896 lines
21 KiB
C
896 lines
21 KiB
C
|
/* Maintain an RxRPC server socket to do AFS communications through
|
||
|
*
|
||
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
||
|
* Written by David Howells (dhowells@redhat.com)
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sched/signal.h>
|
||
|
|
||
|
#include <net/sock.h>
|
||
|
#include <net/af_rxrpc.h>
|
||
|
#include "internal.h"
|
||
|
#include "afs_cm.h"
|
||
|
|
||
|
struct socket *afs_socket; /* my RxRPC socket */
|
||
|
static struct workqueue_struct *afs_async_calls;
|
||
|
static struct afs_call *afs_spare_incoming_call;
|
||
|
atomic_t afs_outstanding_calls;
|
||
|
|
||
|
static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
|
||
|
static int afs_wait_for_call_to_complete(struct afs_call *);
|
||
|
static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
|
||
|
static void afs_process_async_call(struct work_struct *);
|
||
|
static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
|
||
|
static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
|
||
|
static int afs_deliver_cm_op_id(struct afs_call *);
|
||
|
|
||
|
/* asynchronous incoming call initial processing */
|
||
|
static const struct afs_call_type afs_RXCMxxxx = {
|
||
|
.name = "CB.xxxx",
|
||
|
.deliver = afs_deliver_cm_op_id,
|
||
|
.abort_to_error = afs_abort_to_error,
|
||
|
};
|
||
|
|
||
|
static void afs_charge_preallocation(struct work_struct *);
|
||
|
|
||
|
static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
|
||
|
|
||
|
static int afs_wait_atomic_t(atomic_t *p)
|
||
|
{
|
||
|
schedule();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* open an RxRPC socket and bind it to be a server for callback notifications
|
||
|
* - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
|
||
|
*/
|
||
|
int afs_open_socket(void)
|
||
|
{
|
||
|
struct sockaddr_rxrpc srx;
|
||
|
struct socket *socket;
|
||
|
unsigned int min_level;
|
||
|
int ret;
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
ret = -ENOMEM;
|
||
|
afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
|
||
|
if (!afs_async_calls)
|
||
|
goto error_0;
|
||
|
|
||
|
ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
|
||
|
if (ret < 0)
|
||
|
goto error_1;
|
||
|
|
||
|
socket->sk->sk_allocation = GFP_NOFS;
|
||
|
|
||
|
/* bind the callback manager's address to make this a server socket */
|
||
|
srx.srx_family = AF_RXRPC;
|
||
|
srx.srx_service = CM_SERVICE;
|
||
|
srx.transport_type = SOCK_DGRAM;
|
||
|
srx.transport_len = sizeof(srx.transport.sin);
|
||
|
srx.transport.sin.sin_family = AF_INET;
|
||
|
srx.transport.sin.sin_port = htons(AFS_CM_PORT);
|
||
|
memset(&srx.transport.sin.sin_addr, 0,
|
||
|
sizeof(srx.transport.sin.sin_addr));
|
||
|
|
||
|
min_level = RXRPC_SECURITY_ENCRYPT;
|
||
|
ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
|
||
|
(void *)&min_level, sizeof(min_level));
|
||
|
if (ret < 0)
|
||
|
goto error_2;
|
||
|
|
||
|
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
|
||
|
if (ret < 0)
|
||
|
goto error_2;
|
||
|
|
||
|
rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
|
||
|
afs_rx_discard_new_call);
|
||
|
|
||
|
ret = kernel_listen(socket, INT_MAX);
|
||
|
if (ret < 0)
|
||
|
goto error_2;
|
||
|
|
||
|
afs_socket = socket;
|
||
|
afs_charge_preallocation(NULL);
|
||
|
_leave(" = 0");
|
||
|
return 0;
|
||
|
|
||
|
error_2:
|
||
|
sock_release(socket);
|
||
|
error_1:
|
||
|
destroy_workqueue(afs_async_calls);
|
||
|
error_0:
|
||
|
_leave(" = %d", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* close the RxRPC socket AFS was using
|
||
|
*/
|
||
|
void afs_close_socket(void)
|
||
|
{
|
||
|
_enter("");
|
||
|
|
||
|
kernel_listen(afs_socket, 0);
|
||
|
flush_workqueue(afs_async_calls);
|
||
|
|
||
|
if (afs_spare_incoming_call) {
|
||
|
afs_put_call(afs_spare_incoming_call);
|
||
|
afs_spare_incoming_call = NULL;
|
||
|
}
|
||
|
|
||
|
_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
|
||
|
wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
|
||
|
TASK_UNINTERRUPTIBLE);
|
||
|
_debug("no outstanding calls");
|
||
|
|
||
|
kernel_sock_shutdown(afs_socket, SHUT_RDWR);
|
||
|
flush_workqueue(afs_async_calls);
|
||
|
sock_release(afs_socket);
|
||
|
|
||
|
_debug("dework");
|
||
|
destroy_workqueue(afs_async_calls);
|
||
|
_leave("");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a call.
