lineage_kernel_xcoverpro/drivers/thermal/rockchip_thermal.c

1345 lines
35 KiB
C
Raw Normal View History

2023-06-18 22:53:49 +00:00
/*
* Copyright (c) 2014-2016, Fuzhou Rockchip Electronics Co., Ltd
* Caesar Wang <wxt@rock-chips.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/thermal.h>
#include <linux/mfd/syscon.h>
#include <linux/pinctrl/consumer.h>
/**
* If the temperature over a period of time High,
* the resulting TSHUT gave CRU module,let it reset the entire chip,
* or via GPIO give PMIC.
*/
enum tshut_mode {
TSHUT_MODE_CRU = 0,
TSHUT_MODE_GPIO,
};
/**
* The system Temperature Sensors tshut(tshut) polarity
* the bit 8 is tshut polarity.
* 0: low active, 1: high active
*/
enum tshut_polarity {
TSHUT_LOW_ACTIVE = 0,
TSHUT_HIGH_ACTIVE,
};
/**
* The system has two Temperature Sensors.
* sensor0 is for CPU, and sensor1 is for GPU.
*/
enum sensor_id {
SENSOR_CPU = 0,
SENSOR_GPU,
};
/**
* The conversion table has the adc value and temperature.
* ADC_DECREMENT: the adc value is of diminishing.(e.g. rk3288_code_table)
* ADC_INCREMENT: the adc value is incremental.(e.g. rk3368_code_table)
*/
enum adc_sort_mode {
ADC_DECREMENT = 0,
ADC_INCREMENT,
};
/**
* The max sensors is two in rockchip SoCs.
* Two sensors: CPU and GPU sensor.
*/
#define SOC_MAX_SENSORS 2
/**
* struct chip_tsadc_table - hold information about chip-specific differences
* @id: conversion table
* @length: size of conversion table
* @data_mask: mask to apply on data inputs
* @mode: sort mode of this adc variant (incrementing or decrementing)
*/
struct chip_tsadc_table {
const struct tsadc_table *id;
unsigned int length;
u32 data_mask;
enum adc_sort_mode mode;
};
/**
* struct rockchip_tsadc_chip - hold the private data of tsadc chip
* @chn_id[SOC_MAX_SENSORS]: the sensor id of chip correspond to the channel
* @chn_num: the channel number of tsadc chip
* @tshut_temp: the hardware-controlled shutdown temperature value
* @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO)
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
* @initialize: SoC special initialize tsadc controller method
* @irq_ack: clear the interrupt
* @get_temp: get the temperature
* @set_alarm_temp: set the high temperature interrupt
* @set_tshut_temp: set the hardware-controlled shutdown temperature
* @set_tshut_mode: set the hardware-controlled shutdown mode
* @table: the chip-specific conversion table
*/
struct rockchip_tsadc_chip {
/* The sensor id of chip correspond to the ADC channel */
int chn_id[SOC_MAX_SENSORS];
int chn_num;
/* The hardware-controlled tshut property */
int tshut_temp;
enum tshut_mode tshut_mode;
enum tshut_polarity tshut_polarity;
/* Chip-wide methods */
void (*initialize)(struct regmap *grf,
void __iomem *reg, enum tshut_polarity p);
void (*irq_ack)(void __iomem *reg);
void (*control)(void __iomem *reg, bool on);
/* Per-sensor methods */
int (*get_temp)(const struct chip_tsadc_table *table,
int chn, void __iomem *reg, int *temp);
int (*set_alarm_temp)(const struct chip_tsadc_table *table,
int chn, void __iomem *reg, int temp);
int (*set_tshut_temp)(const struct chip_tsadc_table *table,
int chn, void __iomem *reg, int temp);
void (*set_tshut_mode)(int chn, void __iomem *reg, enum tshut_mode m);
/* Per-table methods */
struct chip_tsadc_table table;
};
/**
* struct rockchip_thermal_sensor - hold the information of thermal sensor
