd[i] & 0x1f) == ILLEGAL_VL) pd[i] = 0xf; } } } static int set_sc2vlt_tables(struct hfi1_devdata *dd, void *data) { u64 *val = data; filter_sc2vlt(data, true); write_csr(dd, SEND_SC2VLT0, *val++); write_csr(dd, SEND_SC2VLT1, *val++); write_csr(dd, SEND_SC2VLT2, *val++); write_csr(dd, SEND_SC2VLT3, *val++); write_seqlock_irq(&dd->sc2vl_lock); memcpy(dd->sc2vl, data, sizeof(dd->sc2vl)); write_sequnlock_irq(&dd->sc2vl_lock); return 0; } static int get_sc2vlt_tables(struct hfi1_devdata *dd, void *data) { u64 *val = (u64 *)data; *val++ = read_csr(dd, SEND_SC2VLT0); *val++ = read_csr(dd, SEND_SC2VLT1); *val++ = read_csr(dd, SEND_SC2VLT2); *val++ = read_csr(dd, SEND_SC2VLT3); filter_sc2vlt((u64 *)data, false); return 0; } static int __subn_get_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_ibport *ibp = to_iport(ibdev, port); u8 *p = data; size_t size = ARRAY_SIZE(ibp->sl_to_sc); /* == 32 */ unsigned i; if (am || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) *p++ = ibp->sl_to_sc[i]; if (resp_len) *resp_len += size; return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_ibport *ibp = to_iport(ibdev, port); u8 *p = data; size_t size = ARRAY_SIZE(ibp->sl_to_sc); int i; u8 sc; if (am || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) { sc = *p++; if (ibp->sl_to_sc[i] != sc) { ibp->sl_to_sc[i] = sc; /* Put all stale qps into error state */ hfi1_error_port_qps(ibp, i); } } return __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len, max_len); } static int __subn_get_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_ibport *ibp = to_iport(ibdev, port); u8 *p = data; size_t size = ARRAY_SIZE(ibp->sc_to_sl); /* == 32 */ unsigned i; if (am || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) *p++ = ibp->sc_to_sl[i]; if (resp_len) *resp_len += size; return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_ibport *ibp = to_iport(ibdev, port); size_t size = ARRAY_SIZE(ibp->sc_to_sl); u8 *p = data; int i; if (am || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++) ibp->sc_to_sl[i] = *p++; return __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len, max_len); } static int __subn_get_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 n_blocks = OPA_AM_NBLK(am); struct hfi1_devdata *dd = dd_from_ibdev(ibdev); void *vp = (void *)data; size_t size = 4 * sizeof(u64); if (n_blocks != 1 || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } get_sc2vlt_tables(dd, vp); if (resp_len) *resp_len += size; return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 n_blocks = OPA_AM_NBLK(am); int async_update = OPA_AM_ASYNC(am); struct hfi1_devdata *dd = dd_from_ibdev(ibdev); void *vp = (void *)data; struct hfi1_pportdata *ppd; int lstate; /* * set_sc2vlt_tables writes the information contained in *data * to four 64-bit registers SendSC2VLt[0-3]. We need to make * sure *max_len is not greater than the total size of the four * SendSC2VLt[0-3] registers. */ size_t size = 4 * sizeof(u64); if (n_blocks != 1 || async_update || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } /* IB numbers ports from 1, hw from 0 */ ppd = dd->pport + (port - 1); lstate = driver_lstate(ppd); /* * it's known that async_update is 0 by this point, but include * the explicit check for clarity */ if (!async_update && (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } set_sc2vlt_tables(dd, vp); return __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len, max_len); } static int __subn_get_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 n_blocks = OPA_AM_NPORT(am); struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_pportdata *ppd; void *vp = (void *)data; int size = sizeof(struct sc2vlnt); if (n_blocks != 1 || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ppd = dd->pport + (port - 1); fm_get_table(ppd, FM_TBL_SC2VLNT, vp); if (resp_len) *resp_len += size; return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 n_blocks = OPA_AM_NPORT(am); struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_pportdata *ppd; void *vp = (void *)data; int lstate; int size = sizeof(struct sc2vlnt); if (n_blocks != 1 || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } /* IB numbers ports from 1, hw from 0 */ ppd = dd->pport + (port - 1); lstate = driver_lstate(ppd); if (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ppd = dd->pport + (port - 1); fm_set_table(ppd, FM_TBL_SC2VLNT, vp); return __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, resp_len, max_len); } static int __subn_get_opa_psi(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 nports = OPA_AM_NPORT(am); u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); u32 lstate; struct hfi1_ibport *ibp; struct hfi1_pportdata *ppd; struct opa_port_state_info *psi = (struct opa_port_state_info *)data; if (nports != 1 || smp_length_check(sizeof(*psi), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ibp = to_iport(ibdev, port); ppd = ppd_from_ibp(ibp); lstate = driver_lstate(ppd); if (start_of_sm_config && (lstate == IB_PORT_INIT)) ppd->is_sm_config_started = 1; psi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4; psi->port_states.ledenable_offlinereason |= ppd->is_sm_config_started << 5; psi->port_states.ledenable_offlinereason |= ppd->offline_disabled_reason; psi->port_states.portphysstate_portstate = (driver_pstate(ppd) << 4) | (lstate & 0xf); psi->link_width_downgrade_tx_active = cpu_to_be16(ppd->link_width_downgrade_tx_active); psi->link_width_downgrade_rx_active = cpu_to_be16(ppd->link_width_downgrade_rx_active); if (resp_len) *resp_len += sizeof(struct opa_port_state_info); return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_psi(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 nports = OPA_AM_NPORT(am); u32 start_of_sm_config = OPA_AM_START_SM_CFG(am); u32 ls_old; u8 ls_new, ps_new; struct hfi1_ibport *ibp; struct hfi1_pportdata *ppd; struct opa_port_state_info *psi = (struct opa_port_state_info *)data; int ret, invalid = 0; if (nports != 1 || smp_length_check(sizeof(*psi), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ibp = to_iport(ibdev, port); ppd = ppd_from_ibp(ibp); ls_old = driver_lstate(ppd); ls_new = port_states_to_logical_state(&psi->port_states); ps_new = port_states_to_phys_state(&psi->port_states); if (ls_old == IB_PORT_INIT) { if (start_of_sm_config) { if (ls_new == ls_old || (ls_new == IB_PORT_ARMED)) ppd->is_sm_config_started = 1; } else if (ls_new == IB_PORT_ARMED) { if (ppd->is_sm_config_started == 0) invalid = 1; } } ret = set_port_states(ppd, smp, ls_new, ps_new, invalid); if (ret) return ret; if (invalid) smp->status |= IB_SMP_INVALID_FIELD; return __subn_get_opa_psi(smp, am, data, ibdev, port, resp_len, max_len); } static int __subn_get_opa_cable_info(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); u32 addr = OPA_AM_CI_ADDR(am); u32 len = OPA_AM_CI_LEN(am) + 1; int ret; if (dd->pport->port_type != PORT_TYPE_QSFP || smp_length_check(len, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } #define __CI_PAGE_SIZE BIT(7) /* 128 bytes */ #define __CI_PAGE_MASK ~(__CI_PAGE_SIZE - 1) #define __CI_PAGE_NUM(a) ((a) & __CI_PAGE_MASK) /* * check that addr is within spec, and * addr and (addr + len - 1) are on the same "page" */ if (addr >= 4096 || (__CI_PAGE_NUM(addr) != __CI_PAGE_NUM(addr + len - 1))) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ret = get_cable_info(dd, port, addr, len, data); if (ret == -ENODEV) { smp->status |= IB_SMP_UNSUP_METH_ATTR; return reply((struct ib_mad_hdr *)smp); } /* The address range for the CableInfo SMA query is wider than the * memory available on the QSFP cable. We want to return a valid * response, albeit zeroed out, for address ranges beyond available * memory but that are within the CableInfo query spec */ if (ret < 0 && ret != -ERANGE) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } if (resp_len) *resp_len += len; return reply((struct ib_mad_hdr *)smp); } static int __subn_get_opa_bct(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 num_ports = OPA_AM_NPORT(am); struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_pportdata *ppd; struct buffer_control *p = (struct buffer_control *)data; int size = sizeof(struct buffer_control); if (num_ports != 1 || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ppd = dd->pport + (port - 1); fm_get_table(ppd, FM_TBL_BUFFER_CONTROL, p); trace_bct_get(dd, p); if (resp_len) *resp_len += size; return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_bct(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { u32 num_ports = OPA_AM_NPORT(am); struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_pportdata *ppd; struct buffer_control *p = (struct buffer_control *)data; if (num_ports != 1 || smp_length_check(sizeof(*p), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } ppd = dd->pport + (port - 1); trace_bct_set(dd, p); if (fm_set_table(ppd, FM_TBL_BUFFER_CONTROL, p) < 0) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } return __subn_get_opa_bct(smp, am, data, ibdev, port, resp_len, max_len); } static int __subn_get_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); u32 num_ports = OPA_AM_NPORT(am); u8 section = (am & 0x00ff0000) >> 