|
||
|
*/
|
||
|
static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
|
||
|
gfp_t gfp)
|
||
|
{
|
||
|
struct afs_call *call;
|
||
|
int o;
|
||
|
|
||
|
call = kzalloc(sizeof(*call), gfp);
|
||
|
if (!call)
|
||
|
return NULL;
|
||
|
|
||
|
call->type = type;
|
||
|
atomic_set(&call->usage, 1);
|
||
|
INIT_WORK(&call->async_work, afs_process_async_call);
|
||
|
init_waitqueue_head(&call->waitq);
|
||
|
|
||
|
o = atomic_inc_return(&afs_outstanding_calls);
|
||
|
trace_afs_call(call, afs_call_trace_alloc, 1, o,
|
||
|
__builtin_return_address(0));
|
||
|
return call;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dispose of a reference on a call.
|
||
|
*/
|
||
|
void afs_put_call(struct afs_call *call)
|
||
|
{
|
||
|
int n = atomic_dec_return(&call->usage);
|
||
|
int o = atomic_read(&afs_outstanding_calls);
|
||
|
|
||
|
trace_afs_call(call, afs_call_trace_put, n + 1, o,
|
||
|
__builtin_return_address(0));
|
||
|
|
||
|
ASSERTCMP(n, >=, 0);
|
||
|
if (n == 0) {
|
||
|
ASSERT(!work_pending(&call->async_work));
|
||
|
ASSERT(call->type->name != NULL);
|
||
|
|
||
|
if (call->rxcall) {
|
||
|
rxrpc_kernel_end_call(afs_socket, call->rxcall);
|
||
|
call->rxcall = NULL;
|
||
|
}
|
||
|
if (call->type->destructor)
|
||
|
call->type->destructor(call);
|
||
|
|
||
|
kfree(call->request);
|
||
|
kfree(call);
|
||
|
|
||
|
o = atomic_dec_return(&afs_outstanding_calls);
|
||
|
trace_afs_call(call, afs_call_trace_free, 0, o,
|
||
|
__builtin_return_address(0));
|
||
|
if (o == 0)
|
||
|
wake_up_atomic_t(&afs_outstanding_calls);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Queue the call for actual work. Returns 0 unconditionally for convenience.
|
||
|
*/
|
||
|
int afs_queue_call_work(struct afs_call *call)
|
||
|
{
|
||
|
int u = atomic_inc_return(&call->usage);
|
||
|
|
||
|
trace_afs_call(call, afs_call_trace_work, u,
|
||
|
atomic_read(&afs_outstanding_calls),
|
||
|
__builtin_return_address(0));
|
||
|
|
||
|
INIT_WORK(&call->work, call->type->work);
|
||
|
|
||
|
if (!queue_work(afs_wq, &call->work))
|
||
|
afs_put_call(call);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate a call with flat request and reply buffers
|
||
|
*/
|
||
|
struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
|
||
|
size_t request_size, size_t reply_max)
|
||
|
{
|
||
|
struct afs_call *call;
|
||
|
|
||
|
call = afs_alloc_call(type, GFP_NOFS);
|
||
|
if (!call)
|
||
|
goto nomem_call;
|
||
|
|
||
|
if (request_size) {
|
||
|
call->request_size = request_size;
|
||
|
call->request = kmalloc(request_size, GFP_NOFS);
|
||
|
if (!call->request)
|
||
|
goto nomem_free;
|
||
|
}
|
||
|
|
||
|
if (reply_max) {
|
||
|
call->reply_max = reply_max;
|
||
|
call->buffer = kmalloc(reply_max, GFP_NOFS);
|
||
|
if (!call->buffer)
|
||
|
goto nomem_free;
|
||
|
}
|
||
|
|
||
|
init_waitqueue_head(&call->waitq);
|
||
|
return call;
|
||
|
|
||
|
nomem_free:
|
||
|
afs_put_call(call);
|
||
|
nomem_call:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* clean up a call with flat buffer
|
||
|
*/
|
||
|
void afs_flat_call_destructor(struct afs_call *call)
|
||
|
{
|
||
|
_enter("");
|
||
|
|
||
|
kfree(call->request);
|
||
|
call->request = NULL;
|
||
|
kfree(call->buffer);
|
||
|
call->buffer = NULL;
|
||
|
}
|
||
|
|
||
|
#define AFS_BVEC_MAX 8
|
||
|
|
||
|
/*
|
||
|
* Load the given bvec with the next few pages.
