/** * IBM Accelerator Family 'GenWQE' * * (C) Copyright IBM Corp. 2013 * * Author: Frank Haverkamp * Author: Joerg-Stephan Vogt * Author: Michael Jung * Author: Michael Ruettger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License (version 2 only) * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * Miscelanous functionality used in the other GenWQE driver parts. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "genwqe_driver.h" #include "card_base.h" #include "card_ddcb.h" /** * __genwqe_writeq() - Write 64-bit register * @cd: genwqe device descriptor * @byte_offs: byte offset within BAR * @val: 64-bit value * * Return: 0 if success; < 0 if error */ int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val) { struct pci_dev *pci_dev = cd->pci_dev; if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) return -EIO; if (cd->mmio == NULL) return -EIO; if (pci_channel_offline(pci_dev)) return -EIO; __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs); return 0; } /** * __genwqe_readq() - Read 64-bit register * @cd: genwqe device descriptor * @byte_offs: offset within BAR * * Return: value from register */ u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs) { if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) return 0xffffffffffffffffull; if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) && (byte_offs == IO_SLC_CFGREG_GFIR)) return 0x000000000000ffffull; if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) && (byte_offs == IO_SLC_CFGREG_GFIR)) return 0x00000000ffff0000ull; if (cd->mmio == NULL) return 0xffffffffffffffffull; return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs)); } /** * __genwqe_writel() - Write 32-bit register * @cd: genwqe device descriptor * @byte_offs: byte offset within BAR * @val: 32-bit value * * Return: 0 if success; < 0 if error */ int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val) { struct pci_dev *pci_dev = cd->pci_dev; if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) return -EIO; if (cd->mmio == NULL) return -EIO; if (pci_channel_offline(pci_dev)) return -EIO; __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs); return 0; } /** * __genwqe_readl() - Read 32-bit register * @cd: genwqe device descriptor * @byte_offs: offset within BAR * * Return: Value from register */ u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs) { if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) return 0xffffffff; if (cd->mmio == NULL) return 0xffffffff; return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs)); } /** * genwqe_read_app_id() - Extract app_id * * app_unitcfg need to be filled with valid data first */ int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len) { int i, j; u32 app_id = (u32)cd->app_unitcfg; memset(app_name, 0, len); for (i = 0, j = 0; j < min(len, 4); j++) { char ch = (char)((app_id >> (24 - j*8)) & 0xff); if (ch == ' ') continue; app_name[i++] = isprint(ch) ? ch : 'X'; } return i; } /** * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations * * Existing kernel functions seem to use a different polynom, * therefore we could not use them here. * * Genwqe's Polynomial = 0x20044009 */ #define CRC32_POLYNOMIAL 0x20044009 static u32 crc32_tab[256]; /* crc32 lookup table */ void genwqe_init_crc32(void) { int i, j; u32 crc; for (i = 0; i < 256; i++) { crc = i << 24; for (j = 0; j < 8; j++) { if (crc & 0x80000000) crc = (crc << 1) ^ CRC32_POLYNOMIAL; else crc = (crc << 1); } crc32_tab[i] = crc; } } /** * genwqe_crc32() - Generate 32-bit crc as required for DDCBs * @buff: pointer to data buffer * @len: length of data for calculation * @init: initial crc (0xffffffff at start) * * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009) * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should * result in a crc32 of 0xf33cb7d3. * * The existing kernel crc functions did not cover this polynom yet. * * Return: crc32 checksum. */ u32 genwqe_crc32(u8 *buff, size_t len, u32 init) { int i; u32 crc; crc = init; while (len--) { i = ((crc >> 24) ^ *buff++) & 0xFF; crc = (crc << 8) ^ crc32_tab[i]; } return crc; } void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size, dma_addr_t *dma_handle) { if (get_order(size) >= MAX_ORDER) return NULL; return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle, GFP_KERNEL); } void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size, void *vaddr, dma_addr_t dma_handle) { if (vaddr == NULL) return; dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle); } static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list, int num_pages) { int i; struct pci_dev *pci_dev = cd->pci_dev; for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) { pci_unmap_page(pci_dev, dma_list[i], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); dma_list[i] = 0x0; } } static int genwqe_map_pages(struct genwqe_dev *cd, struct page **page_list, int num_pages, dma_addr_t *dma_list) { int i; struct pci_dev *pci_dev = cd->pci_dev; /* establish DMA mapping for requested pages */ for (i = 0; i < num_pages; i++) { dma_addr_t daddr; dma_list[i] = 0x0; daddr = pci_map_page(pci_dev, page_list[i], 0, /* map_offs */ PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */ if (pci_dma_mapping_error(pci_dev, daddr)) { dev_err(&pci_dev->dev, "[%s] err: no dma addr daddr=%016llx!\n", __func__, (long long)daddr); goto err; } dma_list[i] = daddr; } return 0; err: genwqe_unmap_pages(cd, dma_list, num_pages); return -EIO; } static int genwqe_sgl_size(int num_pages) { int len, num_tlb = num_pages / 7; len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1); return roundup(len, PAGE_SIZE); } /** * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages * * Allocates memory for sgl and overlapping pages. Pages which might * overlap other user-space memory blocks are being cached for DMAs, * such that we do not run into syncronization issues. Data is copied * from user-space into the cached pages. */ int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, void __user *user_addr, size_t user_size) { int rc; struct pci_dev *pci_dev = cd->pci_dev; sgl->fpage_offs = offset_in_page((unsigned long)user_addr); sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size); sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE); sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE; dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n", __func__, user_addr, user_size, sgl->nr_pages, sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size); sgl->user_addr = user_addr; sgl->user_size = user_size; sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages); if (get_order(sgl->sgl_size) > MAX_ORDER) { dev_err(&pci_dev->dev, "[%s] err: too much memory requested!\n", __func__); return -ENOMEM; } sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size, &sgl->sgl_dma_addr); if (sgl->sgl == NULL) { dev_err(&pci_dev->dev, "[%s] err: no memory available!\n", __func__); return -ENOMEM; } /* Only use buffering on incomplete pages */ if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) { sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, &sgl->fpage_dma_addr); if (sgl->fpage == NULL) goto err_out; /* Sync with user memory */ if (copy_from_user(sgl->fpage + sgl->fpage_offs, user_addr, sgl->fpage_size)) { rc = -EFAULT; goto err_out; } } if (sgl->lpage_size != 0) { sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, &sgl->lpage_dma_addr); if (sgl->lpage == NULL) goto err_out1; /* Sync with user memory */ if (copy_from_user(sgl->lpage, user_addr + user_size - sgl->lpage_size, sgl->lpage_size)) { rc = -EFAULT; goto err_out2; } } return 0; err_out2: __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, sgl->lpage_dma_addr); sgl->lpage = NULL; sgl->lpage_dma_addr = 0; err_out1: __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, sgl->fpage_dma_addr); sgl->fpage = NULL; sgl->fpage_dma_addr = 0; err_out: __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, sgl->sgl_dma_addr); sgl->sgl = NULL; sgl->sgl_dma_addr = 0; sgl->sgl_size = 0; return -ENOMEM; } int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, dma_addr_t *dma_list) { int i = 0, j = 0, p; unsigned long dma_offs, map_offs; dma_addr_t prev_daddr = 0; struct sg_entry *s, *last_s = NULL; size_t size = sgl->user_size; dma_offs = 128; /* next block if needed/dma_offset */ map_offs = sgl->fpage_offs; /* offset in first page */ s = &sgl->sgl[0]; /* first set of 8 entries */ p = 0; /* page */ while (p < sgl->nr_pages) { dma_addr_t daddr; unsigned int size_to_map; /* always write the chaining entry, cleanup is done later */ j = 0; s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs); s[j].len = cpu_to_be32(128); s[j].flags = cpu_to_be32(SG_CHAINED); j++; while (j < 8) { /* DMA mapping for requested page, offs, size */ size_to_map = min(size, PAGE_SIZE - map_offs); if ((p == 0) && (sgl->fpage != NULL)) { daddr = sgl->fpage_dma_addr + map_offs; } else if ((p == sgl->nr_pages - 1) && (sgl->lpage != NULL)) { daddr = sgl->lpage_dma_addr; } else { daddr = dma_list[p] + map_offs; } size -= size_to_map; map_offs = 0; if (prev_daddr == daddr) { u32 prev_len = be32_to_cpu(last_s->len); /* pr_info("daddr combining: " "%016llx/%08x -> %016llx\n", prev_daddr, prev_len, daddr); */ last_s->len = cpu_to_be32(prev_len + size_to_map); p++; /* process next page */ if (p == sgl->nr_pages) goto fixup; /* nothing to do */ prev_daddr = daddr + size_to_map; continue; } /* start new entry */ s[j].target_addr = cpu_to_be64(daddr); s[j].len = cpu_to_be32(size_to_map); s[j].flags = cpu_to_be32(SG_DATA); prev_daddr = daddr + size_to_map; last_s = &s[j]; j++; p++; /* process next page */ if (p == sgl->nr_pages) goto fixup; /* nothing to do */ } dma_offs += 128; s += 8; /* continue 8 elements further */ } fixup: if (j == 1) { /* combining happend on last entry! */ s -= 8; /* full shift needed on previous sgl block */ j = 7; /* shift all elements */ } for (i = 0; i < j; i++) /* move elements 1 up */ s[i] = s[i + 1]; s[i].target_addr = cpu_to_be64(0); s[i].len = cpu_to_be32(0); s[i].flags = cpu_to_be32(SG_END_LIST); return 0; } /** * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages * * After the DMA transfer has been completed we free the memory for * the sgl and the cached pages. Data is being transfered from cached * pages into user-space buffers. */ int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl) { int rc = 0; struct pci_dev *pci_dev = cd->pci_dev; if (sgl->fpage) { if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs, sgl->fpage_size)) { dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n", __func__); rc = -EFAULT; } __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, sgl->fpage_dma_addr); sgl->fpage = NULL; sgl->fpage_dma_addr = 0; } if (sgl->lpage) { if (copy_to_user(sgl->user_addr + sgl->user_size - sgl->lpage_size, sgl->lpage, sgl->lpage_size)) { dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n", __func__); rc = -EFAULT; } __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, sgl->lpage_dma_addr); sgl->lpage = NULL; sgl->lpage_dma_addr = 0; } __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, sgl->sgl_dma_addr); sgl->sgl = NULL; sgl->sgl_dma_addr = 0x0; sgl->sgl_size = 0; return rc; } /** * free_user_pages() - Give pinned pages back * * Documentation of get_user_pages is in mm/memory.c: * * If the page is written to, set_page_dirty (or set_page_dirty_lock, * as appropriate) must be called after the page is finished with, and * before put_page is called. * * FIXME Could be of use to others and might belong in the generic * code, if others agree. E.g. * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c * ceph_put_page_vector in net/ceph/pagevec.c * maybe more? */ static int free_user_pages(struct page **page_list, unsigned int nr_pages, int dirty) { unsigned int i; for (i = 0; i < nr_pages; i++) { if (page_list[i] != NULL) { if (dirty) set_page_dirty_lock(page_list[i]); put_page(page_list[i]); } } return 0; } /** * genwqe_user_vmap() - Map user-space memory to virtual kernel memory * @cd: pointer to genwqe device * @m: mapping params * @uaddr: user virtual address * @size: size of memory to be mapped * * We need to think about how we could speed this up. Of course it is * not a good idea to do this over and over again, like we are * currently doing it. Nevertheless, I am curious where on the path * the performance is spend. Most probably