* @thermal: pointer to the platform/configuration data
* @tzd: pointer to a thermal zone
* @id: identifier of the thermal sensor
*/
struct rockchip_thermal_sensor {
struct rockchip_thermal_data *thermal;
struct thermal_zone_device *tzd;
int id;
};
/**
* struct rockchip_thermal_data - hold the private data of thermal driver
* @chip: pointer to the platform/configuration data
* @pdev: platform device of thermal
* @reset: the reset controller of tsadc
* @sensors[SOC_MAX_SENSORS]: the thermal sensor
* @clk: the controller clock is divided by the exteral 24MHz
* @pclk: the advanced peripherals bus clock
* @grf: the general register file will be used to do static set by software
* @regs: the base address of tsadc controller
* @tshut_temp: the hardware-controlled shutdown temperature value
* @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO)
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
*/
struct rockchip_thermal_data {
const struct rockchip_tsadc_chip *chip;
struct platform_device *pdev;
struct reset_control *reset;
struct rockchip_thermal_sensor sensors[SOC_MAX_SENSORS];
struct clk *clk;
struct clk *pclk;
struct regmap *grf;
void __iomem *regs;
int tshut_temp;
enum tshut_mode tshut_mode;
enum tshut_polarity tshut_polarity;
};
/**
* TSADC Sensor Register description:
*
* TSADCV2_* are used for RK3288 SoCs, the other chips can reuse it.
* TSADCV3_* are used for newer SoCs than RK3288. (e.g: RK3228, RK3399)
*
*/
#define TSADCV2_USER_CON 0x00
#define TSADCV2_AUTO_CON 0x04
#define TSADCV2_INT_EN 0x08
#define TSADCV2_INT_PD 0x0c
#define TSADCV2_DATA(chn) (0x20 + (chn) * 0x04)
#define TSADCV2_COMP_INT(chn) (0x30 + (chn) * 0x04)
#define TSADCV2_COMP_SHUT(chn) (0x40 + (chn) * 0x04)
#define TSADCV2_HIGHT_INT_DEBOUNCE 0x60
#define TSADCV2_HIGHT_TSHUT_DEBOUNCE 0x64
#define TSADCV2_AUTO_PERIOD 0x68
#define TSADCV2_AUTO_PERIOD_HT 0x6c
#define TSADCV2_AUTO_EN BIT(0)
#define TSADCV2_AUTO_SRC_EN(chn) BIT(4 + (chn))
#define TSADCV2_AUTO_TSHUT_POLARITY_HIGH BIT(8)
#define TSADCV3_AUTO_Q_SEL_EN BIT(1)
#define TSADCV2_INT_SRC_EN(chn) BIT(chn)
#define TSADCV2_SHUT_2GPIO_SRC_EN(chn) BIT(4 + (chn))
#define TSADCV2_SHUT_2CRU_SRC_EN(chn) BIT(8 + (chn))
#define TSADCV2_INT_PD_CLEAR_MASK ~BIT(8)
#define TSADCV3_INT_PD_CLEAR_MASK ~BIT(16)
#define TSADCV2_DATA_MASK 0xfff
#define TSADCV3_DATA_MASK 0x3ff
#define TSADCV2_HIGHT_INT_DEBOUNCE_COUNT 4
#define TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT 4
#define TSADCV2_AUTO_PERIOD_TIME 250 /* 250ms */
#define TSADCV2_AUTO_PERIOD_HT_TIME 50 /* 50ms */
#define TSADCV3_AUTO_PERIOD_TIME 1875 /* 2.5ms */
#define TSADCV3_AUTO_PERIOD_HT_TIME 1875 /* 2.5ms */
#define TSADCV2_USER_INTER_PD_SOC 0x340 /* 13 clocks */
#define GRF_SARADC_TESTBIT 0x0e644
#define GRF_TSADC_TESTBIT_L 0x0e648
#define GRF_TSADC_TESTBIT_H 0x0e64c
#define GRF_SARADC_TESTBIT_ON (0x10001 << 2)
#define GRF_TSADC_TESTBIT_H_ON (0x10001 << 2)
#define GRF_TSADC_VCM_EN_L (0x10001 << 7)
#define GRF_TSADC_VCM_EN_H (0x10001 << 7)
/**
* struct tsadc_table - code to temperature conversion table
* @code: the value of adc channel
* @temp: the temperature
* Note:
* code to temperature mapping of the temperature sensor is a piece wise linear
* curve.Any temperature, code faling between to 2 give temperatures can be
* linearly interpolated.