|
||
|
*/
|
||
|
static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
|
||
|
struct bio_vec *bv, pgoff_t first, pgoff_t last,
|
||
|
unsigned offset)
|
||
|
{
|
||
|
struct page *pages[AFS_BVEC_MAX];
|
||
|
unsigned int nr, n, i, to, bytes = 0;
|
||
|
|
||
|
nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
|
||
|
n = find_get_pages_contig(call->mapping, first, nr, pages);
|
||
|
ASSERTCMP(n, ==, nr);
|
||
|
|
||
|
msg->msg_flags |= MSG_MORE;
|
||
|
for (i = 0; i < nr; i++) {
|
||
|
to = PAGE_SIZE;
|
||
|
if (first + i >= last) {
|
||
|
to = call->last_to;
|
||
|
msg->msg_flags &= ~MSG_MORE;
|
||
|
}
|
||
|
bv[i].bv_page = pages[i];
|
||
|
bv[i].bv_len = to - offset;
|
||
|
bv[i].bv_offset = offset;
|
||
|
bytes += to - offset;
|
||
|
offset = 0;
|
||
|
}
|
||
|
|
||
|
iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Advance the AFS call state when the RxRPC call ends the transmit phase.
|
||
|
*/
|
||
|
static void afs_notify_end_request_tx(struct sock *sock,
|
||
|
struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
|
||
|
if (call->state == AFS_CALL_REQUESTING)
|
||
|
call->state = AFS_CALL_AWAIT_REPLY;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* attach the data from a bunch of pages on an inode to a call
|
||
|
*/
|
||
|
static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
|
||
|
{
|
||
|
struct bio_vec bv[AFS_BVEC_MAX];
|
||
|
unsigned int bytes, nr, loop, offset;
|
||
|
pgoff_t first = call->first, last = call->last;
|
||
|
int ret;
|
||
|
|
||
|
offset = call->first_offset;
|
||
|
call->first_offset = 0;
|
||
|
|
||
|
do {
|
||
|
afs_load_bvec(call, msg, bv, first, last, offset);
|
||
|
offset = 0;
|
||
|
bytes = msg->msg_iter.count;
|
||
|
nr = msg->msg_iter.nr_segs;
|
||
|
|
||
|
ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, msg,
|
||
|
bytes, afs_notify_end_request_tx);
|
||
|
for (loop = 0; loop < nr; loop++)
|
||
|
put_page(bv[loop].bv_page);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
|
||
|
first += nr;
|
||
|
} while (first <= last);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* initiate a call
|
||
|
*/
|
||
|
int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
|
||
|
bool async)
|
||
|
{
|
||
|
struct sockaddr_rxrpc srx;
|
||
|
struct rxrpc_call *rxcall;
|
||
|
struct msghdr msg;
|
||
|
struct kvec iov[1];
|
||
|
size_t offset;
|
||
|
s64 tx_total_len;
|
||
|
u32 abort_code;
|
||
|
int ret;
|
||
|
|
||
|
_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
|
||
|
|
||
|
ASSERT(call->type != NULL);
|
||
|
ASSERT(call->type->name != NULL);
|
||
|
|
||
|
_debug("____MAKE %p{%s,%x} [%d]____",
|
||
|
call, call->type->name, key_serial(call->key),
|
||
|
atomic_read(&afs_outstanding_calls));
|
||
|
|
||
|
call->async = async;
|
||
|
|
||
|
memset(&srx, 0, sizeof(srx));
|
||
|
srx.srx_family = AF_RXRPC;
|
||
|
srx.srx_service = call->service_id;
|
||
|
srx.transport_type = SOCK_DGRAM;
|
||
|
srx.transport_len = sizeof(srx.transport.sin);
|
||
|
srx.transport.sin.sin_family = AF_INET;
|
||
|
srx.transport.sin.sin_port = call->port;
|
||
|
memcpy(&srx.transport.sin.sin_addr, addr, 4);
|
||
|
|
||
|
/* Work out the length we're going to transmit. This is awkward for
|
||
|
* calls such as FS.StoreData where there's an extra injection of data
|
||
|
* after the initial fixed part.
