/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include static int nvkm_falcon_oclass_get(struct nvkm_oclass *oclass, int index) { struct nvkm_falcon *falcon = nvkm_falcon(oclass->engine); int c = 0; while (falcon->func->sclass[c].oclass) { if (c++ == index) { oclass->base = falcon->func->sclass[index]; return index; } } return c; } static int nvkm_falcon_cclass_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent, int align, struct nvkm_gpuobj **pgpuobj) { return nvkm_gpuobj_new(object->engine->subdev.device, 256, align, true, parent, pgpuobj); } static const struct nvkm_object_func nvkm_falcon_cclass = { .bind = nvkm_falcon_cclass_bind, }; static void nvkm_falcon_intr(struct nvkm_engine *engine) { struct nvkm_falcon *falcon = nvkm_falcon(engine); struct nvkm_subdev *subdev = &falcon->engine.subdev; struct nvkm_device *device = subdev->device; const u32 base = falcon->addr; u32 dest = nvkm_rd32(device, base + 0x01c); u32 intr = nvkm_rd32(device, base + 0x008) & dest & ~(dest >> 16); u32 inst = nvkm_rd32(device, base + 0x050) & 0x3fffffff; struct nvkm_fifo_chan *chan; unsigned long flags; chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags); if (intr & 0x00000040) { if (falcon->func->intr) { falcon->func->intr(falcon, chan); nvkm_wr32(device, base + 0x004, 0x00000040); intr &= ~0x00000040; } } if (intr & 0x00000010) { nvkm_debug(subdev, "ucode halted\n"); nvkm_wr32(device, base + 0x004, 0x00000010); intr &= ~0x00000010; } if (intr) { nvkm_error(subdev, "intr %08x\n", intr); nvkm_wr32(device, base + 0x004, intr); } nvkm_fifo_chan_put(device->fifo, flags, &chan); } static int nvkm_falcon_fini(struct nvkm_engine *engine, bool suspend) { struct nvkm_falcon *falcon = nvkm_falcon(engine); struct nvkm_device *device = falcon->engine.subdev.device; const u32 base = falcon->addr; if (!suspend) { nvkm_memory_del(&falcon->core); if (falcon->external) { vfree(falcon->data.data); vfree(falcon->code.data); falcon->code.data = NULL; } } if (nvkm_mc_enabled(device, engine->subdev.index)) { nvkm_mask(device, base + 0x048, 0x00000003, 0x00000000); nvkm_wr32(device, base + 0x014, 0xffffffff); } return 0; } static void * vmemdup(const void *src, size_t len) { void *p = vmalloc(len); if (p) memcpy(p, src, len); return p; } static int nvkm_falcon_oneinit(struct nvkm_engine *engine) { struct nvkm_falcon *falcon = nvkm_falcon(engine); struct nvkm_subdev *subdev = &falcon->engine.subdev; struct nvkm_device *device = subdev->device; const u32 base = falcon->addr; u32 caps; /* determine falcon capabilities */ if (device->chipset < 0xa3 || device->chipset == 0xaa || device->chipset == 0xac) { falcon->version = 0; falcon->secret = (falcon->addr == 0x087000) ? 1 : 0; } else { caps = nvkm_rd32(device, base + 0x12c); falcon->version = (caps & 0x0000000f); falcon->secret = (caps & 0x00000030) >> 4; } caps = nvkm_rd32(device, base + 0x108); falcon->code.limit = (caps & 0x000001ff) << 8; falcon->data.limit = (caps & 0x0003fe00) >> 1; nvkm_debug(subdev, "falcon version: %d\n", falcon->version); nvkm_debug(subdev, "secret level: %d\n", falcon->secret); nvkm_debug(subdev, "code limit: %d\n", falcon->code.limit); nvkm_debug(subdev, "data limit: %d\n", falcon->data.limit); return 0; } static int nvkm_falcon_init(struct nvkm_engine *engine) { struct nvkm_falcon *falcon = nvkm_falcon(engine); struct nvkm_subdev *subdev = &falcon->engine.subdev; struct nvkm_device *device = subdev->device; const struct firmware *fw; char name[32] = "internal"; const u32 base = falcon->addr; int ret, i; /* wait for 'uc halted' to be signalled before continuing */ if (falcon->secret && falcon->version < 4) { if (!falcon->version) { nvkm_msec(device, 2000, if (nvkm_rd32(device, base + 0x008) & 0x00000010) break; ); } else { nvkm_msec(device, 2000, if (!