* Code to Temperature mapping should be updated based on manufacturer results.
*/
struct tsadc_table {
u32 code;
int temp;
};
static const struct tsadc_table rk3228_code_table[] = {
{0, -40000},
{588, -40000},
{593, -35000},
{598, -30000},
{603, -25000},
{608, -20000},
{613, -15000},
{618, -10000},
{623, -5000},
{629, 0},
{634, 5000},
{639, 10000},
{644, 15000},
{649, 20000},
{654, 25000},
{660, 30000},
{665, 35000},
{670, 40000},
{675, 45000},
{681, 50000},
{686, 55000},
{691, 60000},
{696, 65000},
{702, 70000},
{707, 75000},
{712, 80000},
{717, 85000},
{723, 90000},
{728, 95000},
{733, 100000},
{738, 105000},
{744, 110000},
{749, 115000},
{754, 120000},
{760, 125000},
{TSADCV2_DATA_MASK, 125000},
};
static const struct tsadc_table rk3288_code_table[] = {
{TSADCV2_DATA_MASK, -40000},
{3800, -40000},
{3792, -35000},
{3783, -30000},
{3774, -25000},
{3765, -20000},
{3756, -15000},
{3747, -10000},
{3737, -5000},
{3728, 0},
{3718, 5000},
{3708, 10000},
{3698, 15000},
{3688, 20000},
{3678, 25000},
{3667, 30000},
{3656, 35000},
{3645, 40000},
{3634, 45000},
{3623, 50000},
{3611, 55000},
{3600, 60000},
{3588, 65000},
{3575, 70000},
{3563, 75000},
{3550, 80000},
{3537, 85000},
{3524, 90000},
{3510, 95000},
{3496, 100000},
{3482, 105000},
{3467, 110000},
{3452, 115000},
{3437, 120000},
{3421, 125000},
{0, 125000},
};
static const struct tsadc_table rk3328_code_table[] = {
{0, -40000},
{296, -40000},
{304, -35000},
{313, -30000},
{331, -20000},
{340, -15000},
{349, -10000},
{359, -5000},
{368, 0},
{378, 5000},
{388, 10000},
{398, 15000},
{408, 20000},
{418, 25000},
{429, 30000},
{440, 35000},
{451, 40000},
{462, 45000},
{473, 50000},
{485, 55000},
{496, 60000},
{508, 65000},
{521, 70000},
{533, 75000},
{546, 80000},
{559, 85000},
{572, 90000},
{586, 95000},
{600, 100000},
{614, 105000},
{629, 110000},
{644, 115000},
{659, 120000},
{675, 125000},
{TSADCV2_DATA_MASK, 125000},
};
static const struct tsadc_table rk3368_code_table[] = {
{0, -40000},
{106, -40000},
{108, -35000},
{110, -30000},
{112, -25000},
{114, -20000},
{116, -15000},
{118, -10000},
{120, -5000},
{122, 0},
{124, 5000},
{126, 10000},
{128, 15000},
{130, 20000},
{132, 25000},
{134, 30000},
{136, 35000},
{138, 40000},
{140, 45000},
{142, 50000},
{144, 55000},
{146, 60000},
{148, 65000},
{150, 70000},
{152, 75000},
{154, 80000},
{156, 85000},
{158, 90000},
{160, 95000},
{162, 100000},
{163, 105000},
{165, 110000},
{167, 115000},
{169, 120000},
{171, 125000},
{TSADCV3_DATA_MASK, 125000},
};
static const struct tsadc_table rk3399_code_table[] = {
{0, -40000},
{402, -40000},
{410, -35000},
{419, -30000},
{427, -25000},
{436, -20000},
{444, -15000},
{453, -10000},
{461, -5000},
{470, 0},
{478, 5000},
{487, 10000},
{496, 15000},
{504, 20000},
{513, 25000},
{521, 30000},
{530, 35000},
{538, 40000},
{547, 45000},
