/* * Copyright (C) 2016 Samsung Electronics. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include "et5xx.h" int etspi_io_burst_write_register(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status = 0; struct spi_message m; struct spi_transfer xfer = { .tx_buf = etspi->buf, .len = ioc->len + 1, }; if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { status = -ENOMEM; pr_err("%s error status = %d\n", __func__, status); goto end; } memset(etspi->buf, 0, ioc->len + 1); *etspi->buf = OP_REG_W_C; if (copy_from_user(etspi->buf + 1, (const u8 __user *) (uintptr_t) ioc->tx_buf, ioc->len)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; goto end; } pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s error status = %d\n", __func__, status); goto end; } end: return status; #endif } int etspi_io_burst_write_register_backward(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status = 0; struct spi_message m; struct spi_transfer xfer = { .tx_buf = etspi->buf, .len = ioc->len + 1, }; if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { status = -ENOMEM; pr_err("%s error status = %d\n", __func__, status); goto end; } memset(etspi->buf, 0, ioc->len + 1); *etspi->buf = OP_REG_W_C_BW; if (copy_from_user(etspi->buf + 1, (const u8 __user *) (uintptr_t)ioc->tx_buf, ioc->len)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; goto end; } pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s error status = %d\n", __func__, status); goto end; } end: return status; #endif } int etspi_io_burst_read_register(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status = 0; struct spi_message m; struct spi_transfer xfer = { .tx_buf = etspi->buf, .rx_buf = etspi->buf, .len = ioc->len + 2, }; if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { status = -ENOMEM; pr_err("%s error status = %d\n", __func__, status); goto end; } memset(etspi->buf, 0, xfer.len); *etspi->buf = OP_REG_R_C; if (copy_from_user(etspi->buf + 1, (const u8 __user *) (uintptr_t) ioc->tx_buf, 1)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; goto end; } pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { status = -ENOMEM; pr_err("%s error status = %d\n", __func__, status); goto end; } if (copy_to_user((u8 __user *) (uintptr_t)ioc->rx_buf, etspi->buf + 2, ioc->len)) { status = -EFAULT; pr_err("%s buffer copy_to_user fail status\n", __func__); goto end; } end: return status; #endif } int etspi_io_burst_read_register_backward(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status = 0; struct spi_message m; struct spi_transfer xfer = { .tx_buf = etspi->buf, .rx_buf = etspi->buf, .len = ioc->len + 2, }; if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { status = -ENOMEM; pr_err("%s error status = %d\n", __func__, status); goto end; } memset(etspi->buf, 0, xfer.len); *etspi->buf = OP_REG_R_C_BW; if (copy_from_user(etspi->buf + 1, (const u8 __user *) (uintptr_t)ioc->tx_buf, 1)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; goto end; } pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { status = -ENOMEM; pr_err("%s error status = %d\n", __func__, status); goto end; } if (copy_to_user((u8 __user *) (uintptr_t)ioc->rx_buf, etspi->buf + 2, ioc->len)) { status = -EFAULT; pr_err("%s buffer copy_to_user fail status\n", __func__); goto end; } end: return status; #endif } int etspi_io_read_registerex(struct etspi_data *etspi, u8 *addr, u8 *buf, u32 len) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status = 0; struct spi_message m; struct spi_transfer xfer = { .tx_buf = etspi->buf, .rx_buf = etspi->buf, .len = len + 2, }; if (len <= 0 || len + 