|
||
|
*/
|
||
|
tx_total_len = call->request_size;
|
||
|
if (call->send_pages) {
|
||
|
if (call->last == call->first) {
|
||
|
tx_total_len += call->last_to - call->first_offset;
|
||
|
} else {
|
||
|
/* It looks mathematically like you should be able to
|
||
|
* combine the following lines with the ones above, but
|
||
|
* unsigned arithmetic is fun when it wraps...
|
||
|
*/
|
||
|
tx_total_len += PAGE_SIZE - call->first_offset;
|
||
|
tx_total_len += call->last_to;
|
||
|
tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* create a call */
|
||
|
rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
|
||
|
(unsigned long)call,
|
||
|
tx_total_len, gfp,
|
||
|
(async ?
|
||
|
afs_wake_up_async_call :
|
||
|
afs_wake_up_call_waiter));
|
||
|
call->key = NULL;
|
||
|
if (IS_ERR(rxcall)) {
|
||
|
ret = PTR_ERR(rxcall);
|
||
|
goto error_kill_call;
|
||
|
}
|
||
|
|
||
|
call->rxcall = rxcall;
|
||
|
|
||
|
/* send the request */
|
||
|
iov[0].iov_base = call->request;
|
||
|
iov[0].iov_len = call->request_size;
|
||
|
|
||
|
msg.msg_name = NULL;
|
||
|
msg.msg_namelen = 0;
|
||
|
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
|
||
|
call->request_size);
|
||
|
msg.msg_control = NULL;
|
||
|
msg.msg_controllen = 0;
|
||
|
msg.msg_flags = (call->send_pages ? MSG_MORE : 0);
|
||
|
|
||
|
/* We have to change the state *before* sending the last packet as
|
||
|
* rxrpc might give us the reply before it returns from sending the
|
||
|
* request. Further, if the send fails, we may already have been given
|
||
|
* a notification and may have collected it.
|
||
|
*/
|
||
|
if (!call->send_pages)
|
||
|
call->state = AFS_CALL_AWAIT_REPLY;
|
||
|
ret = rxrpc_kernel_send_data(afs_socket, rxcall,
|
||
|
&msg, call->request_size,
|
||
|
afs_notify_end_request_tx);
|
||
|
if (ret < 0)
|
||
|
goto error_do_abort;
|
||
|
|
||
|
if (call->send_pages) {
|
||
|
ret = afs_send_pages(call, &msg);
|
||
|
if (ret < 0)
|
||
|
goto error_do_abort;
|
||
|
}
|
||
|
|
||
|
/* at this point, an async call may no longer exist as it may have
|
||
|
* already completed */
|
||
|
if (call->async)
|
||
|
return -EINPROGRESS;
|
||
|
|
||
|
return afs_wait_for_call_to_complete(call);
|
||
|
|
||
|
error_do_abort:
|
||
|
call->state = AFS_CALL_COMPLETE;
|
||
|
if (ret != -ECONNABORTED) {
|
||
|
rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
|
||
|
ret, "KSD");
|
||
|
} else {
|
||
|
abort_code = 0;
|
||
|
offset = 0;
|
||
|
rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
|
||
|
false, &abort_code);
|
||
|
ret = call->type->abort_to_error(abort_code);
|
||
|
}
|
||
|
error_kill_call:
|
||
|
afs_put_call(call);
|
||
|
_leave(" = %d", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* deliver messages to a call
|
||
|
*/
|
||
|
static void afs_deliver_to_call(struct afs_call *call)
|
||
|
{
|
||
|
u32 abort_code;
|
||
|
int ret;
|
||
|
|
||
|
_enter("%s", call->type->name);
|
||
|
|
||
|
while (call->state == AFS_CALL_AWAIT_REPLY ||
|
||
|
call->state == AFS_CALL_AWAIT_OP_ID ||
|
||
|
call->state == AFS_CALL_AWAIT_REQUEST ||
|
||
|
call->state == AFS_CALL_AWAIT_ACK
|
||
|
) {
|
||
|
if (call->state == AFS_CALL_AWAIT_ACK) {
|
||
|
size_t offset = 0;
|
||
|
ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
|
||
|
NULL, 0, &offset, false,
|
||
|
&call->abort_code);
|
||
|
trace_afs_recv_data(call, 0, offset, false, ret);
|
||
|
|
||
|
if (ret == -EINPROGRESS || ret == -EAGAIN)
|
||
|
return;
|
||
|
if (ret == 1 || ret < 0) {
|
||
|
call->state = AFS_CALL_COMPLETE;
|
||
|