{555, 50000},
{564, 55000},
{573, 60000},
{581, 65000},
{590, 70000},
{599, 75000},
{607, 80000},
{616, 85000},
{624, 90000},
{633, 95000},
{642, 100000},
{650, 105000},
{659, 110000},
{668, 115000},
{677, 120000},
{685, 125000},
{TSADCV3_DATA_MASK, 125000},
};
static u32 rk_tsadcv2_temp_to_code(const struct chip_tsadc_table *table,
int temp)
{
int high, low, mid;
unsigned long num;
unsigned int denom;
u32 error = table->data_mask;
low = 0;
high = (table->length - 1) - 1; /* ignore the last check for table */
mid = (high + low) / 2;
/* Return mask code data when the temp is over table range */
if (temp < table->id[low].temp || temp > table->id[high].temp)
goto exit;
while (low <= high) {
if (temp == table->id[mid].temp)
return table->id[mid].code;
else if (temp < table->id[mid].temp)
high = mid - 1;
else
low = mid + 1;
mid = (low + high) / 2;
}
/*
* The conversion code granularity provided by the table. Let's
* assume that the relationship between temperature and
* analog value between 2 table entries is linear and interpolate
* to produce less granular result.
*/
num = abs(table->id[mid + 1].code - table->id[mid].code);
num *= temp - table->id[mid].temp;
denom = table->id[mid + 1].temp - table->id[mid].temp;
switch (table->mode) {
case ADC_DECREMENT:
return table->id[mid].code - (num / denom);
case ADC_INCREMENT:
return table->id[mid].code + (num / denom);
default:
pr_err("%s: unknown table mode: %d\n", __func__, table->mode);
return error;
}
exit:
pr_err("%s: invalid temperature, temp=%d error=%d\n",
__func__, temp, error);
return error;
}
static int rk_tsadcv2_code_to_temp(const struct chip_tsadc_table *table,
u32 code, int *temp)
{
unsigned int low = 1;
unsigned int high = table->length - 1;
unsigned int mid = (low + high) / 2;
unsigned int num;
unsigned long denom;
WARN_ON(table->length < 2);
switch (table->mode) {
case ADC_DECREMENT:
code &= table->data_mask;
if (code <= table->id[high].code)
return -EAGAIN; /* Incorrect reading */
while (low <= high) {
if (code >= table->id[mid].code &&
code < table->id[mid - 1].code)
break;
else if (code < table->id[mid].code)
low = mid + 1;
else
high = mid - 1;
mid = (low + high) / 2;
}
break;
case ADC_INCREMENT:
code &= table->data_mask;
if (code < table->id[low].code)
return -EAGAIN; /* Incorrect reading */
while (low <= high) {
if (code <= table->id[mid].code &&
code > table->id[mid - 1].code)
break;
else if (code > table->id[mid].code)
low = mid + 1;
else
high = mid - 1;
mid = (low + high) / 2;
}
break;
default:
pr_err("%s: unknown table mode: %d\n", __func__, table->mode);
return -EINVAL;
}
/*
* The 5C granularity provided by the table is too much. Let's
* assume that the relationship between sensor readings and
* temperature between 2 table entries is linear and interpolate
* to produce less granular result.