2 > etspi->bufsiz) { status = -ENOMEM; pr_err("%s error status = %d", __func__, status); goto end; } memset(etspi->buf, 0, xfer.len); *etspi->buf = OP_REG_R; if (copy_from_user(etspi->buf + 1, (const u8 __user *) (uintptr_t) addr , 1)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; goto end; } pr_debug("%s addr = %p op = %x reg = %x len = %d tx = %p, rx = %p", __func__, addr, etspi->buf[0], etspi->buf[1], len, xfer.tx_buf, xfer.rx_buf); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s read data error status = %d\n", __func__, status); goto end; } if (copy_to_user((u8 __user *) (uintptr_t) buf, etspi->buf + 2, len)) { pr_err("%s buffer copy_to_user fail status\n", __func__); status = -EFAULT; goto end; } end: return status; #endif } /* Read io register */ int etspi_io_read_register(struct etspi_data *etspi, u8 *addr, u8 *buf) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status = 0; struct spi_message m; int read_len = 1; u8 tx[] = {OP_REG_R, 0x00, 0x00}; u8 val, addrval; u8 rx[] = {0xFF, 0x00, 0x00}; struct spi_transfer xfer = { .tx_buf = tx, .rx_buf = rx, .len = 3, }; if (copy_from_user(&addrval, (const u8 __user *) (uintptr_t) addr , read_len)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; return status; } tx[1] = addrval; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s read data error status = %d\n", __func__, status); return status; } val = rx[2]; pr_debug("%s len = %d addr = %p val = %x\n", __func__, read_len, addr, val); if (copy_to_user((u8 __user *) (uintptr_t) buf, &val, read_len)) { pr_err("%s buffer copy_to_user fail status\n", __func__); status = -EFAULT; return status; } return status; #endif } /* Write data to register */ int etspi_io_write_register(struct etspi_data *etspi, u8 *buf) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status = 0; int write_len = 2; struct spi_message m; u8 tx[] = {OP_REG_W, 0x00, 0x00}; u8 val[3]; struct spi_transfer xfer = { .tx_buf = tx, .len = 3, }; if (copy_from_user(val, (const u8 __user *) (uintptr_t) buf, write_len)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; return status; } pr_debug("%s write_len = %d addr = %x data = %x\n", __func__, write_len, val[0], val[1]); tx[1] = val[0]; tx[2] = val[1]; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s read data error status = %d\n", __func__, status); return status; } return status; #endif } int etspi_write_register(struct etspi_data *etspi, u8 addr, u8 buf) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; u8 tx[] = {OP_REG_W, addr, buf}; struct spi_transfer xfer = { .tx_buf = tx, .rx_buf = NULL, .len = 3, }; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status == 0) { DEBUG_PRINT("%s address = %x result = %x %x\n" __func__, addr, result[1], result[2]); } else { pr_err("%s read data error status = %d\n", __func__, status); } return status; #endif } int etspi_read_register(struct etspi_data *etspi, u8 addr, u8 *buf) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; static u8 read_value[] = {OP_REG_R, 0x00, 0x00}; static u8 result[] = {0xFF, 0xFF, 0xFF}; struct spi_transfer xfer = { .tx_buf = NULL, .rx_buf = result, .len = 3, }; read_value[1] = addr; xfer.tx_buf = read_value; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status == 0) { *buf = result[2]; DEBUG_PRINT("%s address = %x result = %x %x\n" __func__, addr, result[1], result[2]); } else { pr_err("%s read data error status = %d\n", __func__, status); } return status; #endif } int etspi_io_nvm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; u8 addr/* nvm logical address */, buf[] = {OP_NVM_RE, 0x00}; struct spi_transfer