16; u8 *p = data; int size = 256; if (num_ports != 1 || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } switch (section) { case OPA_VLARB_LOW_ELEMENTS: fm_get_table(ppd, FM_TBL_VL_LOW_ARB, p); break; case OPA_VLARB_HIGH_ELEMENTS: fm_get_table(ppd, FM_TBL_VL_HIGH_ARB, p); break; case OPA_VLARB_PREEMPT_ELEMENTS: fm_get_table(ppd, FM_TBL_VL_PREEMPT_ELEMS, p); break; case OPA_VLARB_PREEMPT_MATRIX: fm_get_table(ppd, FM_TBL_VL_PREEMPT_MATRIX, p); break; default: pr_warn("OPA SubnGet(VL Arb) AM Invalid : 0x%x\n", be32_to_cpu(smp->attr_mod)); smp->status |= IB_SMP_INVALID_FIELD; size = 0; break; } if (size > 0 && resp_len) *resp_len += size; return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port)); u32 num_ports = OPA_AM_NPORT(am); u8 section = (am & 0x00ff0000) >> 16; u8 *p = data; int size = 256; if (num_ports != 1 || smp_length_check(size, max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } switch (section) { case OPA_VLARB_LOW_ELEMENTS: (void)fm_set_table(ppd, FM_TBL_VL_LOW_ARB, p); break; case OPA_VLARB_HIGH_ELEMENTS: (void)fm_set_table(ppd, FM_TBL_VL_HIGH_ARB, p); break; /* * neither OPA_VLARB_PREEMPT_ELEMENTS, or OPA_VLARB_PREEMPT_MATRIX * can be changed from the default values */ case OPA_VLARB_PREEMPT_ELEMENTS: /* FALLTHROUGH */ case OPA_VLARB_PREEMPT_MATRIX: smp->status |= IB_SMP_UNSUP_METH_ATTR; break; default: pr_warn("OPA SubnSet(VL Arb) AM Invalid : 0x%x\n", be32_to_cpu(smp->attr_mod)); smp->status |= IB_SMP_INVALID_FIELD; break; } return __subn_get_opa_vl_arb(smp, am, data, ibdev, port, resp_len, max_len); } struct opa_pma_mad { struct ib_mad_hdr mad_hdr; u8 data[2024]; } __packed; struct opa_port_status_req { __u8 port_num; __u8 reserved[3]; __be32 vl_select_mask; }; #define VL_MASK_ALL 0x000080ff struct opa_port_status_rsp { __u8 port_num; __u8 reserved[3]; __be32 vl_select_mask; /* Data counters */ __be64 port_xmit_data; __be64 port_rcv_data; __be64 port_xmit_pkts; __be64 port_rcv_pkts; __be64 port_multicast_xmit_pkts; __be64 port_multicast_rcv_pkts; __be64 port_xmit_wait; __be64 sw_port_congestion; __be64 port_rcv_fecn; __be64 port_rcv_becn; __be64 port_xmit_time_cong; __be64 port_xmit_wasted_bw; __be64 port_xmit_wait_data; __be64 port_rcv_bubble; __be64 port_mark_fecn; /* Error counters */ __be64 port_rcv_constraint_errors; __be64 port_rcv_switch_relay_errors; __be64 port_xmit_discards; __be64 port_xmit_constraint_errors; __be64 port_rcv_remote_physical_errors; __be64 local_link_integrity_errors; __be64 port_rcv_errors; __be64 excessive_buffer_overruns; __be64 fm_config_errors; __be32 link_error_recovery; __be32 link_downed; u8 uncorrectable_errors; u8 link_quality_indicator; /* 5res, 3bit */ u8 res2[6]; struct _vls_pctrs { /* per-VL Data counters */ __be64 port_vl_xmit_data; __be64 port_vl_rcv_data; __be64 port_vl_xmit_pkts; __be64 port_vl_rcv_pkts; __be64 port_vl_xmit_wait; __be64 sw_port_vl_congestion; __be64 port_vl_rcv_fecn; __be64 port_vl_rcv_becn; __be64 port_xmit_time_cong; __be64 port_vl_xmit_wasted_bw; __be64 port_vl_xmit_wait_data; __be64 port_vl_rcv_bubble; __be64 port_vl_mark_fecn; __be64 port_vl_xmit_discards; } vls[0]; /* real array size defined by # bits set in vl_select_mask */ }; enum counter_selects { CS_PORT_XMIT_DATA = (1 << 31), CS_PORT_RCV_DATA = (1 << 30), CS_PORT_XMIT_PKTS = (1 << 29), CS_PORT_RCV_PKTS = (1 << 28), CS_PORT_MCAST_XMIT_PKTS = (1 << 27), CS_PORT_MCAST_RCV_PKTS = (1 << 26), CS_PORT_XMIT_WAIT = (1 << 25), CS_SW_PORT_CONGESTION = (1 << 24), CS_PORT_RCV_FECN = (1 << 23), CS_PORT_RCV_BECN = (1 << 22), CS_PORT_XMIT_TIME_CONG = (1 << 21), CS_PORT_XMIT_WASTED_BW = (1 << 20), CS_PORT_XMIT_WAIT_DATA = (1 << 19), CS_PORT_RCV_BUBBLE = (1 << 18), CS_PORT_MARK_FECN = (1 << 17), CS_PORT_RCV_CONSTRAINT_ERRORS = (1 << 16), CS_PORT_RCV_SWITCH_RELAY_ERRORS = (1 << 15), CS_PORT_XMIT_DISCARDS = (1 << 14), CS_PORT_XMIT_CONSTRAINT_ERRORS = (1 << 13), CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS = (1 << 12), CS_LOCAL_LINK_INTEGRITY_ERRORS = (1 << 11), CS_PORT_RCV_ERRORS = (1 << 10), CS_EXCESSIVE_BUFFER_OVERRUNS = (1 << 9), CS_FM_CONFIG_ERRORS = (1 << 8), CS_LINK_ERROR_RECOVERY = (1 << 7), CS_LINK_DOWNED = (1 << 6), CS_UNCORRECTABLE_ERRORS = (1 << 5), }; struct opa_clear_port_status { __be64 port_select_mask[4]; __be32 counter_select_mask; }; struct opa_aggregate { __be16 attr_id; __be16 err_reqlength; /* 1 bit, 8 res, 7 bit */ __be32 attr_mod; u8 data[0]; }; #define MSK_LLI 0x000000f0 #define MSK_LLI_SFT 4 #define MSK_LER 0x0000000f #define MSK_LER_SFT 0 #define ADD_LLI 8 #define ADD_LER 2 /* Request contains first three fields, response contains those plus the rest */ struct opa_port_data_counters_msg { __be64 port_select_mask[4]; __be32 vl_select_mask; __be32 resolution; /* Response fields follow */ struct _port_dctrs { u8 port_number; u8 reserved2[3]; __be32 link_quality_indicator; /* 29res, 3bit */ /* Data counters */ __be64 port_xmit_data; __be64 port_rcv_data; __be64 port_xmit_pkts; __be64 port_rcv_pkts; __be64 port_multicast_xmit_pkts; __be64 port_multicast_rcv_pkts; __be64 port_xmit_wait; __be64 sw_port_congestion; __be64 port_rcv_fecn; __be64 port_rcv_becn; __be64 port_xmit_time_cong; __be64 port_xmit_wasted_bw; __be64 port_xmit_wait_data; __be64 port_rcv_bubble; __be64 port_mark_fecn; __be64 port_error_counter_summary; /* Sum of error counts/port */ struct _vls_dctrs { /* per-VL Data counters */ __be64 port_vl_xmit_data; __be64 port_vl_rcv_data; __be64 port_vl_xmit_pkts; __be64 port_vl_rcv_pkts; __be64 port_vl_xmit_wait; __be64 sw_port_vl_congestion; __be64 port_vl_rcv_fecn; __be64 port_vl_rcv_becn; __be64 port_xmit_time_cong; __be64 port_vl_xmit_wasted_bw; __be64 port_vl_xmit_wait_data; __be64 port_vl_rcv_bubble; __be64 port_vl_mark_fecn; } vls[0]; /* array size defined by #bits set in vl_select_mask*/ } port[1]; /* array size defined by #ports in attribute modifier */ }; struct opa_port_error_counters64_msg { /* * Request contains first two fields, response contains the * whole magilla */ __be64 port_select_mask[4]; __be32 vl_select_mask; /* Response-only fields follow */ __be32 reserved1; struct _port_ectrs { u8 port_number; u8 reserved2[7]; __be64 port_rcv_constraint_errors; __be64 port_rcv_switch_relay_errors; __be64 port_xmit_discards; __be64 port_xmit_constraint_errors; __be64 port_rcv_remote_physical_errors; __be64 local_link_integrity_errors; __be64 port_rcv_errors; __be64 excessive_buffer_overruns; __be64 fm_config_errors; __be32 link_error_recovery; __be32 link_downed; u8 uncorrectable_errors; u8 reserved3[7]; struct _vls_ectrs { __be64 port_vl_xmit_discards; } vls[0]; /* array size defined by #bits set in vl_select_mask */ } port[1]; /* array size defined by #ports in attribute modifier */ }; struct opa_port_error_info_msg { __be64 port_select_mask[4]; __be32 error_info_select_mask; __be32 reserved1; struct _port_ei { u8 port_number; u8 reserved2[7]; /* PortRcvErrorInfo */ struct { u8 status_and_code; union { u8 raw[17]; struct { /* EI1to12 format */ u8 packet_flit1[8]; u8 packet_flit2[8]; u8 remaining_flit_bits12; } ei1to12; struct { u8 packet_bytes[8]; u8 remaining_flit_bits; } ei13; } ei; u8 reserved3[6]; } __packed port_rcv_ei; /* ExcessiveBufferOverrunInfo */ struct { u8 status_and_sc; u8 reserved4[7]; } __packed excessive_buffer_overrun_ei; /* PortXmitConstraintErrorInfo */ struct { u8 status; u8 reserved5; __be16 pkey; __be32 slid; } __packed port_xmit_constraint_ei; /* PortRcvConstraintErrorInfo */ struct { u8 status; u8 reserved6; __be16 pkey; __be32 slid; } __packed port_rcv_constraint_ei; /* PortRcvSwitchRelayErrorInfo */ struct { u8 status_and_code; u8 reserved7[3]; __u32 error_info; } __packed port_rcv_switch_relay_ei; /* UncorrectableErrorInfo */ struct { u8 status_and_code; u8 reserved8; } __packed uncorrectable_ei; /* FMConfigErrorInfo */ struct { u8 status_and_code; u8 error_info; } __packed fm_config_ei; __u32 reserved9; } port[1]; /* actual array size defined by #ports in attr modifier */ }; /* opa_port_error_info_msg error_info_select_mask bit definitions */ enum error_info_selects { ES_PORT_RCV_ERROR_INFO = (1 << 31), ES_EXCESSIVE_BUFFER_OVERRUN_INFO = (1 << 30), ES_PORT_XMIT_CONSTRAINT_ERROR_INFO = (1 << 29), ES_PORT_RCV_CONSTRAINT_ERROR_INFO = (1 << 28), ES_PORT_RCV_SWITCH_RELAY_ERROR_INFO = (1 << 27), ES_UNCORRECTABLE_ERROR_INFO = (1 << 26), ES_FM_CONFIG_ERROR_INFO = (1 << 25) }; static int pma_get_opa_classportinfo(struct opa_pma_mad *pmp, struct ib_device *ibdev, u32 *resp_len) { struct opa_class_port_info *p = (struct opa_class_port_info *)pmp->data; memset(pmp->data, 0, sizeof(pmp->data)); if (pmp->mad_hdr.attr_mod != 0) pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; p->base_version = OPA_MGMT_BASE_VERSION; p->class_version = OPA_SM_CLASS_VERSION; /* * Expected response time is 4.096 usec. * 2^18 == 1.073741824 sec. */ p->cap_mask2_resp_time = cpu_to_be32(18); if (resp_len) *resp_len += sizeof(*p); return reply((struct ib_mad_hdr *)pmp); } static void a0_portstatus(struct hfi1_pportdata *ppd, struct opa_port_status_rsp *rsp, u32 vl_select_mask) { if (!is_bx(ppd->dd)) { unsigned long vl; u64 sum_vl_xmit_wait = 0; u32 vl_all_mask = VL_MASK_ALL; for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 