(nvkm_rd32(device, base + 0x180) & 0x80000000)) break; ); } nvkm_wr32(device, base + 0x004, 0x00000010); } /* disable all interrupts */ nvkm_wr32(device, base + 0x014, 0xffffffff); /* no default ucode provided by the engine implementation, try and * locate a "self-bootstrapping" firmware image for the engine */ if (!falcon->code.data) { snprintf(name, sizeof(name), "nouveau/nv%02x_fuc%03x", device->chipset, falcon->addr >> 12); ret = request_firmware(&fw, name, device->dev); if (ret == 0) { falcon->code.data = vmemdup(fw->data, fw->size); falcon->code.size = fw->size; falcon->data.data = NULL; falcon->data.size = 0; release_firmware(fw); } falcon->external = true; } /* next step is to try and load "static code/data segment" firmware * images for the engine */ if (!falcon->code.data) { snprintf(name, sizeof(name), "nouveau/nv%02x_fuc%03xd", device->chipset, falcon->addr >> 12); ret = request_firmware(&fw, name, device->dev); if (ret) { nvkm_error(subdev, "unable to load firmware data\n"); return -ENODEV; } falcon->data.data = vmemdup(fw->data, fw->size); falcon->data.size = fw->size; release_firmware(fw); if (!falcon->data.data) return -ENOMEM; snprintf(name, sizeof(name), "nouveau/nv%02x_fuc%03xc", device->chipset, falcon->addr >> 12); ret = request_firmware(&fw, name, device->dev); if (ret) { nvkm_error(subdev, "unable to load firmware code\n"); return -ENODEV; } falcon->code.data = vmemdup(fw->data, fw->size); falcon->code.size = fw->size; release_firmware(fw); if (!falcon->code.data) return -ENOMEM; } nvkm_debug(subdev, "firmware: %s (%s)\n", name, falcon->data.data ? "static code/data segments" : "self-bootstrapping"); /* ensure any "self-bootstrapping" firmware image is in vram */ if (!falcon->data.data && !falcon->core) { ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, falcon->code.size, 256, false, &falcon->core); if (ret) { nvkm_error(subdev, "core allocation failed, %d\n", ret); return ret; } nvkm_kmap(falcon->core); for (i = 0; i < falcon->code.size; i += 4) nvkm_wo32(falcon->core, i, falcon->code.data[i / 4]); nvkm_done(falcon->core); } /* upload firmware bootloader (or the full code segments) */ if (falcon->core) { u64 addr = nvkm_memory_addr(falcon->core); if (device->card_type < NV_C0) nvkm_wr32(device, base + 0x618, 0x04000000); else nvkm_wr32(device, base + 0x618, 0x00000114); nvkm_wr32(device, base + 0x11c, 0); nvkm_wr32(device, base + 0x110, addr >> 8); nvkm_wr32(device, base + 0x114, 0); nvkm_wr32(device, base + 0x118, 0x00006610); } else { if (falcon->code.size > falcon->code.limit || falcon->data.size > falcon->data.limit) { nvkm_error(subdev, "ucode exceeds falcon limit(s)\n"); return -EINVAL; } if (falcon->version < 3) { nvkm_wr32(device, base + 0xff8, 0x00100000); for (i = 0; i < falcon->code.size / 4; i++) nvkm_wr32(device, base + 0xff4, falcon->code.data[i]); } else { nvkm_wr32(device, base + 0x180, 0x01000000); for (i = 0; i < falcon->code.size / 4; i++) { if ((i & 0x3f) == 0) nvkm_wr32(device, base + 0x188, i >> 6); nvkm_wr32(device, base + 0x184, falcon->code.data[i]); } } } /* upload data segment (if necessary), zeroing the remainder */ if (falcon->version < 3) { nvkm_wr32(device, base + 0xff8, 0x00000000); for (i = 0; !falcon->core && i < falcon->data.size / 4; i++) nvkm_wr32(device, base + 0xff4, falcon->data.data[i]); for (; i < falcon->data.limit; i += 4) nvkm_wr32(device, base + 0xff4, 0x00000000); } else { nvkm_wr32(device, base + 0x1c0, 0x01000000); for (i = 0; !falcon->core && i < falcon->data.size / 4; i++) nvkm_wr32(device, base + 0x1c4, falcon->data.data[i]); for (; i < falcon->data.limit / 4; i++) nvkm_wr32(device, base + 0x1c4, 0x00000000); } /* start it running */ nvkm_wr32(device, base + 0x10c, 0x00000001); /* BLOCK_ON_FIFO */ nvkm_wr32(device, base + 0x104, 0x00000000); /* ENTRY */ nvkm_wr32(device, base + 0x100, 0x00000002); /* TRIGGER */ nvkm_wr32(device, base + 0x048, 0x00000003); /* FIFO | CHSW */ if (falcon->func->init) falcon->func->init(falcon); return 0; } static void * nvkm_falcon_dtor(struct nvkm_engine *engine) { return nvkm_falcon(engine); } static const struct nvkm_engine_func nvkm_falcon = { .dtor = nvkm_falcon_dtor, .oneinit = nvkm_falcon_oneinit, .init = nvkm_falcon_init, .fini = nvkm_falcon_fini, .intr = nvkm_falcon_intr, .fifo.sclass = nvkm_falcon_oclass_get, .cclass = &nvkm_falcon_cclass, }; int nvkm_falcon_new_(const struct nvkm_falcon_func *func, struct nvkm_device *device, int index, bool enable, u32 addr, struct nvkm_engine **pengine) { struct nvkm_falcon *falcon; if (!(falcon = kzalloc(sizeof(*falcon), GFP_KERNEL))) return -ENOMEM; falcon->func = func; falcon->addr = addr; falcon->code.data = func->code.data; falcon->code.size = func->code.size; falcon->data.data = func->data.data; falcon->data.size = func->data.size; *pengine = &falcon->engine; return nvkm_engine_ctor(&nvkm_falcon, device, index, enable, &falcon->engine); }