xfer = { .tx_buf = buf, .rx_buf = NULL, .len = 2, }; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status == 0) DEBUG_PRINT("%s nvm enabled\n", __func__); else pr_err("%s nvm enable error status = %d\n", __func__, status); usleep_range(10, 50); if (copy_from_user(&addr, (const u8 __user *) (uintptr_t) ioc->tx_buf , 1)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; return status; } etspi->buf[0] = OP_NVM_ON_R; pr_debug("%s logical addr(%x) len(%d)\n", __func__, addr, ioc->len); if ((addr + ioc->len) > MAX_NVM_LEN) return -EINVAL; /* transfer to nvm physical address*/ etspi->buf[1] = ((addr % 2) ? (addr - 1) : addr) / 2; /* thansfer to nvm physical length */ xfer.len = ((ioc->len % 2) ? ioc->len + 1 : (addr % 2 ? ioc->len + 2 : ioc->len)) + 3; if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { if ((xfer.len) % DIVISION_OF_IMAGE != 0) xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE)); } xfer.tx_buf = xfer.rx_buf = etspi->buf; pr_debug("%s nvm read addr(%d) len(%d) xfer.rx_buf(%p), etspi->buf(%p)\n", __func__, etspi->buf[1], xfer.len, xfer.rx_buf, etspi->buf); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s error status = %d\n", __func__, status); return status; } if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, xfer.rx_buf + 3 , ioc->len)) { pr_err("%s buffer copy_to_user fail status\n", __func__); status = -EFAULT; return status; } return status; #endif } int etspi_io_nvm_write(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status, i, j, len/* physical nvm length */; struct spi_message m; u8 *bufw = NULL; u8 buf[MAX_NVM_LEN + 1] = {OP_NVM_WE, 0x00}; u8 addr/* nvm physical addr */; struct spi_transfer xfer = { .tx_buf = buf, .rx_buf = NULL, .len = 2, }; if (ioc->len > (MAX_NVM_LEN + 1)) return -EINVAL; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status == 0) DEBUG_PRINT("%s nvm enabled\n", __func__); else pr_err("%s nvm enable error status = %d\n", __func__, status); usleep_range(10, 50); pr_debug("%s buf(%p) tx_buf(%p) len(%d)\n", __func__, buf, ioc->tx_buf, ioc->len); if (copy_from_user(buf, (const u8 __user *) (uintptr_t) ioc->tx_buf, ioc->len)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; return status; } if ((buf[0] + (ioc->len - 1)) > MAX_NVM_LEN) return -EINVAL; if ((buf[0] % 2) || ((ioc->len - 1) % 2)) { /* TODO: add non alignment handling */ pr_err("%s can't handle address alignment issue. %d %d\n", __func__, buf[0], ioc->len); return -EINVAL; } bufw = kmalloc(NVM_WRITE_LENGTH, GFP_KERNEL); /*TODO: need to dynamic assign nvm length*/ if (bufw == NULL) { status = -ENOMEM; pr_err("%s bufw kmalloc error\n", __func__); return status; } xfer.tx_buf = xfer.rx_buf = bufw; xfer.len = NVM_WRITE_LENGTH; len = (ioc->len - 1) / 2; pr_debug("%s nvm write addr(%d) len(%d) xfer.tx_buf(%p), etspi->buf(%p)\n", __func__, buf[0], len, xfer.tx_buf, etspi->buf); for (i = 0, addr = buf[0] / 2/* thansfer to nvm physical length */; i < len; i++) { bufw[0] = OP_NVM_ON_W; bufw[1] = addr++; bufw[2] = buf[i * 2 + 1]; bufw[3] = buf[i * 2 + 2]; memset(bufw + 4, 1, NVM_WRITE_LENGTH - 4); pr_debug("%s write transaction (%d): %x %x %x %x\n", __func__, i, bufw[0], bufw[1], bufw[2], bufw[3]); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s error status = %d\n", __func__, status); goto end; } for (j = 0; j < NVM_WRITE_LENGTH - 4; j++) { if (bufw[4 + j] == 0) { pr_debug("%s nvm write ready(%d)\n", __func__, j); break; } if (j == NVM_WRITE_LENGTH - 5) { pr_err("%s nvm write fail(timeout)\n", __func__); status = -EIO; goto end; } } } end: kfree(bufw); return status; #endif } int