8 * sizeof(vl_all_mask)) { u64 tmp = sum_vl_xmit_wait + read_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl)); if (tmp < sum_vl_xmit_wait) { /* we wrapped */ sum_vl_xmit_wait = (u64)~0; break; } sum_vl_xmit_wait = tmp; } if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); } } static int pma_get_opa_portstatus(struct opa_pma_mad *pmp, struct ib_device *ibdev, u8 port, u32 *resp_len) { struct opa_port_status_req *req = (struct opa_port_status_req *)pmp->data; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct opa_port_status_rsp *rsp; u32 vl_select_mask = be32_to_cpu(req->vl_select_mask); unsigned long vl; size_t response_data_size; u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; u8 port_num = req->port_num; u8 num_vls = hweight32(vl_select_mask); struct _vls_pctrs *vlinfo; struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); int vfi; u64 tmp, tmp2; response_data_size = sizeof(struct opa_port_status_rsp) + num_vls * sizeof(struct _vls_pctrs); if (response_data_size > sizeof(pmp->data)) { pmp->mad_hdr.status |= OPA_PM_STATUS_REQUEST_TOO_LARGE; return reply((struct ib_mad_hdr *)pmp); } if (nports != 1 || (port_num && port_num != port) || num_vls > OPA_MAX_VLS || (vl_select_mask & ~VL_MASK_ALL)) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } memset(pmp->data, 0, sizeof(pmp->data)); rsp = (struct opa_port_status_rsp *)pmp->data; if (port_num) rsp->port_num = port_num; else rsp->port_num = port; rsp->port_rcv_constraint_errors = cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL)); hfi1_read_link_quality(dd, &rsp->link_quality_indicator); rsp->vl_select_mask = cpu_to_be32(vl_select_mask); rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL)); rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL)); rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL)); rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL)); rsp->port_multicast_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL)); rsp->port_multicast_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL)); rsp->port_xmit_wait = cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); rsp->port_rcv_fecn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); rsp->port_rcv_becn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); rsp->port_xmit_discards = cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL)); rsp->port_xmit_constraint_errors = cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL)); rsp->port_rcv_remote_physical_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL)); rsp->local_link_integrity_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL)); tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL); if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { /* overflow/wrapped */ rsp->link_error_recovery = cpu_to_be32(~0); } else { rsp->link_error_recovery = cpu_to_be32(tmp2); } rsp->port_rcv_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); rsp->excessive_buffer_overruns = cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); rsp->fm_config_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL)); rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL)); /* rsp->uncorrectable_errors is 8 bits wide, and it pegs at 0xff */ tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; vlinfo = &rsp->vls[0]; vfi = 0; /* The vl_select_mask has been checked above, and we know * that it contains only entries which represent valid VLs. * So in the for_each_set_bit() loop below, we don't need * any additional checks for vl. */ for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 8 * sizeof(vl_select_mask)) { memset(vlinfo, 0, sizeof(*vlinfo)); tmp = read_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl)); rsp->vls[vfi].port_vl_rcv_data = cpu_to_be64(tmp); rsp->vls[vfi].port_vl_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_xmit_data = cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_xmit_pkts = cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_xmit_wait = cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_rcv_fecn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_rcv_becn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_xmit_discards = cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL, idx_from_vl(vl))); vlinfo++; vfi++; } a0_portstatus(ppd, rsp, vl_select_mask); if (resp_len) *resp_len += response_data_size; return reply((struct ib_mad_hdr *)pmp); } static u64 get_error_counter_summary(struct ib_device *ibdev, u8 port, u8 res_lli, u8 res_ler) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u64 error_counter_summary = 0, tmp; error_counter_summary += read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL); /* port_rcv_switch_relay_errors is 0 for HFIs */ error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL); error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL); error_counter_summary += read_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL); /* local link integrity must be right-shifted by the lli resolution */ error_counter_summary += (read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL) >> res_lli); /* link error recovery must b right-shifted by the ler resolution */ tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); tmp += read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL); error_counter_summary += (tmp >> res_ler); error_counter_summary += read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL); error_counter_summary += read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); error_counter_summary += read_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL); /* ppd->link_downed is a 32-bit value */ error_counter_summary += read_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL); tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); /* this is an 8-bit quantity */ error_counter_summary += tmp < 0x100 ? (tmp & 0xff) : 0xff; return error_counter_summary; } static void a0_datacounters(struct hfi1_pportdata *ppd, struct _port_dctrs *rsp, u32 vl_select_mask) { if (!is_bx(ppd->dd)) { unsigned long vl; u64 sum_vl_xmit_wait = 0; u32 vl_all_mask = VL_MASK_ALL; for_each_set_bit(vl, (unsigned long *)&(vl_all_mask), 8 * sizeof(vl_all_mask)) { u64 tmp = sum_vl_xmit_wait + read_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl)); if (tmp < sum_vl_xmit_wait) { /* we wrapped */ sum_vl_xmit_wait = (u64)~0; break; } sum_vl_xmit_wait = tmp; } if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait) rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait); } } static void pma_get_opa_port_dctrs(struct ib_device *ibdev, struct _port_dctrs *rsp) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL)); rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL)); rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL)); rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL)); rsp->port_multicast_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL)); rsp->port_multicast_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL)); } static int pma_get_opa_datacounters(struct opa_pma_mad *pmp, struct ib_device *ibdev, u8 port, u32 *resp_len) { struct opa_port_data_counters_msg *req = (struct opa_port_data_counters_msg *)pmp->data; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct _port_dctrs *rsp; struct _vls_dctrs *vlinfo; size_t response_data_size; u32 num_ports; u8 num_pslm; u8 lq, num_vls; u8 res_lli, res_ler; u64 port_mask; u8 port_num; unsigned long vl; u32 vl_select_mask; int vfi; num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); vl_select_mask = be32_to_cpu(req->vl_select_mask); res_lli = (u8)(be32_to_cpu(req->resolution) & MSK_LLI) >> MSK_LLI_SFT; res_lli = res_lli ? res_lli + ADD_LLI : 0; res_ler = (u8)(be32_to_cpu(req->resolution) & MSK_LER) >> MSK_LER_SFT; res_ler = res_ler ? res_ler + ADD_LER : 0; if (num_ports != 1 || (vl_select_mask & ~VL_MASK_ALL)) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* Sanity check */ response_data_size = sizeof(struct opa_port_data_counters_msg) + num_vls * sizeof(struct _vls_dctrs); if (response_data_size > sizeof(pmp->data)) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* * The bit set in the mask needs to be consistent with the * port the request came in on. */ port_mask = be64_to_cpu(req->port_select_mask[3]); port_num = find_first_bit((unsigned long *)&port_mask, sizeof(port_mask) * 8); if (port_num != port) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } rsp = &req->port[0]; memset(rsp, 0, sizeof(*rsp)); rsp->port_number = port; /* * Note that link_quality_indicator is a 32 bit quantity in * 'datacounters' queries (as opposed to 'portinfo' queries, * where it's a byte). */ hfi1_read_link_quality(dd, &lq); rsp->link_quality_indicator = cpu_to_be32((u32)lq); pma_get_opa_port_dctrs(ibdev, rsp); rsp->port_xmit_wait = cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL)); rsp->port_rcv_fecn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL)); rsp->port_rcv_becn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL)); rsp->port_error_counter_summary = cpu_to_be64(get_error_counter_summary(ibdev, port, res_lli, res_ler)); vlinfo = &rsp->vls[0]; vfi = 