*/
num = table->id[mid].temp - table->id[mid - 1].temp;
num *= abs(table->id[mid - 1].code - code);
denom = abs(table->id[mid - 1].code - table->id[mid].code);
*temp = table->id[mid - 1].temp + (num / denom);
return 0;
}
/**
* rk_tsadcv2_initialize - initialize TASDC Controller.
*
* (1) Set TSADC_V2_AUTO_PERIOD:
* Configure the interleave between every two accessing of
* TSADC in normal operation.
*
* (2) Set TSADCV2_AUTO_PERIOD_HT:
* Configure the interleave between every two accessing of
* TSADC after the temperature is higher than COM_SHUT or COM_INT.
*
* (3) Set TSADCV2_HIGH_INT_DEBOUNCE and TSADC_HIGHT_TSHUT_DEBOUNCE:
* If the temperature is higher than COMP_INT or COMP_SHUT for
* "debounce" times, TSADC controller will generate interrupt or TSHUT.
*/
static void rk_tsadcv2_initialize(struct regmap *grf, void __iomem *regs,
enum tshut_polarity tshut_polarity)
{
if (tshut_polarity == TSHUT_HIGH_ACTIVE)
writel_relaxed(0U | TSADCV2_AUTO_TSHUT_POLARITY_HIGH,
regs + TSADCV2_AUTO_CON);
else
writel_relaxed(0U & ~TSADCV2_AUTO_TSHUT_POLARITY_HIGH,
regs + TSADCV2_AUTO_CON);
writel_relaxed(TSADCV2_AUTO_PERIOD_TIME, regs + TSADCV2_AUTO_PERIOD);
writel_relaxed(TSADCV2_HIGHT_INT_DEBOUNCE_COUNT,
regs + TSADCV2_HIGHT_INT_DEBOUNCE);
writel_relaxed(TSADCV2_AUTO_PERIOD_HT_TIME,
regs + TSADCV2_AUTO_PERIOD_HT);
writel_relaxed(TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT,
regs + TSADCV2_HIGHT_TSHUT_DEBOUNCE);
}
/**
* rk_tsadcv3_initialize - initialize TASDC Controller.
*
* (1) The tsadc control power sequence.
*
* (2) Set TSADC_V2_AUTO_PERIOD:
* Configure the interleave between every two accessing of
* TSADC in normal operation.
*
* (2) Set TSADCV2_AUTO_PERIOD_HT:
* Configure the interleave between every two accessing of
* TSADC after the temperature is higher than COM_SHUT or COM_INT.
*
* (3) Set TSADCV2_HIGH_INT_DEBOUNCE and TSADC_HIGHT_TSHUT_DEBOUNCE:
* If the temperature is higher than COMP_INT or COMP_SHUT for
* "debounce" times, TSADC controller will generate interrupt or TSHUT.
*/
static void rk_tsadcv3_initialize(struct regmap *grf, void __iomem *regs,
enum tshut_polarity tshut_polarity)
{
/* The tsadc control power sequence */
if (IS_ERR(grf)) {
/* Set interleave value to workround ic time sync issue */
writel_relaxed(TSADCV2_USER_INTER_PD_SOC, regs +
TSADCV2_USER_CON);
writel_relaxed(TSADCV2_AUTO_PERIOD_TIME,
regs + TSADCV2_AUTO_PERIOD);
writel_relaxed(TSADCV2_HIGHT_INT_DEBOUNCE_COUNT,
regs + TSADCV2_HIGHT_INT_DEBOUNCE);
writel_relaxed(TSADCV2_AUTO_PERIOD_HT_TIME,
regs + TSADCV2_AUTO_PERIOD_HT);
writel_relaxed(TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT,
regs + TSADCV2_HIGHT_TSHUT_DEBOUNCE);