goto done;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ret = call->type->deliver(call);
|
||
|
switch (ret) {
|
||
|
case 0:
|
||
|
if (call->state == AFS_CALL_AWAIT_REPLY)
|
||
|
call->state = AFS_CALL_COMPLETE;
|
||
|
goto done;
|
||
|
case -EINPROGRESS:
|
||
|
case -EAGAIN:
|
||
|
goto out;
|
||
|
case -ECONNABORTED:
|
||
|
goto call_complete;
|
||
|
case -ENOTCONN:
|
||
|
abort_code = RX_CALL_DEAD;
|
||
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
||
|
abort_code, ret, "KNC");
|
||
|
goto save_error;
|
||
|
case -ENOTSUPP:
|
||
|
abort_code = RXGEN_OPCODE;
|
||
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
||
|
abort_code, ret, "KIV");
|
||
|
goto save_error;
|
||
|
case -ENODATA:
|
||
|
case -EBADMSG:
|
||
|
case -EMSGSIZE:
|
||
|
default:
|
||
|
abort_code = RXGEN_CC_UNMARSHAL;
|
||
|
if (call->state != AFS_CALL_AWAIT_REPLY)
|
||
|
abort_code = RXGEN_SS_UNMARSHAL;
|
||
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
||
|
abort_code, -EBADMSG, "KUM");
|
||
|
goto save_error;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
if (call->state == AFS_CALL_COMPLETE && call->incoming)
|
||
|
afs_put_call(call);
|
||
|
out:
|
||
|
_leave("");
|
||
|
return;
|
||
|
|
||
|
save_error:
|
||
|
call->error = ret;
|
||
|
call_complete:
|
||
|
call->state = AFS_CALL_COMPLETE;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* wait synchronously for a call to complete
|
||
|
*/
|
||
|
static int afs_wait_for_call_to_complete(struct afs_call *call)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
DECLARE_WAITQUEUE(myself, current);
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
add_wait_queue(&call->waitq, &myself);
|
||
|
for (;;) {
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
|
||
|
/* deliver any messages that are in the queue */
|
||
|
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
|
||
|
call->need_attention = false;
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
afs_deliver_to_call(call);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (call->state == AFS_CALL_COMPLETE ||
|
||
|
signal_pending(current))
|
||
|
break;
|
||
|
schedule();
|
||
|
}
|
||
|
|
||
|
remove_wait_queue(&call->waitq, &myself);
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
|
||
|
/* Kill off the call if it's still live. */
|
||
|
if (call->state < AFS_CALL_COMPLETE) {
|
||
|
_debug("call interrupted");
|
||
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
||
|
RX_USER_ABORT, -EINTR, "KWI");
|
||
|
}
|
||
|
|
||
|
ret = call->error;
|
||
|
_debug("call complete");
|
||
|
afs_put_call(call);
|
||
|
_leave(" = %d", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* wake up a waiting call
|
||
|
*/
|
||
|
static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
|
||
|
call->need_attention = true;
|
||
|
wake_up(&call->waitq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* wake up an asynchronous call
|
||
|
*/
|
||
|
static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
int u;
|
||
|
|
||
|
trace_afs_notify_call(rxcall, call);
|
||
|
call->need_attention = true;
|
||
|
|
||
|
u = __atomic_add_unless(&call->usage, 1, 0);
|
||
|
if (u != 0) {
|
||
|
trace_afs_call(call, afs_call_trace_wake, u,
|
||
|
atomic_read(&afs_outstanding_calls),
|
||
|
__builtin_return_address(0));
|
||
|
|
||
|
if (!queue_work(afs_async_calls, &call->async_work))
|
||
|
afs_put_call(call);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Delete an asynchronous call. The work item carries a ref to the call struct
|
||
|
* that we need to release.