0; /* The vl_select_mask has been checked above, and we know * that it contains only entries which represent valid VLs. * So in the for_each_set_bit() loop below, we don't need * any additional checks for vl. */ for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 8 * sizeof(req->vl_select_mask)) { memset(vlinfo, 0, sizeof(*vlinfo)); rsp->vls[vfi].port_vl_xmit_data = cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_xmit_pkts = cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_xmit_wait = cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_rcv_fecn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl))); rsp->vls[vfi].port_vl_rcv_becn = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl))); /* rsp->port_vl_xmit_time_cong is 0 for HFIs */ /* rsp->port_vl_xmit_wasted_bw ??? */ /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? * does this differ from rsp->vls[vfi].port_vl_xmit_wait */ /*rsp->vls[vfi].port_vl_mark_fecn = * cpu_to_be64(read_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT * + offset)); */ vlinfo++; vfi++; } a0_datacounters(ppd, rsp, vl_select_mask); if (resp_len) *resp_len += response_data_size; return reply((struct ib_mad_hdr *)pmp); } static int pma_get_ib_portcounters_ext(struct ib_pma_mad *pmp, struct ib_device *ibdev, u8 port) { struct ib_pma_portcounters_ext *p = (struct ib_pma_portcounters_ext *) pmp->data; struct _port_dctrs rsp; if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; goto bail; } memset(&rsp, 0, sizeof(rsp)); pma_get_opa_port_dctrs(ibdev, &rsp); p->port_xmit_data = rsp.port_xmit_data; p->port_rcv_data = rsp.port_rcv_data; p->port_xmit_packets = rsp.port_xmit_pkts; p->port_rcv_packets = rsp.port_rcv_pkts; p->port_unicast_xmit_packets = 0; p->port_unicast_rcv_packets = 0; p->port_multicast_xmit_packets = rsp.port_multicast_xmit_pkts; p->port_multicast_rcv_packets = rsp.port_multicast_rcv_pkts; bail: return reply((struct ib_mad_hdr *)pmp); } static void pma_get_opa_port_ectrs(struct ib_device *ibdev, struct _port_ectrs *rsp, u8 port) { u64 tmp, tmp2; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL); tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL); if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) { /* overflow/wrapped */ rsp->link_error_recovery = cpu_to_be32(~0); } else { rsp->link_error_recovery = cpu_to_be32(tmp2); } rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL)); rsp->port_rcv_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); rsp->port_rcv_remote_physical_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL)); rsp->port_rcv_switch_relay_errors = 0; rsp->port_xmit_discards = cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL)); rsp->port_xmit_constraint_errors = cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL)); rsp->port_rcv_constraint_errors = cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL)); rsp->local_link_integrity_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL)); rsp->excessive_buffer_overruns = cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL)); } static int pma_get_opa_porterrors(struct opa_pma_mad *pmp, struct ib_device *ibdev, u8 port, u32 *resp_len) { size_t response_data_size; struct _port_ectrs *rsp; u8 port_num; struct opa_port_error_counters64_msg *req; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); u32 num_ports; u8 num_pslm; u8 num_vls; struct hfi1_ibport *ibp; struct hfi1_pportdata *ppd; struct _vls_ectrs *vlinfo; unsigned long vl; u64 port_mask, tmp; u32 vl_select_mask; int vfi; req = (struct opa_port_error_counters64_msg *)pmp->data; num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); num_vls = hweight32(be32_to_cpu(req->vl_select_mask)); if (num_ports != 1 || num_ports != num_pslm) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } response_data_size = sizeof(struct opa_port_error_counters64_msg) + num_vls * sizeof(struct _vls_ectrs); if (response_data_size > sizeof(pmp->data)) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* * The bit set in the mask needs to be consistent with the * port the request came in on. */ port_mask = be64_to_cpu(req->port_select_mask[3]); port_num = find_first_bit((unsigned long *)&port_mask, sizeof(port_mask) * 8); if (port_num != port) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } rsp = &req->port[0]; ibp = to_iport(ibdev, port_num); ppd = ppd_from_ibp(ibp); memset(rsp, 0, sizeof(*rsp)); rsp->port_number = port_num; pma_get_opa_port_ectrs(ibdev, rsp, port_num); rsp->port_rcv_remote_physical_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL)); rsp->fm_config_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL)); tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL); rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff; rsp->port_rcv_errors = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL)); vlinfo = &rsp->vls[0]; vfi = 0; vl_select_mask = be32_to_cpu(req->vl_select_mask); for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 8 * sizeof(req->vl_select_mask)) { memset(vlinfo, 0, sizeof(*vlinfo)); rsp->vls[vfi].port_vl_xmit_discards = cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL, idx_from_vl(vl))); vlinfo += 1; vfi++; } if (resp_len) *resp_len += response_data_size; return reply((struct ib_mad_hdr *)pmp); } static int pma_get_ib_portcounters(struct ib_pma_mad *pmp, struct ib_device *ibdev, u8 port) { struct ib_pma_portcounters *p = (struct ib_pma_portcounters *) pmp->data; struct _port_ectrs rsp; u64 temp_link_overrun_errors; u64 temp_64; u32 temp_32; memset(&rsp, 0, sizeof(rsp)); pma_get_opa_port_ectrs(ibdev, &rsp, port); if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; goto bail; } p->symbol_error_counter = 0; /* N/A for OPA */ temp_32 = be32_to_cpu(rsp.link_error_recovery); if (temp_32 > 0xFFUL) p->link_error_recovery_counter = 0xFF; else p->link_error_recovery_counter = (u8)temp_32; temp_32 = be32_to_cpu(rsp.link_downed); if (temp_32 > 0xFFUL) p->link_downed_counter = 0xFF; else p->link_downed_counter = (u8)temp_32; temp_64 = be64_to_cpu(rsp.port_rcv_errors); if (temp_64 > 0xFFFFUL) p->port_rcv_errors = cpu_to_be16(0xFFFF); else p->port_rcv_errors = cpu_to_be16((u16)temp_64); temp_64 = be64_to_cpu(rsp.port_rcv_remote_physical_errors); if (temp_64 > 0xFFFFUL) p->port_rcv_remphys_errors = cpu_to_be16(0xFFFF); else p->port_rcv_remphys_errors = cpu_to_be16((u16)temp_64); temp_64 = be64_to_cpu(rsp.port_rcv_switch_relay_errors); p->port_rcv_switch_relay_errors = cpu_to_be16((u16)temp_64); temp_64 = be64_to_cpu(rsp.port_xmit_discards); if (temp_64 > 0xFFFFUL) p->port_xmit_discards = cpu_to_be16(0xFFFF); else p->port_xmit_discards = cpu_to_be16((u16)temp_64); temp_64 = be64_to_cpu(rsp.port_xmit_constraint_errors); if (temp_64 > 0xFFUL) p->port_xmit_constraint_errors = 0xFF; else p->port_xmit_constraint_errors = (u8)temp_64; temp_64 = be64_to_cpu(rsp.port_rcv_constraint_errors); if (temp_64 > 0xFFUL) p->port_rcv_constraint_errors = 0xFFUL; else p->port_rcv_constraint_errors = (u8)temp_64; /* LocalLink: 7:4, BufferOverrun: 3:0 */ temp_64 = be64_to_cpu(rsp.local_link_integrity_errors); if (temp_64 > 0xFUL) temp_64 = 0xFUL; temp_link_overrun_errors = temp_64 << 4; temp_64 = be64_to_cpu(rsp.excessive_buffer_overruns); if (temp_64 > 0xFUL) temp_64 = 0xFUL; temp_link_overrun_errors |= temp_64; p->link_overrun_errors = (u8)temp_link_overrun_errors; p->vl15_dropped = 0; /* N/A for OPA */ bail: return reply((struct ib_mad_hdr *)pmp); } static int pma_get_opa_errorinfo(struct opa_pma_mad *pmp, struct ib_device *ibdev, u8 port, u32 *resp_len) { size_t response_data_size; struct _port_ei *rsp; struct opa_port_error_info_msg *req; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); u64 port_mask; u32 num_ports; u8 port_num; u8 num_pslm; u64 reg; req = (struct opa_port_error_info_msg *)pmp->data; rsp = &req->port[0]; num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); memset(rsp, 0, sizeof(*rsp)); if (num_ports != 1 || num_ports != num_pslm) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* Sanity check */ response_data_size = sizeof(struct opa_port_error_info_msg); if (response_data_size > sizeof(pmp->data)) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* * The bit set in the mask needs to be consistent with the port * the request came in on. */ port_mask = be64_to_cpu(req->port_select_mask[3]); port_num = find_first_bit((unsigned long *)&port_mask, sizeof(port_mask) * 8); if (port_num != port) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* PortRcvErrorInfo */ rsp->port_rcv_ei.status_and_code = dd->err_info_rcvport.status_and_code; memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit1, &dd->err_info_rcvport.packet_flit1, sizeof(u64)); memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit2, &dd->err_info_rcvport.packet_flit2, sizeof(u64)); /* ExcessiverBufferOverrunInfo */ reg = read_csr(dd, RCV_ERR_INFO); if (reg & RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK) { /* * if the RcvExcessBufferOverrun bit is set, save SC of * first pkt that encountered an excess buffer overrun */ u8 tmp = (u8)reg; tmp &= RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SC_SMASK; tmp <<= 