/* * Copyright (c) 2015 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * EXYNOS - CPU PMU(Power Management Unit) support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include /** * "pmureg" has the mapped base address of PMU(Power Management Unit) */ static struct regmap *pmureg; /** * No driver refers the "pmureg" directly, through the only exported API. */ int exynos_pmu_read(unsigned int offset, unsigned int *val) { return regmap_read(pmureg, offset, val); } int exynos_pmu_write(unsigned int offset, unsigned int val) { return regmap_write(pmureg, offset, val); } int exynos_pmu_update(unsigned int offset, unsigned int mask, unsigned int val) { return regmap_update_bits(pmureg, offset, mask, val); } struct regmap *exynos_get_pmu_regmap(void) { return pmureg; } EXPORT_SYMBOL_GPL(exynos_get_pmu_regmap); EXPORT_SYMBOL(exynos_pmu_read); EXPORT_SYMBOL(exynos_pmu_write); EXPORT_SYMBOL(exynos_pmu_update); /** * CPU power control registers in PMU are arranged at regular intervals * (interval = 0x8). pmu_cpu_offset calculates how far cpu is from address * of first cpu. This expression is based on cpu and cluster id in MPIDR, * refer below. * cpu address offset : ((cluster id << 2) | (cpu id)) * 0x8 */ #ifdef CONFIG_SOC_EXYNOS9810 #define CPU_PER_OFFSET 0x8 #define phy_cluster(cpu) !MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1) #else #define CPU_PER_OFFSET 0x80 #define phy_cluster(cpu) MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1) #endif #define phy_cpu(cpu) MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 0) #define pmu_cpu_offset(cpu) (((phy_cluster(cpu) << 2)| phy_cpu(cpu)) * CPU_PER_OFFSET) #define PMU_CPU_CONFIG_BASE 0x2000 #define PMU_CPU_STATUS_BASE 0x2004 #define CPU_LOCAL_PWR_CFG 0xF static void pmu_cpu_ctrl(unsigned int cpu, int enable) { unsigned int offset; offset = pmu_cpu_offset(cpu); regmap_update_bits(pmureg, PMU_CPU_CONFIG_BASE + offset, CPU_LOCAL_PWR_CFG, enable ? CPU_LOCAL_PWR_CFG : 0); } static int pmu_cpu_state(unsigned int cpu) { unsigned int offset, val = 0; offset = pmu_cpu_offset(cpu); regmap_read(pmureg, PMU_CPU_STATUS_BASE + offset, &val); return ((val & CPU_LOCAL_PWR_CFG) == CPU_LOCAL_PWR_CFG); } #define CLUSTER_ADDR_OFFSET 0x8 #define PMU_NONCPU_CONFIG_BASE 0x2040 #define PMU_NONCPU_STATUS_BASE 0x2044 #define PMU_MEMORY_CLUSTER1_NONCPU_STATUS 0x2380 #define MEMORY_CLUSTER_ADDR_OFFSET 0x21C #define NONCPU_LOCAL_PWR_CFG 0xF #define SHARED_CACHE_LOCAL_PWR_CFG 0x1 static void pmu_cluster_ctrl(unsigned int cpu, int enable) { unsigned int offset; offset = phy_cluster(cpu) * CLUSTER_ADDR_OFFSET; regmap_update_bits(pmureg, PMU_NONCPU_CONFIG_BASE + offset, NONCPU_LOCAL_PWR_CFG, enable ? NONCPU_LOCAL_PWR_CFG : 0); } static bool pmu_noncpu_state(unsigned int cpu) { unsigned int noncpu_stat = 0; unsigned int offset; offset = phy_cluster(cpu) * CLUSTER_ADDR_OFFSET; regmap_read(pmureg, PMU_NONCPU_STATUS_BASE + offset, &noncpu_stat); return !!