|
||
|
*/
|
||
|
static void afs_delete_async_call(struct work_struct *work)
|
||
|
{
|
||
|
struct afs_call *call = container_of(work, struct afs_call, async_work);
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
afs_put_call(call);
|
||
|
|
||
|
_leave("");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Perform I/O processing on an asynchronous call. The work item carries a ref
|
||
|
* to the call struct that we either need to release or to pass on.
|
||
|
*/
|
||
|
static void afs_process_async_call(struct work_struct *work)
|
||
|
{
|
||
|
struct afs_call *call = container_of(work, struct afs_call, async_work);
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
|
||
|
call->need_attention = false;
|
||
|
afs_deliver_to_call(call);
|
||
|
}
|
||
|
|
||
|
if (call->state == AFS_CALL_COMPLETE) {
|
||
|
call->reply = NULL;
|
||
|
|
||
|
/* We have two refs to release - one from the alloc and one
|
||
|
* queued with the work item - and we can't just deallocate the
|
||
|
* call because the work item may be queued again.
|
||
|
*/
|
||
|
call->async_work.func = afs_delete_async_call;
|
||
|
if (!queue_work(afs_async_calls, &call->async_work))
|
||
|
afs_put_call(call);
|
||
|
}
|
||
|
|
||
|
afs_put_call(call);
|
||
|
_leave("");
|
||
|
}
|
||
|
|
||
|
static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)user_call_ID;
|
||
|
|
||
|
call->rxcall = rxcall;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Charge the incoming call preallocation.
|
||
|
*/
|
||
|
static void afs_charge_preallocation(struct work_struct *work)
|
||
|
{
|
||
|
struct afs_call *call = afs_spare_incoming_call;
|
||
|
|
||
|
for (;;) {
|
||
|
if (!call) {
|
||
|
call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
|
||
|
if (!call)
|
||
|
break;
|
||
|
|
||
|
call->async = true;
|
||
|
call->state = AFS_CALL_AWAIT_OP_ID;
|
||
|
init_waitqueue_head(&call->waitq);
|
||
|
}
|
||
|
|
||
|
if (rxrpc_kernel_charge_accept(afs_socket,
|
||
|
afs_wake_up_async_call,
|
||
|
afs_rx_attach,
|
||
|
(unsigned long)call,
|
||
|
GFP_KERNEL) < 0)
|
||
|
break;
|
||
|
call = NULL;
|
||
|
}
|
||
|
afs_spare_incoming_call = call;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Discard a preallocated call when a socket is shut down.
|
||
|
*/
|
||
|
static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
|
||
|
unsigned long user_call_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)user_call_ID;
|
||
|
|
||
|
call->rxcall = NULL;
|
||
|
afs_put_call(call);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Notification of an incoming call.
|
||
|
*/
|
||
|
static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
|
||
|
unsigned long user_call_ID)
|
||
|
{
|
||
|
queue_work(afs_wq, &afs_charge_preallocation_work);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Grab the operation ID from an incoming cache manager call. The socket
|
||
|
* buffer is discarded on error or if we don't yet have sufficient data.
|
||
|
*/
|
||
|
static int afs_deliver_cm_op_id(struct afs_call *call)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
_enter("{%zu}", call->offset);
|
||
|
|
||
|
ASSERTCMP(call->offset, <, 4);
|
||
|
|
||
|
/* the operation ID forms the first four bytes of the request data */
|
||
|
ret = afs_extract_data(call, &call->tmp, 4, true);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
call->operation_ID = ntohl(call->tmp);
|
||
|
call->state = AFS_CALL_AWAIT_REQUEST;
|
||
|
call->offset = 0;
|
||
|
|
||
|
/* ask the cache manager to route the call (it'll change the call type
|
||
|
* if successful) */
|
||
|
if (!afs_cm_incoming_call(call))
|
||
|
return -ENOTSUPP;
|
||
|
|
||
|
trace_afs_cb_call(call);
|
||
|
|
||
|
/* pass responsibility for the remainer of this message off to the
|
||
|
* cache manager op */
|
||
|
return call->type->deliver(call);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Advance the AFS call state when an RxRPC service call ends the transmit
|
||
|
* phase.