2; rsp->excessive_buffer_overrun_ei.status_and_sc = tmp; /* set the status bit */ rsp->excessive_buffer_overrun_ei.status_and_sc |= 0x80; } rsp->port_xmit_constraint_ei.status = dd->err_info_xmit_constraint.status; rsp->port_xmit_constraint_ei.pkey = cpu_to_be16(dd->err_info_xmit_constraint.pkey); rsp->port_xmit_constraint_ei.slid = cpu_to_be32(dd->err_info_xmit_constraint.slid); rsp->port_rcv_constraint_ei.status = dd->err_info_rcv_constraint.status; rsp->port_rcv_constraint_ei.pkey = cpu_to_be16(dd->err_info_rcv_constraint.pkey); rsp->port_rcv_constraint_ei.slid = cpu_to_be32(dd->err_info_rcv_constraint.slid); /* UncorrectableErrorInfo */ rsp->uncorrectable_ei.status_and_code = dd->err_info_uncorrectable; /* FMConfigErrorInfo */ rsp->fm_config_ei.status_and_code = dd->err_info_fmconfig; if (resp_len) *resp_len += response_data_size; return reply((struct ib_mad_hdr *)pmp); } static int pma_set_opa_portstatus(struct opa_pma_mad *pmp, struct ib_device *ibdev, u8 port, u32 *resp_len) { struct opa_clear_port_status *req = (struct opa_clear_port_status *)pmp->data; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24; u64 portn = be64_to_cpu(req->port_select_mask[3]); u32 counter_select = be32_to_cpu(req->counter_select_mask); u32 vl_select_mask = VL_MASK_ALL; /* clear all per-vl cnts */ unsigned long vl; if ((nports != 1) || (portn != 1 << port)) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* * only counters returned by pma_get_opa_portstatus() are * handled, so when pma_get_opa_portstatus() gets a fix, * the corresponding change should be made here as well. */ if (counter_select & CS_PORT_XMIT_DATA) write_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_RCV_DATA) write_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_XMIT_PKTS) write_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_RCV_PKTS) write_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_MCAST_XMIT_PKTS) write_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_MCAST_RCV_PKTS) write_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_XMIT_WAIT) write_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL, 0); /* ignore cs_sw_portCongestion for HFIs */ if (counter_select & CS_PORT_RCV_FECN) write_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_RCV_BECN) write_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL, 0); /* ignore cs_port_xmit_time_cong for HFIs */ /* ignore cs_port_xmit_wasted_bw for now */ /* ignore cs_port_xmit_wait_data for now */ if (counter_select & CS_PORT_RCV_BUBBLE) write_dev_cntr(dd, C_DC_RCV_BBL, CNTR_INVALID_VL, 0); /* Only applicable for switch */ /* if (counter_select & CS_PORT_MARK_FECN) * write_csr(dd, DCC_PRF_PORT_MARK_FECN_CNT, 0); */ if (counter_select & CS_PORT_RCV_CONSTRAINT_ERRORS) write_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL, 0); /* ignore cs_port_rcv_switch_relay_errors for HFIs */ if (counter_select & CS_PORT_XMIT_DISCARDS) write_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_XMIT_CONSTRAINT_ERRORS) write_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL, 0); if (counter_select & CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS) write_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL, 0); if (counter_select & CS_LOCAL_LINK_INTEGRITY_ERRORS) write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); if (counter_select & CS_LINK_ERROR_RECOVERY) { write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL, 0); } if (counter_select & CS_PORT_RCV_ERRORS) write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); if (counter_select & CS_EXCESSIVE_BUFFER_OVERRUNS) { write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); dd->rcv_ovfl_cnt = 0; } if (counter_select & CS_FM_CONFIG_ERRORS) write_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL, 0); if (counter_select & CS_LINK_DOWNED) write_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL, 0); if (counter_select & CS_UNCORRECTABLE_ERRORS) write_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL, 0); for_each_set_bit(vl, (unsigned long *)&(vl_select_mask), 8 * sizeof(vl_select_mask)) { if (counter_select & CS_PORT_XMIT_DATA) write_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl), 0); if (counter_select & CS_PORT_RCV_DATA) write_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl), 0); if (counter_select & CS_PORT_XMIT_PKTS) write_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl), 0); if (counter_select & CS_PORT_RCV_PKTS) write_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl), 0); if (counter_select & CS_PORT_XMIT_WAIT) write_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl), 0); /* sw_port_vl_congestion is 0 for HFIs */ if (counter_select & CS_PORT_RCV_FECN) write_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl), 0); if (counter_select & CS_PORT_RCV_BECN) write_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl), 0); /* port_vl_xmit_time_cong is 0 for HFIs */ /* port_vl_xmit_wasted_bw ??? */ /* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? */ if (counter_select & CS_PORT_RCV_BUBBLE) write_dev_cntr(dd, C_DC_RCV_BBL_VL, idx_from_vl(vl), 0); /* if (counter_select & CS_PORT_MARK_FECN) * write_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT + offset, 0); */ if (counter_select & C_SW_XMIT_DSCD_VL) write_port_cntr(ppd, C_SW_XMIT_DSCD_VL, idx_from_vl(vl), 0); } if (resp_len) *resp_len += sizeof(*req); return reply((struct ib_mad_hdr *)pmp); } static int pma_set_opa_errorinfo(struct opa_pma_mad *pmp, struct ib_device *ibdev, u8 port, u32 *resp_len) { struct _port_ei *rsp; struct opa_port_error_info_msg *req; struct hfi1_devdata *dd = dd_from_ibdev(ibdev); u64 port_mask; u32 num_ports; u8 port_num; u8 num_pslm; u32 error_info_select; req = (struct opa_port_error_info_msg *)pmp->data; rsp = &req->port[0]; num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod)); num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3])); memset(rsp, 0, sizeof(*rsp)); if (num_ports != 1 || num_ports != num_pslm) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } /* * The bit set in the mask needs to be consistent with the port * the request came in on. */ port_mask = be64_to_cpu(req->port_select_mask[3]); port_num = find_first_bit((unsigned long *)&port_mask, sizeof(port_mask) * 8); if (port_num != port) { pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)pmp); } error_info_select = be32_to_cpu(req->error_info_select_mask); /* PortRcvErrorInfo */ if (error_info_select & ES_PORT_RCV_ERROR_INFO) /* turn off status bit */ dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; /* ExcessiverBufferOverrunInfo */ if (error_info_select & ES_EXCESSIVE_BUFFER_OVERRUN_INFO) /* * status bit is essentially kept in the h/w - bit 5 of * RCV_ERR_INFO */ write_csr(dd, RCV_ERR_INFO, RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); if (error_info_select & ES_PORT_XMIT_CONSTRAINT_ERROR_INFO) dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; if (error_info_select & ES_PORT_RCV_CONSTRAINT_ERROR_INFO) dd->err_info_rcv_constraint.status &= ~OPA_EI_STATUS_SMASK; /* UncorrectableErrorInfo */ if (error_info_select & ES_UNCORRECTABLE_ERROR_INFO) /* turn off status bit */ dd->err_info_uncorrectable &= ~OPA_EI_STATUS_SMASK; /* FMConfigErrorInfo */ if (error_info_select & ES_FM_CONFIG_ERROR_INFO) /* turn off status bit */ dd->err_info_fmconfig &= ~OPA_EI_STATUS_SMASK; if (resp_len) *resp_len += sizeof(*req); return reply((struct ib_mad_hdr *)pmp); } struct opa_congestion_info_attr { __be16 congestion_info; u8 control_table_cap; /* Multiple of 64 entry unit CCTs */ u8 congestion_log_length; } __packed; static int __subn_get_opa_cong_info(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct opa_congestion_info_attr *p = (struct opa_congestion_info_attr *)data; struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); if (smp_length_check(sizeof(*p), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } p->congestion_info = 0; p->control_table_cap = ppd->cc_max_table_entries; p->congestion_log_length = OPA_CONG_LOG_ELEMS; if (resp_len) *resp_len += sizeof(*p); return reply((struct ib_mad_hdr *)smp); } static int __subn_get_opa_cong_setting(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { int i; struct opa_congestion_setting_attr *p = (struct opa_congestion_setting_attr *)data; struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct opa_congestion_setting_entry_shadow *entries; struct cc_state *cc_state; if (smp_length_check(sizeof(*p), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } rcu_read_lock(); cc_state = get_cc_state(ppd); if (!cc_state) { rcu_read_unlock(); return reply((struct ib_mad_hdr *)smp); } entries = cc_state->cong_setting.entries; p->port_control = cpu_to_be16(cc_state->cong_setting.port_control); p->control_map = cpu_to_be32(cc_state->cong_setting.control_map); for (i = 0; i < OPA_MAX_SLS; i++) { p->entries[i].ccti_increase = entries[i].ccti_increase; p->entries[i].ccti_timer = cpu_to_be16(entries[i].ccti_timer); p->entries[i].trigger_threshold = entries[i].trigger_threshold; p->entries[i].ccti_min = entries[i].ccti_min; } rcu_read_unlock(); if (resp_len) *resp_len += sizeof(*p); return reply((struct ib_mad_hdr *)smp); } /* * Apply congestion control information stored in the ppd to the * active structure. */ static void apply_cc_state(struct hfi1_pportdata *ppd) { struct cc_state *old_cc_state, *new_cc_state; new_cc_state = kzalloc(sizeof(*new_cc_state), GFP_KERNEL); if (!new_cc_state) return; /* * Hold the lock for updating *and* to prevent ppd information * from changing during the update. */ spin_lock(&ppd->cc_state_lock); old_cc_state = get_cc_state_protected(ppd); if (!old_cc_state) { /* never active, or shutting down */ spin_unlock(&ppd->cc_state_lock); kfree(new_cc_state); return; } *new_cc_state = *old_cc_state; new_cc_state->cct.ccti_limit = ppd->total_cct_entry - 1; memcpy(new_cc_state->cct.entries, ppd->ccti_entries, ppd->total_cct_entry * sizeof(struct ib_cc_table_entry)); new_cc_state->cong_setting.port_control = IB_CC_CCS_PC_SL_BASED; new_cc_state->cong_setting.control_map = ppd->cc_sl_control_map; memcpy(new_cc_state->cong_setting.entries, ppd->congestion_entries, OPA_MAX_SLS * sizeof(struct opa_congestion_setting_entry)); rcu_assign_pointer(ppd->cc_state, new_cc_state); spin_unlock(&ppd->cc_state_lock); kfree_rcu(old_cc_state, rcu); } static int __subn_set_opa_cong_setting(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct opa_congestion_setting_attr *p = (struct opa_congestion_setting_attr *)data; struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct opa_congestion_setting_entry_shadow *entries; int i; if (smp_length_check(sizeof(*p), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } /* * Save details from packet into the ppd. Hold the cc_state_lock so * our information is consistent with anyone trying to apply the state. */ spin_lock(&ppd->cc_state_lock); ppd->cc_sl_control_map = be32_to_cpu(p->control_map); entries = ppd->congestion_entries; for (i = 0; i < OPA_MAX_SLS; i++) { entries[i].ccti_increase = p->entries[i].ccti_increase; entries[i].ccti_timer = be16_to_cpu(p->entries[i].ccti_timer); entries[i].trigger_threshold = p->entries[i].trigger_threshold; entries[i].ccti_min = p->entries[i].ccti_min; } spin_unlock(&ppd->cc_state_lock); /* now apply the information */ apply_cc_state(ppd); return __subn_get_opa_cong_setting(smp, am, data, ibdev, port, resp_len, max_len); } static int __subn_get_opa_hfi1_cong_log(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct opa_hfi1_cong_log *cong_log = (struct opa_hfi1_cong_log *)data; s64 ts; int i; if (am || smp_length_check(sizeof(*cong_log), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } spin_lock_irq(&ppd->cc_log_lock); cong_log->log_type = OPA_CC_LOG_TYPE_HFI; cong_log->congestion_flags = 0; cong_log->threshold_event_counter = cpu_to_be16(ppd->threshold_event_counter); memcpy(cong_log->threshold_cong_event_map, ppd->threshold_cong_event_map, sizeof(cong_log->threshold_cong_event_map)); /* keep timestamp in units of 1.024 usec */ ts = ktime_to_ns(ktime_get()) / 1024; cong_log->current_time_stamp = cpu_to_be32(ts); for (i = 0; i < OPA_CONG_LOG_ELEMS; i++) { struct opa_hfi1_cong_log_event_internal *cce = &ppd->cc_events[ppd->cc_mad_idx++]; if (ppd->cc_mad_idx == OPA_CONG_LOG_ELEMS) ppd->cc_mad_idx = 0; /* * Entries which are older than twice the time * required to wrap the counter are supposed to * be zeroed (CA10-49 IBTA, release 1.2.1, V1). */ if ((u64)(ts - cce->timestamp) > (2 * UINT_MAX)) continue; memcpy(cong_log->events[i].local_qp_cn_entry, &cce->lqpn, 3); memcpy(cong_log->events[i].remote_qp_number_cn_entry, &cce->rqpn, 3); cong_log->events[i].sl_svc_type_cn_entry = ((cce->sl & 0x1f) << 3) | (cce->svc_type & 0x7); cong_log->events[i].remote_lid_cn_entry = cpu_to_be32(cce->rlid); cong_log->events[i].timestamp_cn_entry = cpu_to_be32(cce->timestamp); } /* * Reset threshold_cong_event_map, and threshold_event_counter * to 0 when log is read. */ memset(ppd->threshold_cong_event_map, 0x0, sizeof(ppd->threshold_cong_event_map)); ppd->threshold_event_counter = 0; spin_unlock_irq(&ppd->cc_log_lock); if (resp_len) *resp_len += sizeof(struct opa_hfi1_cong_log); return reply((struct ib_mad_hdr *)smp); } static int __subn_get_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct ib_cc_table_attr *cc_table_attr = (struct ib_cc_table_attr *)data; struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u32 start_block = OPA_AM_START_BLK(am); u32 n_blocks = OPA_AM_NBLK(am); struct ib_cc_table_entry_shadow *entries; int i, j; u32 sentry, eentry; struct cc_state *cc_state; u32 size = sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1); /* sanity check n_blocks, start_block */ if (n_blocks == 0 || smp_length_check(size, max_len) || start_block + n_blocks > ppd->cc_max_table_entries) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } rcu_read_lock(); cc_state = get_cc_state(ppd); if (!cc_state) { rcu_read_unlock(); return reply((struct ib_mad_hdr *)smp); } sentry = start_block * IB_CCT_ENTRIES; eentry = sentry + (IB_CCT_ENTRIES * n_blocks); cc_table_attr->ccti_limit = cpu_to_be16(cc_state->cct.ccti_limit); entries = cc_state->cct.entries; /* return n_blocks, though the last block may not be full */ for (j = 0, i = sentry; i < eentry; j++, i++) cc_table_attr->ccti_entries[j].entry = cpu_to_be16(entries[i].entry); rcu_read_unlock(); if (resp_len) *resp_len += size; return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct ib_cc_table_attr *p = (struct ib_cc_table_attr *)data; struct hfi1_ibport *ibp = to_iport(ibdev, port); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u32 start_block = OPA_AM_START_BLK(am); u32 n_blocks = OPA_AM_NBLK(am); struct ib_cc_table_entry_shadow *entries; int i, j; u32 sentry, eentry; u16 ccti_limit; u32 size = sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1); /* sanity check n_blocks, start_block */ if (n_blocks == 0 || smp_length_check(size, max_len) || start_block + n_blocks > ppd->cc_max_table_entries) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } sentry = start_block * IB_CCT_ENTRIES; eentry = sentry + ((n_blocks - 1) * IB_CCT_ENTRIES) + (be16_to_cpu(p->ccti_limit)) % IB_CCT_ENTRIES + 1; /* sanity check ccti_limit */ ccti_limit = be16_to_cpu(p->ccti_limit); if (ccti_limit + 1 > eentry) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } /* * Save details from packet into the ppd. Hold the cc_state_lock so * our information is consistent with anyone trying to apply the state. */ spin_lock(&ppd->cc_state_lock); ppd->total_cct_entry = ccti_limit + 1; entries = ppd->ccti_entries; for (j = 0, i = sentry; i < eentry; j++, i++) entries[i].entry = be16_to_cpu(p->ccti_entries[j].entry); spin_unlock(&ppd->cc_state_lock); /* now apply the information */ apply_cc_state(ppd); return __subn_get_opa_cc_table(smp, am, data, ibdev, port, resp_len, max_len); } struct opa_led_info { __be32 rsvd_led_mask; __be32 rsvd; }; #define OPA_LED_SHIFT 31 #define OPA_LED_MASK BIT(OPA_LED_SHIFT) static int __subn_get_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct hfi1_pportdata *ppd = dd->pport; struct opa_led_info *p = (struct opa_led_info *)data; u32 nport = OPA_AM_NPORT(am); u32 is_beaconing_active; if (nport != 1 || smp_length_check(sizeof(*p), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } /* * This pairs with the memory barrier in hfi1_start_led_override to * ensure that we read the correct state of LED beaconing represented * by led_override_timer_active */ smp_rmb(); is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active); p->rsvd_led_mask = cpu_to_be32(is_beaconing_active << OPA_LED_SHIFT); if (resp_len) *resp_len += sizeof(struct opa_led_info); return reply((struct ib_mad_hdr *)smp); } static int __subn_set_opa_led_info(struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); struct opa_led_info *p = (struct opa_led_info *)data; u32 nport = OPA_AM_NPORT(am); int on = !!(be32_to_cpu(p->rsvd_led_mask) & OPA_LED_MASK); if (nport != 1 || smp_length_check(sizeof(*p), max_len)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } if (on) hfi1_start_led_override(dd->pport, 2000, 1500); else shutdown_led_override(dd->pport); return __subn_get_opa_led_info(smp, am, data, ibdev, port, resp_len, max_len); } static int subn_get_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { int ret; struct hfi1_ibport *ibp = to_iport(ibdev, port); switch (attr_id) { case IB_SMP_ATTR_NODE_DESC: ret = __subn_get_opa_nodedesc(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_NODE_INFO: ret = __subn_get_opa_nodeinfo(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_PORT_INFO: ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_PKEY_TABLE: ret = __subn_get_opa_pkeytable(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SL_TO_SC_MAP: ret = __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SC_TO_SL_MAP: ret = __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SC_TO_VLT_MAP: ret = __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: ret = __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_PORT_STATE_INFO: ret = __subn_get_opa_psi(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: ret = __subn_get_opa_bct(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_CABLE_INFO: ret = __subn_get_opa_cable_info(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_VL_ARB_TABLE: ret = __subn_get_opa_vl_arb(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_CONGESTION_INFO: ret = __subn_get_opa_cong_info(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: ret = __subn_get_opa_cong_setting(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_HFI_CONGESTION_LOG: ret = __subn_get_opa_hfi1_cong_log(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: ret = __subn_get_opa_cc_table(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_LED_INFO: ret = __subn_get_opa_led_info(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_SM_INFO: if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; if (ibp->rvp.port_cap_flags & IB_PORT_SM) return IB_MAD_RESULT_SUCCESS; /* FALLTHROUGH */ default: smp->status |= IB_SMP_UNSUP_METH_ATTR; ret = reply((struct ib_mad_hdr *)smp); break; } return ret; } static int subn_set_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am, u8 *data, struct ib_device *ibdev, u8 port, u32 *resp_len, u32 max_len) { int ret; struct hfi1_ibport *ibp = to_iport(ibdev, port); switch (attr_id) { case IB_SMP_ATTR_PORT_INFO: ret = __subn_set_opa_portinfo(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_PKEY_TABLE: ret = __subn_set_opa_pkeytable(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SL_TO_SC_MAP: ret = __subn_set_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SC_TO_SL_MAP: ret = __subn_set_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SC_TO_VLT_MAP: ret = __subn_set_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_SC_TO_VLNT_MAP: ret = __subn_set_opa_sc_to_vlnt(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_PORT_STATE_INFO: ret = __subn_set_opa_psi(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE: ret = __subn_set_opa_bct(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_VL_ARB_TABLE: ret = __subn_set_opa_vl_arb(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING: ret = __subn_set_opa_cong_setting(smp, am, data, ibdev, port, resp_len, max_len); break; case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE: ret = __subn_set_opa_cc_table(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_LED_INFO: ret = __subn_set_opa_led_info(smp, am, data, ibdev, port, resp_len, max_len); break; case IB_SMP_ATTR_SM_INFO: if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED) return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED; if (ibp->rvp.port_cap_flags & IB_PORT_SM) return IB_MAD_RESULT_SUCCESS; /* FALLTHROUGH */ default: smp->status |= IB_SMP_UNSUP_METH_ATTR; ret = reply((struct ib_mad_hdr *)smp); break; } return ret; } static inline void set_aggr_error(struct opa_aggregate *ag) { ag->err_reqlength |= cpu_to_be16(0x8000); } static int subn_get_opa_aggregate(struct opa_smp *smp, struct ib_device *ibdev, u8 port, u32 *resp_len) { int i; u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; u8 *next_smp = opa_get_smp_data(smp); if (num_attr < 1 || num_attr > 117) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < num_attr; i++) { struct opa_aggregate *agg; size_t agg_data_len; size_t agg_size; u32 am; agg = (struct opa_aggregate *)next_smp; agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; agg_size = sizeof(*agg) + agg_data_len; am = be32_to_cpu(agg->attr_mod); *resp_len += agg_size; if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } /* zero the payload for this segment */ memset(next_smp + sizeof(*agg), 0, agg_data_len); (void)subn_get_opa_sma(agg->attr_id, smp, am, agg->data, ibdev, port, NULL, (u32)agg_data_len); if (smp->status & IB_SMP_INVALID_FIELD) break; if (smp->status & ~IB_SMP_DIRECTION) { set_aggr_error(agg); return reply((struct ib_mad_hdr *)smp); } next_smp += agg_size; } return reply((struct ib_mad_hdr *)smp); } static int subn_set_opa_aggregate(struct opa_smp *smp, struct ib_device *ibdev, u8 port, u32 *resp_len) { int i; u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff; u8 *next_smp = opa_get_smp_data(smp); if (num_attr < 1 || num_attr > 117) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } for (i = 0; i < num_attr; i++) { struct opa_aggregate *agg; size_t agg_data_len; size_t agg_size; u32 am; agg = (struct opa_aggregate *)next_smp; agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8; agg_size = sizeof(*agg) + agg_data_len; am = be32_to_cpu(agg->attr_mod); *resp_len += agg_size; if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) { smp->status |= IB_SMP_INVALID_FIELD; return reply((struct ib_mad_hdr *)smp); } (void)subn_set_opa_sma(agg->attr_id, smp, am, agg->data, ibdev, port, NULL, (u32)agg_data_len); if (smp->status & IB_SMP_INVALID_FIELD) break; if (smp->status & ~IB_SMP_DIRECTION) { set_aggr_error(agg); return reply((struct ib_mad_hdr *)smp); } next_smp += agg_size; } return reply((struct ib_mad_hdr *)smp); } /* * OPAv1 specifies that, on the transition to link up, these counters * are cleared: * PortRcvErrors [*] * LinkErrorRecovery * LocalLinkIntegrityErrors * ExcessiveBufferOverruns [*] * * [*] Error info associated with these counters is retained, but the * error info status is reset to 0. */ void clear_linkup_counters(struct hfi1_devdata *dd) { /* PortRcvErrors */ write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0); dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK; /* LinkErrorRecovery */ write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0); write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL, 0); /* LocalLinkIntegrityErrors */ write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0); /* ExcessiveBufferOverruns */ write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0); dd->rcv_ovfl_cnt = 0; dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK; } /* * is_local_mad() returns 1 if 'mad' is sent from, and destined to the * local node, 0 otherwise. */ static int is_local_mad(struct hfi1_ibport *ibp, const struct opa_mad *mad, const struct ib_wc *in_wc) { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); const struct opa_smp *smp = (const struct opa_smp *)mad; if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) { return (smp->hop_cnt == 0 && smp->route.dr.dr_slid == OPA_LID_PERMISSIVE && smp->route.dr.dr_dlid == OPA_LID_PERMISSIVE); } return (in_wc->slid == ppd->lid); } /* * opa_local_smp_check() should only be called on MADs for which * is_local_mad() returns true. It applies the SMP checks that are * specific to SMPs which are sent from, and destined to this node. * opa_local_smp_check() returns 0 if the SMP passes its checks, 1 * otherwise. * * SMPs which arrive from other nodes are instead checked by * opa_smp_check(). */ static int opa_local_smp_check(struct hfi1_ibport *ibp, const struct ib_wc *in_wc) { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u16 pkey; if (in_wc->pkey_index >= ARRAY_SIZE(ppd->pkeys)) return 1; pkey = ppd->pkeys[in_wc->pkey_index]; /* * We need to do the "node-local" checks specified in OPAv1, * rev 0.90, section 9.10.26, which are: * - pkey is 0x7fff, or 0xffff * - Source QPN == 0 || Destination QPN == 0 * - the MAD header's management class is either * IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE or * IB_MGMT_CLASS_SUBN_LID_ROUTED * - SLID != 0 * * However, we know (and so don't need to check again) that, * for local SMPs, the MAD stack passes MADs with: * - Source QPN of 0 * - MAD mgmt_class is IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE * - SLID is either: OPA_LID_PERMISSIVE (0xFFFFFFFF), or * our own port's lid * */ if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) return 0; /* * On OPA devices it is okay to lose the upper 16 bits of LID as this * information is obtained elsewhere. Mask off the upper 16 bits. */ ingress_pkey_table_fail(ppd, pkey, ib_lid_cpu16(0xFFFF & in_wc->slid)); return 1; } static int process_subn_opa(struct ib_device *ibdev, int mad_flags, u8 port, const struct opa_mad *in_mad, struct opa_mad *out_mad, u32 *resp_len) { struct opa_smp *smp = (struct opa_smp *)out_mad; struct hfi1_ibport *ibp = to_iport(ibdev, port); u8 *data; u32 am, data_size; __be16 attr_id; int ret; *out_mad = *in_mad; data = opa_get_smp_data(smp); data_size = (u32)opa_get_smp_data_size(smp); am = be32_to_cpu(smp->attr_mod); attr_id = smp->attr_id; if (smp->class_version != OPA_SM_CLASS_VERSION) { smp->status |= IB_SMP_UNSUP_VERSION; ret = reply((struct ib_mad_hdr *)smp); return ret; } ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, smp->mkey, smp->route.dr.dr_slid, smp->route.dr.return_path, smp->hop_cnt); if (ret) { u32 port_num = be32_to_cpu(smp->attr_mod); /* * If this is a get/set portinfo, we already check the * M_Key if the MAD is for another port and the M_Key * is OK on the receiving port. This check is needed * to increment the error counters when the M_Key * fails to match on *both* ports. */ if (attr_id == IB_SMP_ATTR_PORT_INFO && (smp->method == IB_MGMT_METHOD_GET || smp->method == IB_MGMT_METHOD_SET) && port_num && port_num <= ibdev->phys_port_cnt && port != port_num) (void)check_mkey(to_iport(ibdev, port_num), (struct ib_mad_hdr *)smp, 0, smp->mkey, smp->route.dr.dr_slid, smp->route.dr.return_path, smp->hop_cnt); ret = IB_MAD_RESULT_FAILURE; return ret; } *resp_len = opa_get_smp_header_size(smp); switch (smp->method) { case IB_MGMT_METHOD_GET: switch (attr_id) { default: clear_opa_smp_data(smp); ret = subn_get_opa_sma(attr_id, smp, am, data, ibdev, port, resp_len, data_size); break; case OPA_ATTRIB_ID_AGGREGATE: ret = subn_get_opa_aggregate(smp, ibdev, port, resp_len); break; } break; case IB_MGMT_METHOD_SET: switch (attr_id) { default: ret = subn_set_opa_sma(attr_id, smp, am, data, ibdev, port, resp_len, data_size); break; case OPA_ATTRIB_ID_AGGREGATE: ret = subn_set_opa_aggregate(smp, ibdev, port, resp_len); break; } break; case IB_MGMT_METHOD_TRAP: case IB_MGMT_METHOD_REPORT: case IB_MGMT_METHOD_REPORT_RESP: case IB_MGMT_METHOD_GET_RESP: /* * The ib_mad module will call us to process responses * before checking for other consumers. * Just tell the caller to process it normally. */ ret = IB_MAD_RESULT_SUCCESS; break; case IB_MGMT_METHOD_TRAP_REPRESS: subn_handle_opa_trap_repress(ibp, smp); /* Always successful */ ret = IB_MAD_RESULT_SUCCESS; break; default: smp->status |= IB_SMP_UNSUP_METHOD; ret = reply((struct ib_mad_hdr *)smp); break; } return ret; } static int process_subn(struct ib_device *ibdev, int mad_flags, u8 port, const struct ib_mad *in_mad, struct ib_mad *out_mad) { struct ib_smp *smp = (struct ib_smp *)out_mad; struct hfi1_ibport *ibp = to_iport(ibdev, port); int ret; *out_mad = *in_mad; if (smp->class_version != 1) { smp->status |= IB_SMP_UNSUP_VERSION; ret = reply((struct ib_mad_hdr *)smp); return ret; } ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, smp->mkey, (__force __be32)smp->dr_slid, smp->return_path, smp->hop_cnt); if (ret) { u32 port_num = be32_to_cpu(smp->attr_mod); /* * If this is a get/set portinfo, we already check the * M_Key if the MAD is for another port and the M_Key * is OK on the receiving port. This check is needed * to increment the error counters when the M_Key * fails to match on *both* ports. */ if (in_mad->mad_hdr.attr_id == IB_SMP_ATTR_PORT_INFO && (smp->method == IB_MGMT_METHOD_GET || smp->method == IB_MGMT_METHOD_SET) && port_num && port_num <= ibdev->phys_port_cnt && port != port_num) (void)check_mkey(to_iport(ibdev, port_num), (struct ib_mad_hdr *)smp, 0, smp->mkey, (__force __be32)smp->dr_slid, smp->return_path, smp->hop_cnt); ret = IB_MAD_RESULT_FAILURE; return ret; } switch (smp->method) { case IB_MGMT_METHOD_GET: switch (smp->attr_id) { case IB_SMP_ATTR_NODE_INFO: ret = subn_get_nodeinfo(smp, ibdev, port); break; default: smp->status |= IB_SMP_UNSUP_METH_ATTR; ret = reply((struct ib_mad_hdr *)smp); break; } break; } return ret; } static int process_perf(struct ib_device *ibdev, u8 port, const struct ib_mad *in_mad, struct ib_mad *out_mad) { struct ib_pma_mad *pmp = (struct ib_pma_mad *)out_mad; struct ib_class_port_info *cpi = (struct ib_class_port_info *) &pmp->data; int ret = IB_MAD_RESULT_FAILURE; *out_mad = *in_mad; if (pmp->mad_hdr.class_version != 1) { pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; ret = reply((struct ib_mad_hdr *)pmp); return ret; } switch (pmp->mad_hdr.method) { case IB_MGMT_METHOD_GET: switch (pmp->mad_hdr.attr_id) { case IB_PMA_PORT_COUNTERS: ret = pma_get_ib_portcounters(pmp, ibdev, port); break; case IB_PMA_PORT_COUNTERS_EXT: ret = pma_get_ib_portcounters_ext(pmp, ibdev, port); break; case IB_PMA_CLASS_PORT_INFO: cpi->capability_mask = IB_PMA_CLASS_CAP_EXT_WIDTH; ret = reply((struct ib_mad_hdr *)pmp); break; default: pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; ret = reply((struct ib_mad_hdr *)pmp); break; } break; case IB_MGMT_METHOD_SET: if (pmp->mad_hdr.attr_id) { pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; ret = reply((struct ib_mad_hdr *)pmp); } break; case IB_MGMT_METHOD_TRAP: case IB_MGMT_METHOD_GET_RESP: /* * The ib_mad module will call us to process responses * before checking for other consumers. * Just tell the caller to process it normally. */ ret = IB_MAD_RESULT_SUCCESS; break; default: pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; ret = reply((struct ib_mad_hdr *)pmp); break; } return ret; } static int process_perf_opa(struct ib_device *ibdev, u8 port, const struct opa_mad *in_mad, struct opa_mad *out_mad, u32 *resp_len) { struct opa_pma_mad *pmp = (struct opa_pma_mad *)out_mad; int ret; *out_mad = *in_mad; if (pmp->mad_hdr.class_version != OPA_SM_CLASS_VERSION) { pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION; return reply((struct ib_mad_hdr *)pmp); } *resp_len = sizeof(pmp->mad_hdr); switch (pmp->mad_hdr.method) { case IB_MGMT_METHOD_GET: switch (pmp->mad_hdr.attr_id) { case IB_PMA_CLASS_PORT_INFO: ret = pma_get_opa_classportinfo(pmp, ibdev, resp_len); break; case OPA_PM_ATTRIB_ID_PORT_STATUS: ret = pma_get_opa_portstatus(pmp, ibdev, port, resp_len); break; case OPA_PM_ATTRIB_ID_DATA_PORT_COUNTERS: ret = pma_get_opa_datacounters(pmp, ibdev, port, resp_len); break; case OPA_PM_ATTRIB_ID_ERROR_PORT_COUNTERS: ret = pma_get_opa_porterrors(pmp, ibdev, port, resp_len); break; case OPA_PM_ATTRIB_ID_ERROR_INFO: ret = pma_get_opa_errorinfo(pmp, ibdev, port, resp_len); break; default: pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; ret = reply((struct ib_mad_hdr *)pmp); break; } break; case IB_MGMT_METHOD_SET: switch (pmp->mad_hdr.attr_id) { case OPA_PM_ATTRIB_ID_CLEAR_PORT_STATUS: ret = pma_set_opa_portstatus(pmp, ibdev, port, resp_len); break; case OPA_PM_ATTRIB_ID_ERROR_INFO: ret = pma_set_opa_errorinfo(pmp, ibdev, port, resp_len); break; default: pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR; ret = reply((struct ib_mad_hdr *)pmp); break; } break; case IB_MGMT_METHOD_TRAP: case IB_MGMT_METHOD_GET_RESP: /* * The ib_mad module will call us to process responses * before checking for other consumers. * Just tell the caller to process it normally. */ ret = IB_MAD_RESULT_SUCCESS; break; default: pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD; ret = reply((struct ib_mad_hdr *)pmp); break; } return ret; } static int hfi1_process_opa_mad(struct ib_device *ibdev, int mad_flags, u8 port, const struct ib_wc *in_wc, const struct ib_grh *in_grh, const struct opa_mad *in_mad, struct opa_mad *out_mad, size_t *out_mad_size, u16 *out_mad_pkey_index) { int ret; int pkey_idx; u32 resp_len = 0; struct hfi1_ibport *ibp = to_iport(ibdev, port); pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY); if (pkey_idx < 0) { pr_warn("failed to find limited mgmt pkey, defaulting 0x%x\n", hfi1_get_pkey(ibp, 1)); pkey_idx = 1; } *out_mad_pkey_index = (u16)pkey_idx; switch (in_mad->mad_hdr.mgmt_class) { case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: case IB_MGMT_CLASS_SUBN_LID_ROUTED: if (is_local_mad(ibp, in_mad, in_wc)) { ret = opa_local_smp_check(ibp, in_wc); if (ret) return IB_MAD_RESULT_FAILURE; } ret = process_subn_opa(ibdev, mad_flags, port, in_mad, out_mad, &resp_len); goto bail; case IB_MGMT_CLASS_PERF_MGMT: ret = process_perf_opa(ibdev, port, in_mad, out_mad, &resp_len); goto bail; default: ret = IB_MAD_RESULT_SUCCESS; } bail: if (ret & IB_MAD_RESULT_REPLY) *out_mad_size = round_up(resp_len, 8); else if (ret & IB_MAD_RESULT_SUCCESS) *out_mad_size = in_wc->byte_len - sizeof(struct ib_grh); return ret; } static int hfi1_process_ib_mad(struct ib_device *ibdev, int mad_flags, u8 port, const struct ib_wc *in_wc, const struct ib_grh *in_grh, const struct ib_mad *in_mad, struct ib_mad *out_mad) { int ret; switch (in_mad->mad_hdr.mgmt_class) { case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: case IB_MGMT_CLASS_SUBN_LID_ROUTED: ret = process_subn(ibdev, mad_flags, port, in_mad, out_mad); break; case IB_MGMT_CLASS_PERF_MGMT: ret = process_perf(ibdev, port, in_mad, out_mad); break; default: ret = IB_MAD_RESULT_SUCCESS; break; } return ret; } /** * hfi1_process_mad - process an incoming MAD packet * @ibdev: the infiniband device this packet came in on * @mad_flags: MAD flags * @port: the port number this packet came in on * @in_wc: the work completion entry for this packet * @in_grh: the global route header for this packet * @in_mad: the incoming MAD * @out_mad: any outgoing MAD reply * * Returns IB_MAD_RESULT_SUCCESS if this is a MAD that we are not * interested in processing. * * Note that the verbs framework has already done the MAD sanity checks, * and hop count/pointer updating for IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE * MADs. * * This is called by the ib_mad module. */ int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port, const struct ib_wc *in_wc, const struct ib_grh *in_grh, const struct ib_mad_hdr *in_mad, size_t in_mad_size, struct ib_mad_hdr *out_mad, size_t *out_mad_size, u16 *out_mad_pkey_index) { switch (in_mad->base_version) { case OPA_MGMT_BASE_VERSION: if (unlikely(in_mad_size != sizeof(struct opa_mad))) { dev_err(ibdev->dev.parent, "invalid in_mad_size\n"); return IB_MAD_RESULT_FAILURE; } return hfi1_process_opa_mad(ibdev, mad_flags, port, in_wc, in_grh, (struct opa_mad *)in_mad, (struct opa_mad *)out_mad, out_mad_size, out_mad_pkey_index); case IB_MGMT_BASE_VERSION: return hfi1_process_ib_mad(ibdev, mad_flags, port, in_wc, in_grh, (const struct ib_mad *)in_mad, (struct ib_mad *)out_mad); default: break; } return IB_MAD_RESULT_FAILURE; }