within the memory * allocation functions, but maybe also in the DMA mapping code. * * Restrictions: The maximum size of the possible mapping currently depends * on the amount of memory we can get using kzalloc() for the * page_list and pci_alloc_consistent for the sg_list. * The sg_list is currently itself not scattered, which could * be fixed with some effort. The page_list must be split into * PAGE_SIZE chunks too. All that will make the complicated * code more complicated. * * Return: 0 if success */ int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr, unsigned long size, struct ddcb_requ *req) { int rc = -EINVAL; unsigned long data, offs; struct pci_dev *pci_dev = cd->pci_dev; if ((uaddr == NULL) || (size == 0)) { m->size = 0; /* mark unused and not added */ return -EINVAL; } m->u_vaddr = uaddr; m->size = size; /* determine space needed for page_list. */ data = (unsigned long)uaddr; offs = offset_in_page(data); m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE); m->page_list = kcalloc(m->nr_pages, sizeof(struct page *) + sizeof(dma_addr_t), GFP_KERNEL); if (!m->page_list) { dev_err(&pci_dev->dev, "err: alloc page_list failed\n"); m->nr_pages = 0; m->u_vaddr = NULL; m->size = 0; /* mark unused and not added */ return -ENOMEM; } m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages); /* pin user pages in memory */ rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */ m->nr_pages, 1, /* write by caller */ m->page_list); /* ptrs to pages */ if (rc < 0) goto fail_get_user_pages; /* assumption: get_user_pages can be killed by signals. */ if (rc < m->nr_pages) { free_user_pages(m->page_list, rc, 0); rc = -EFAULT; goto fail_get_user_pages; } rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list); if (rc != 0) goto fail_free_user_pages; return 0; fail_free_user_pages: free_user_pages(m->page_list, m->nr_pages, 0); fail_get_user_pages: kfree(m->page_list); m->page_list = NULL; m->dma_list = NULL; m->nr_pages = 0; m->u_vaddr = NULL; m->size = 0; /* mark unused and not added */ return rc; } /** * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel * memory * @cd: pointer to genwqe device * @m: mapping params */ int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m, struct ddcb_requ *req) { struct pci_dev *pci_dev = cd->pci_dev; if (!dma_mapping_used(m)) { dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n", __func__, m); return -EINVAL; } if (m->dma_list) genwqe_unmap_pages(cd, m->dma_list, m->nr_pages); if (m->page_list) { free_user_pages(m->page_list, m->nr_pages, 1); kfree(m->page_list); m->page_list = NULL; m->dma_list = NULL; m->nr_pages = 0; } m->u_vaddr = NULL; m->size = 0; /* mark as unused and not added */ return 0; } /** * genwqe_card_type() - Get chip type SLU Configuration Register * @cd: pointer to the genwqe device descriptor * Return: 0: Altera Stratix-IV 230 * 1: Altera Stratix-IV 530 * 2: Altera Stratix-V A4 * 3: Altera Stratix-V A7 */ u8 genwqe_card_type(struct genwqe_dev *cd) { u64 card_type = cd->slu_unitcfg; return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20); } /** * genwqe_card_reset() - Reset the card * @cd: pointer to the genwqe device descriptor */ int genwqe_card_reset(struct genwqe_dev *cd) { u64 softrst; struct pci_dev *pci_dev = cd->pci_dev; if (!genwqe_is_privileged(cd)) return -ENODEV; /* new SL */ __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull); msleep(1000); __genwqe_readq(cd, IO_HSU_FIR_CLR); __genwqe_readq(cd, IO_APP_FIR_CLR); __genwqe_readq(cd, IO_SLU_FIR_CLR); /* * Read-modify-write to preserve the stealth bits * * For SL >= 039, Stealth WE bit allows removing * the read-modify-wrote. * r-m-w may require a mask 0x3C to avoid hitting hard * reset again for error reset (should be 0, chicken). */ softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull; __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull); /* give ERRORRESET some time to finish */ msleep(50); if (genwqe_need_err_masking(cd)) { dev_info(&pci_dev->dev, "[%s] masking errors for old bitstreams\n", __func__); __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); } return 0; } int genwqe_read_softreset(struct