|
||
|
*/
|
||
|
static void afs_notify_end_reply_tx(struct sock *sock,
|
||
|
struct rxrpc_call *rxcall,
|
||
|
unsigned long call_user_ID)
|
||
|
{
|
||
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
||
|
|
||
|
if (call->state == AFS_CALL_REPLYING)
|
||
|
call->state = AFS_CALL_AWAIT_ACK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* send an empty reply
|
||
|
*/
|
||
|
void afs_send_empty_reply(struct afs_call *call)
|
||
|
{
|
||
|
struct msghdr msg;
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, 0);
|
||
|
|
||
|
msg.msg_name = NULL;
|
||
|
msg.msg_namelen = 0;
|
||
|
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
|
||
|
msg.msg_control = NULL;
|
||
|
msg.msg_controllen = 0;
|
||
|
msg.msg_flags = 0;
|
||
|
|
||
|
call->state = AFS_CALL_AWAIT_ACK;
|
||
|
switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0,
|
||
|
afs_notify_end_reply_tx)) {
|
||
|
case 0:
|
||
|
_leave(" [replied]");
|
||
|
return;
|
||
|
|
||
|
case -ENOMEM:
|
||
|
_debug("oom");
|
||
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
||
|
RX_USER_ABORT, -ENOMEM, "KOO");
|
||
|
default:
|
||
|
_leave(" [error]");
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* send a simple reply
|
||
|
*/
|
||
|
void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
|
||
|
{
|
||
|
struct msghdr msg;
|
||
|
struct kvec iov[1];
|
||
|
int n;
|
||
|
|
||
|
_enter("");
|
||
|
|
||
|
rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, len);
|
||
|
|
||
|
iov[0].iov_base = (void *) buf;
|
||
|
iov[0].iov_len = len;
|
||
|
msg.msg_name = NULL;
|
||
|
msg.msg_namelen = 0;
|
||
|
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
|
||
|
msg.msg_control = NULL;
|
||
|
msg.msg_controllen = 0;
|
||
|
msg.msg_flags = 0;
|
||
|
|
||
|
call->state = AFS_CALL_AWAIT_ACK;
|
||
|
n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len,
|
||
|
afs_notify_end_reply_tx);
|
||
|
if (n >= 0) {
|
||
|
/* Success */
|
||
|
_leave(" [replied]");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (n == -ENOMEM) {
|
||
|
_debug("oom");
|
||
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
||
|
RX_USER_ABORT, -ENOMEM, "KOO");
|
||
|
}
|
||
|
_leave(" [error]");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Extract a piece of data from the received data socket buffers.
|
||
|
*/
|
||
|
int afs_extract_data(struct afs_call *call, void *buf, size_t count,
|
||
|
bool want_more)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
_enter("{%s,%zu},,%zu,%d",
|
||
|
call->type->name, call->offset, count, want_more);
|
||
|
|
||
|
ASSERTCMP(call->offset, <=, count);
|
||
|
|
||
|
ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
|
||
|
buf, count, &call->offset,
|
||
|
want_more, &call->abort_code);
|
||
|
trace_afs_recv_data(call, count, call->offset, want_more, ret);
|
||
|
if (ret == 0 || ret == -EAGAIN)
|
||
|
return ret;
|
||
|
|
||
|
if (ret == 1) {
|
||
|
switch (call->state) {
|
||
|
case AFS_CALL_AWAIT_REPLY:
|
||
|
call->state = AFS_CALL_COMPLETE;
|
||
|
break;
|
||
|
case AFS_CALL_AWAIT_REQUEST:
|
||
|
call->state = AFS_CALL_REPLYING;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (ret == -ECONNABORTED)
|
||
|
call->error = call->type->abort_to_error(call->abort_code);
|
||
|
else
|
||
|
call->error = ret;
|
||
|
call->state = AFS_CALL_COMPLETE;
|
||
|
return ret;
|
||
|
}
|