} else {
/* Enable the voltage common mode feature */
regmap_write(grf, GRF_TSADC_TESTBIT_L, GRF_TSADC_VCM_EN_L);
regmap_write(grf, GRF_TSADC_TESTBIT_H, GRF_TSADC_VCM_EN_H);
usleep_range(15, 100); /* The spec note says at least 15 us */
regmap_write(grf, GRF_SARADC_TESTBIT, GRF_SARADC_TESTBIT_ON);
regmap_write(grf, GRF_TSADC_TESTBIT_H, GRF_TSADC_TESTBIT_H_ON);
usleep_range(90, 200); /* The spec note says at least 90 us */
writel_relaxed(TSADCV3_AUTO_PERIOD_TIME,
regs + TSADCV2_AUTO_PERIOD);
writel_relaxed(TSADCV2_HIGHT_INT_DEBOUNCE_COUNT,
regs + TSADCV2_HIGHT_INT_DEBOUNCE);
writel_relaxed(TSADCV3_AUTO_PERIOD_HT_TIME,
regs + TSADCV2_AUTO_PERIOD_HT);
writel_relaxed(TSADCV2_HIGHT_TSHUT_DEBOUNCE_COUNT,
regs + TSADCV2_HIGHT_TSHUT_DEBOUNCE);
}
if (tshut_polarity == TSHUT_HIGH_ACTIVE)
writel_relaxed(0U | TSADCV2_AUTO_TSHUT_POLARITY_HIGH,
regs + TSADCV2_AUTO_CON);
else
writel_relaxed(0U & ~TSADCV2_AUTO_TSHUT_POLARITY_HIGH,
regs + TSADCV2_AUTO_CON);
}
static void rk_tsadcv2_irq_ack(void __iomem *regs)
{
u32 val;
val = readl_relaxed(regs + TSADCV2_INT_PD);
writel_relaxed(val & TSADCV2_INT_PD_CLEAR_MASK, regs + TSADCV2_INT_PD);
}
static void rk_tsadcv3_irq_ack(void __iomem *regs)
{
u32 val;
val = readl_relaxed(regs + TSADCV2_INT_PD);
writel_relaxed(val & TSADCV3_INT_PD_CLEAR_MASK, regs + TSADCV2_INT_PD);
}
static void rk_tsadcv2_control(void __iomem *regs, bool enable)
{
u32 val;
val = readl_relaxed(regs + TSADCV2_AUTO_CON);
if (enable)
val |= TSADCV2_AUTO_EN;
else
val &= ~TSADCV2_AUTO_EN;
writel_relaxed(val, regs + TSADCV2_AUTO_CON);
}
/**
* rk_tsadcv3_control - the tsadc controller is enabled or disabled.
*
* NOTE: TSADC controller works at auto mode, and some SoCs need set the
* tsadc_q_sel bit on TSADCV2_AUTO_CON[1]. The (1024 - tsadc_q) as output
* adc value if setting this bit to enable.
*/
static void rk_tsadcv3_control(void __iomem *regs, bool enable)
{
u32 val;
val = readl_relaxed(regs + TSADCV2_AUTO_CON);
if (enable)
val |= TSADCV2_AUTO_EN | TSADCV3_AUTO_Q_SEL_EN;
else
val &= ~TSADCV2_AUTO_EN;
writel_relaxed(val, regs + TSADCV2_AUTO_CON);
}
static int rk_tsadcv2_get_temp(const struct chip_tsadc_table *table,
int chn, void __iomem *regs, int *temp)
{
u32 val;
val = readl_relaxed(regs + TSADCV2_DATA(chn));
return rk_tsadcv2_code_to_temp(table, val, temp);
}
static int rk_tsadcv2_alarm_temp(const struct chip_tsadc_table *table,
int chn, void __iomem *regs, int temp)
{
u32 alarm_value;
u32 int_en, int_clr;
/*
* In some cases, some sensors didn't need the trip points, the
* set_trips will pass {-INT_MAX, INT_MAX} to trigger tsadc alarm
* in the end, ignore this case and disable the high temperature
* interrupt.