genwqe_dev *cd) { u64 bitstream; if (!genwqe_is_privileged(cd)) return -ENODEV; bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1; cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull; return 0; } /** * genwqe_set_interrupt_capability() - Configure MSI capability structure * @cd: pointer to the device * Return: 0 if no error */ int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count) { int rc; rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI); if (rc < 0) return rc; return 0; } /** * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability() * @cd: pointer to the device */ void genwqe_reset_interrupt_capability(struct genwqe_dev *cd) { pci_free_irq_vectors(cd->pci_dev); } /** * set_reg_idx() - Fill array with data. Ignore illegal offsets. * @cd: card device * @r: debug register array * @i: index to desired entry * @m: maximum possible entries * @addr: addr which is read * @index: index in debug array * @val: read value */ static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r, unsigned int *i, unsigned int m, u32 addr, u32 idx, u64 val) { if (WARN_ON_ONCE(*i >= m)) return -EFAULT; r[*i].addr = addr; r[*i].idx = idx; r[*i].val = val; ++*i; return 0; } static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r, unsigned int *i, unsigned int m, u32 addr, u64 val) { return set_reg_idx(cd, r, i, m, addr, 0, val); } int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs, unsigned int max_regs, int all) { unsigned int i, j, idx = 0; u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr; u64 gfir, sluid, appid, ufir, ufec, sfir, sfec; /* Global FIR */ gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir); /* UnitCfg for SLU */ sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */ set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid); /* UnitCfg for APP */ appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */ set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid); /* Check all chip Units */ for (i = 0; i < GENWQE_MAX_UNITS; i++) { /* Unit FIR */ ufir_addr = (i << 24) | 0x008; ufir = __genwqe_readq(cd, ufir_addr); set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir); /* Unit FEC */ ufec_addr = (i << 24) | 0x018; ufec = __genwqe_readq(cd, ufec_addr); set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec); for (j = 0; j < 64; j++) { /* wherever there is a primary 1, read the 2ndary */ if (!all && (!(ufir & (1ull << j)))) continue; sfir_addr = (i << 24) | (0x100 + 8 * j); sfir = __genwqe_readq(cd, sfir_addr); set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir); sfec_addr = (i << 24) | (0x300 + 8 * j); sfec = __genwqe_readq(cd, sfec_addr); set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec); } } /* fill with invalid data until end */ for (i = idx; i < max_regs; i++) { regs[i].addr = 0xffffffff; regs[i].val = 0xffffffffffffffffull; } return idx; } /** * genwqe_ffdc_buff_size() - Calculates the number of dump registers */ int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid) { int entries = 0, ring, traps, traces, trace_entries; u32 eevptr_addr, l_addr, d_len, d_type; u64 eevptr, val, addr; eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; eevptr = __genwqe_readq(cd, eevptr_addr); if ((eevptr != 0x0) && (eevptr != -1ull)) { l_addr = GENWQE_UID_OFFS(uid) | eevptr; while (1) { val = __genwqe_readq(cd, l_addr); if ((val == 0x0) || (val == -1ull)) break; /* 38:24 */ d_len = (val & 0x0000007fff000000ull) >> 24; /* 39 */ d_type = (val & 0x0000008000000000ull) >> 36; if (d_type) { /* repeat */ entries += d_len; } else { /* size in bytes! */ entries += d_len >> 3; } l_addr += 8; } } for (ring = 0; ring < 8; ring++) { addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); val = __genwqe_readq(cd, addr); if ((val == 0x0ull) || (val == -1ull)) continue; traps = (val >> 24) & 0xff; traces = (val >> 16) & 0xff; trace_entries = val & 0xffff; entries += traps + (traces * trace_entries); } return entries; } /** * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure */ int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid, struct genwqe_reg *regs, unsigned int