(noncpu_stat & NONCPU_LOCAL_PWR_CFG); } static int pmu_shared_cache_state(unsigned int cpu) { unsigned int shared_stat = 0; unsigned int offset; offset = phy_cluster(cpu) * MEMORY_CLUSTER_ADDR_OFFSET; regmap_read(pmureg, PMU_MEMORY_CLUSTER1_NONCPU_STATUS + offset, &shared_stat); return (shared_stat & SHARED_CACHE_LOCAL_PWR_CFG); } static void exynos_cpu_up(unsigned int cpu) { pmu_cpu_ctrl(cpu, 1); } static void exynos_cpu_down(unsigned int cpu) { pmu_cpu_ctrl(cpu, 0); } static int exynos_cpu_state(unsigned int cpu) { return pmu_cpu_state(cpu); } static void exynos_cluster_up(unsigned int cpu) { pmu_cluster_ctrl(cpu, false); } static void exynos_cluster_down(unsigned int cpu) { pmu_cluster_ctrl(cpu, true); } static int exynos_cluster_state(unsigned int cpu) { return pmu_shared_cache_state(cpu) && pmu_noncpu_state(cpu); } struct exynos_cpu_power_ops exynos_cpu = { .power_up = exynos_cpu_up, .power_down = exynos_cpu_down, .power_state = exynos_cpu_state, .cluster_up = exynos_cluster_up, .cluster_down = exynos_cluster_down, .cluster_state = exynos_cluster_state, }; #define PMU_CP_STAT 0x0038 int exynos_check_cp_status(void) { unsigned int val; exynos_pmu_read(PMU_CP_STAT, &val); return val; } static struct bus_type exynos_info_subsys = { .name = "exynos_info", .dev_name = "exynos_info", }; #define NR_CPUS_PER_CLUSTER 4 static ssize_t core_status_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t n = 0; int cpu; for_each_possible_cpu(cpu) { /* * Each cluster has four cores. * "cpu % NR_CPUS_PER_CLUSTER == 0" means that * the cpu is a first one of each cluster. */ if (!(cpu % NR_CPUS_PER_CLUSTER)) { n += scnprintf(buf + n, 26, "%s shared_cache : %d\n", (!cpu) ? "boot" : "nonboot", pmu_shared_cache_state(cpu)); n += scnprintf(buf + n, 24, "%s Noncpu : %d\n", (!cpu) ? "boot" : "nonboot", pmu_noncpu_state(cpu)); } n += scnprintf(buf + n, 24, "CPU%d : %d\n", cpu, pmu_cpu_state(cpu)); } return n; } static struct kobj_attribute cs_attr = __ATTR(core_status, 0644, core_status_show, NULL); static struct attribute *cs_sysfs_attrs[] = { &cs_attr.attr, NULL, }; static struct attribute_group cs_sysfs_group = { .attrs = cs_sysfs_attrs, }; static const struct attribute_group *cs_sysfs_groups[] = { &cs_sysfs_group, NULL, }; static int exynos_pmu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; pmureg = syscon_regmap_lookup_by_phandle(dev->of_node, "samsung,syscon-phandle"); if (IS_ERR(pmureg)) { pr_err("Fail to get regmap of PMU\n"); return PTR_ERR(pmureg); } if (subsys_system_register(&exynos_info_subsys, cs_sysfs_groups)) pr_err("Fail to register exynos_info subsys\n"); return 0; } static const struct of_device_id of_exynos_pmu_match[] = { { .compatible = "samsung,exynos-pmu", }, { }, }; static const struct platform_device_id exynos_pmu_ids[] = { { "exynos-pmu", }, { } }; static struct platform_driver exynos_pmu_driver = { .driver = { .name = "exynos-pmu", .owner = THIS_MODULE, .of_match_table = of_exynos_pmu_match, }, .probe = exynos_pmu_probe, .id_table = exynos_pmu_ids, }; int __init exynos_pmu_init(void) { return platform_driver_register(&exynos_pmu_driver); } subsys_initcall(exynos_pmu_init);