etspi_nvm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; u8 addr/* nvm logical address */, buf[] = {OP_NVM_RE, 0x00}; struct spi_transfer xfer = { .tx_buf = buf, .rx_buf = NULL, .len = 2, }; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status == 0) DEBUG_PRINT("%s nvm enabled\n", __func__); else pr_err("%s nvm enable error status = %d\n", __func__, status); usleep_range(10, 50); addr = ioc->tx_buf[0]; etspi->buf[0] = OP_NVM_ON_R; pr_debug("%s logical addr(%x) len(%d)\n", __func__, addr, ioc->len); if ((addr + ioc->len) > MAX_NVM_LEN) return -EINVAL; /* transfer to nvm physical address*/ etspi->buf[1] = ((addr % 2) ? (addr - 1) : addr) / 2; /* thansfer to nvm physical length */ xfer.len = ((ioc->len % 2) ? ioc->len + 1 : (addr % 2 ? ioc->len + 2 : ioc->len)) + 3; if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { if ((xfer.len) % DIVISION_OF_IMAGE != 0) xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE)); } xfer.tx_buf = xfer.rx_buf = etspi->buf; pr_debug("%s nvm read addr(%d) len(%d) xfer.rx_buf(%p), etspi->buf(%p)\n", __func__, etspi->buf[1], xfer.len, xfer.rx_buf, etspi->buf); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s error status = %d\n", __func__, status); return status; } if (memcpy((u8 __user *) (uintptr_t) ioc->rx_buf, xfer.rx_buf + 3, ioc->len)) { pr_err("%s buffer copy_to_user fail status\n", __func__); status = -EFAULT; return status; } return status; #endif } int etspi_io_nvm_writeex(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status, i, j, len/* physical nvm length */, wlen; struct spi_message m; u8 *bufw = NULL; u8 bufr[MAX_NVM_LEN + 3]; u8 buf[MAX_NVM_LEN + 3] = {OP_NVM_WE, 0x00}; u8 addr/* nvm physical addr */, *tmp = NULL; struct egis_ioc_transfer r; struct spi_transfer xfer = { .tx_buf = buf, .rx_buf = NULL, .len = 2, }; pr_debug("%s buf(%p) tx_buf(%p) len(%d)\n", __func__, buf, ioc->tx_buf, ioc->len); if (copy_from_user(buf, (const u8 __user *) (uintptr_t) ioc->tx_buf , ioc->len)) { pr_err("%s buffer copy_from_user fail\n", __func__); status = -EFAULT; return status; } if ((buf[0] + (ioc->len - 3)) > MAX_NVM_LEN) return -EINVAL; if ((buf[0] % 2) || ((ioc->len - 3) % 2)) { /* address non-alignment handling */ pr_debug("%s handle address alignment issue. %d %d\n", __func__, buf[0], ioc->len); r.tx_buf = r.rx_buf = bufr; r.len = ioc->len; if (buf[0] % 2) { r.tx_buf[0] = buf[0] - 1; r.len = ioc->len % 2 ? r.len + 1 : r.len + 2; } else { if (ioc->len % 2) r.len++; } pr_debug("%s fixed address alignment issue. %d %d\n", __func__, r.tx_buf[0], r.len); etspi_nvm_read(etspi, &r); tmp = bufr; if (buf[0] % 2) tmp++; memcpy(tmp, buf, ioc->len); } buf[0] = OP_NVM_WE; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status == 0) DEBUG_PRINT("%s nvm enabled\n", __func__); else pr_err("%s nvm enable error status = %d\n", __func__, status); usleep_range(10, 50); wlen = *(u16 *)(buf + 1); pr_debug("%s wlen(%d)\n", __func__, wlen); if (wlen > 8192) wlen = 8196; bufw = kmalloc(wlen, GFP_KERNEL); if (bufw == NULL) { status = -ENOMEM; pr_err("%s bufw kmalloc error\n", __func__); return status; } xfer.tx_buf = xfer.rx_buf = bufw; xfer.len = wlen; if ((buf[0] % 2) || ((ioc->len - 3) % 2)) { memcpy(buf, bufr, r.len); ioc->len = r.len; } len = (ioc->len - 3) / 2; pr_debug("%s nvm write addr(%d) len(%d) xfer.tx_buf(%p), etspi->buf(%p), wlen(%d)\n", __func__, buf[0], len, xfer.tx_buf, etspi->buf, wlen); for (i = 0, addr = buf[0] / 2/* thansfer to nvm physical length */; i < len; i++) { bufw[0] = OP_NVM_ON_W; bufw[1] = addr++; bufw[2] = buf[i * 2 + 3]; bufw[3] = buf[i * 2 + 4]; memset(bufw + 4, 1, wlen - 4); pr_debug("%s write transaction (%d): %x %x %x %x\n", __func__, i, bufw[0], bufw[1], bufw[2], bufw[3]); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s error status = %d\n", __func__, status); goto end; } for (j = 0; j < wlen - 4; j++) { if (bufw[4 + j] == 0) { pr_debug("%s nvm write ready(%d)\n", __func__, j); break; } if (j == wlen - 5) { pr_err("%s nvm write fail(timeout)\n", __func__); status = -EIO; goto end; } } } end: kfree(bufw); return status; #endif } int etspi_io_nvm_off(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; u8 buf[] = {OP_NVM_OFF, 0x00}; struct spi_transfer xfer = { .tx_buf = buf, .rx_buf = NULL, .len = 2, }; spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status == 0) DEBUG_PRINT("%s nvm disabled\n", __func__); else pr_err("%s nvm disable error status = %d\n", __func__, status); return status; #endif } int etspi_io_vdm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; u8 *buf = NULL; struct spi_transfer xfer = { .tx_buf = NULL, .rx_buf = NULL, .len = ioc->len + 1, }; if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { if ((xfer.len) % DIVISION_OF_IMAGE != 0) xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE)); } buf = kzalloc(xfer.len, GFP_KERNEL); if (buf == NULL) return -ENOMEM; xfer.tx_buf = xfer.rx_buf = buf; buf[0] = OP_VDM_R; pr_debug("%s len = %d, xfer.len = %d, buf = %p, rx_buf = %p\n", __func__, ioc->len, xfer.len, buf, ioc->rx_buf); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s read data error status = %d\n", __func__, status); goto end; } if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, buf + 1, ioc->len)) { pr_err("%s buffer copy_to_user fail status\n", __func__); status = -EFAULT; } end: kfree(buf); return status; #endif } int etspi_io_vdm_write(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; u8 *buf = NULL; struct spi_transfer xfer = { .tx_buf = NULL, .rx_buf = NULL, .len = ioc->len + 1, }; if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { if ((xfer.len) % DIVISION_OF_IMAGE != 0) xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE)); } buf = kzalloc(xfer.len, GFP_KERNEL); if (buf == NULL) return -ENOMEM; if (copy_from_user((u8 __user *) (uintptr_t) buf + 1, ioc->tx_buf, ioc->len)) { pr_err("buffer copy_from_user fail status\n"); status = -EFAULT; goto end; } xfer.tx_buf = xfer.rx_buf = buf; buf[0] = OP_VDM_W; pr_debug("%s len = %d, xfer.len = %d, buf = %p, tx_buf = %p\n", __func__, ioc->len, xfer.len, buf, ioc->tx_buf); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) pr_err("%s read data error status = %d\n", __func__, status); end: kfree(buf); return status; #endif } int etspi_io_get_frame(struct etspi_data *etspi, u8 *fr, u32 size) { #ifdef ENABLE_SENSORS_FPRINT_SECURE return 0; #else int status; struct spi_message m; u8 *buf = NULL; struct spi_transfer xfer = { .tx_buf = NULL, .rx_buf = NULL, .len = size + 1, }; if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { if ((xfer.len) % DIVISION_OF_IMAGE != 0) xfer.len = xfer.len + (DIVISION_OF_IMAGE - (xfer.len % DIVISION_OF_IMAGE)); } buf = kzalloc(xfer.len, GFP_KERNEL); if (buf == NULL) return -ENOMEM; xfer.tx_buf = xfer.rx_buf = buf; buf[0] = OP_IMG_R; pr_debug("%s size = %d, xfer.len = %d, buf = %p, fr = %p\n", __func__, size, xfer.len, buf, fr); spi_message_init(&m); spi_message_add_tail(&xfer, &m); status = spi_sync(etspi->spi, &m); if (status < 0) { pr_err("%s read data error status = %d\n", __func__, status); goto end; } if (copy_to_user((u8 __user *) (uintptr_t) fr, buf + 1, size)) { pr_err("%s buffer copy_to_user fail status\n", __func__); status = -EFAULT; } end: kfree(buf); return status; #endif }