max_regs) { int i, traps, traces, trace, trace_entries, trace_entry, ring; unsigned int idx = 0; u32 eevptr_addr, l_addr, d_addr, d_len, d_type; u64 eevptr, e, val, addr; eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; eevptr = __genwqe_readq(cd, eevptr_addr); if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) { l_addr = GENWQE_UID_OFFS(uid) | eevptr; while (1) { e = __genwqe_readq(cd, l_addr); if ((e == 0x0) || (e == 0xffffffffffffffffull)) break; d_addr = (e & 0x0000000000ffffffull); /* 23:0 */ d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */ d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */ d_addr |= GENWQE_UID_OFFS(uid); if (d_type) { for (i = 0; i < (int)d_len; i++) { val = __genwqe_readq(cd, d_addr); set_reg_idx(cd, regs, &idx, max_regs, d_addr, i, val); } } else { d_len >>= 3; /* Size in bytes! */ for (i = 0; i < (int)d_len; i++, d_addr += 8) { val = __genwqe_readq(cd, d_addr); set_reg_idx(cd, regs, &idx, max_regs, d_addr, 0, val); } } l_addr += 8; } } /* * To save time, there are only 6 traces poplulated on Uid=2, * Ring=1. each with iters=512. */ for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds, 2...7 are ASI rings */ addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); val = __genwqe_readq(cd, addr); if ((val == 0x0ull) || (val == -1ull)) continue; traps = (val >> 24) & 0xff; /* Number of Traps */ traces = (val >> 16) & 0xff; /* Number of Traces */ trace_entries = val & 0xffff; /* Entries per trace */ /* Note: This is a combined loop that dumps both the traps */ /* (for the trace == 0 case) as well as the traces 1 to */ /* 'traces'. */ for (trace = 0; trace <= traces; trace++) { u32 diag_sel = GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace); addr = (GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_SELECTOR); __genwqe_writeq(cd, addr, diag_sel); for (trace_entry = 0; trace_entry < (trace ? trace_entries : traps); trace_entry++) { addr = (GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_READ_MBX); val = __genwqe_readq(cd, addr); set_reg_idx(cd, regs, &idx, max_regs, addr, (diag_sel<<16) | trace_entry, val); } } } return 0; } /** * genwqe_write_vreg() - Write register in virtual window * * Note, these registers are only accessible to the PF through the * VF-window. It is not intended for the VF to access. */ int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func) { __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); __genwqe_writeq(cd, reg, val); return 0; } /** * genwqe_read_vreg() - Read register in virtual window * * Note, these registers are only accessible to the PF through the * VF-window. It is not intended for the VF to access. */ u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func) { __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); return __genwqe_readq(cd, reg); } /** * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card * * Note: From a design perspective it turned out to be a bad idea to * use codes here to specifiy the frequency/speed values. An old * driver cannot understand new codes and is therefore always a * problem. Better is to measure out the value or put the * speed/frequency directly into a register which is always a valid * value for old as well as for new software. * * Return: Card clock in MHz */ int genwqe_base_clock_frequency(struct genwqe_dev *cd) { u16 speed; /* MHz MHz MHz MHz */ static const int speed_grade[] = { 250, 200, 166, 175 }; speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full); if (speed >= ARRAY_SIZE(speed_grade)) return 0; /* illegal value */ return speed_grade[speed]; } /** * genwqe_stop_traps() - Stop traps * * Before reading out the analysis data, we need to stop the traps. */ void genwqe_stop_traps(struct genwqe_dev *cd) { __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull); } /** * genwqe_start_traps() - Start traps * * After having read the data, we can/must enable the traps again. */ void genwqe_start_traps(struct genwqe_dev *cd) { __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull); if (genwqe_need_err_masking(cd)) __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); }