*/
if (temp == INT_MAX) {
int_clr = readl_relaxed(regs + TSADCV2_INT_EN);
int_clr &= ~TSADCV2_INT_SRC_EN(chn);
writel_relaxed(int_clr, regs + TSADCV2_INT_EN);
return 0;
}
/* Make sure the value is valid */
alarm_value = rk_tsadcv2_temp_to_code(table, temp);
if (alarm_value == table->data_mask)
return -ERANGE;
writel_relaxed(alarm_value & table->data_mask,
regs + TSADCV2_COMP_INT(chn));
int_en = readl_relaxed(regs + TSADCV2_INT_EN);
int_en |= TSADCV2_INT_SRC_EN(chn);
writel_relaxed(int_en, regs + TSADCV2_INT_EN);
return 0;
}
static int rk_tsadcv2_tshut_temp(const struct chip_tsadc_table *table,
int chn, void __iomem *regs, int temp)
{
u32 tshut_value, val;
/* Make sure the value is valid */
tshut_value = rk_tsadcv2_temp_to_code(table, temp);
if (tshut_value == table->data_mask)
return -ERANGE;
writel_relaxed(tshut_value, regs + TSADCV2_COMP_SHUT(chn));
/* TSHUT will be valid */
val = readl_relaxed(regs + TSADCV2_AUTO_CON);
writel_relaxed(val | TSADCV2_AUTO_SRC_EN(chn), regs + TSADCV2_AUTO_CON);
return 0;
}
static void rk_tsadcv2_tshut_mode(int chn, void __iomem *regs,
enum tshut_mode mode)
{
u32 val;
val = readl_relaxed(regs + TSADCV2_INT_EN);
if (mode == TSHUT_MODE_GPIO) {
val &= ~TSADCV2_SHUT_2CRU_SRC_EN(chn);
val |= TSADCV2_SHUT_2GPIO_SRC_EN(chn);
} else {
val &= ~TSADCV2_SHUT_2GPIO_SRC_EN(chn);
val |= TSADCV2_SHUT_2CRU_SRC_EN(chn);
}
writel_relaxed(val, regs + TSADCV2_INT_EN);
}
static const struct rockchip_tsadc_chip rk3228_tsadc_data = {
.chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */
.chn_num = 1, /* one channel for tsadc */
.tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */
.tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */
.tshut_temp = 95000,
.initialize = rk_tsadcv2_initialize,
.irq_ack = rk_tsadcv3_irq_ack,
.control = rk_tsadcv3_control,
.get_temp = rk_tsadcv2_get_temp,
.set_alarm_temp = rk_tsadcv2_alarm_temp,
.set_tshut_temp = rk_tsadcv2_tshut_temp,
.set_tshut_mode = rk_tsadcv2_tshut_mode,
.table = {
.id = rk3228_code_table,
.length = ARRAY_SIZE(rk3228_code_table),
.data_mask = TSADCV3_DATA_MASK,
.mode = ADC_INCREMENT,
},
};
static const struct rockchip_tsadc_chip rk3288_tsadc_data = {
.chn_id[SENSOR_CPU] = 1, /* cpu sensor is channel 1 */
.chn_id[SENSOR_GPU] = 2, /* gpu sensor is channel 2 */
.chn_num = 2, /* two channels for tsadc */
.tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */
.tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */
.tshut_temp = 95000,
.initialize = rk_tsadcv2_initialize,
.irq_ack = rk_tsadcv2_irq_ack,
.control = rk_tsadcv2_control,
.get_temp = rk_tsadcv2_get_temp,
.set_alarm_temp = rk_tsadcv2_alarm_temp,
.set_tshut_temp = rk_tsadcv2_tshut_temp,
.set_tshut_mode = rk_tsadcv2_tshut_mode,
.table = {
.id = rk3288_code_table,
.length = ARRAY_SIZE(rk3288_code_table),
.data_mask = TSADCV2_DATA_MASK,
.mode = ADC_DECREMENT,
},
};
static const struct rockchip_tsadc_chip rk3328_tsadc_data = {
.chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */
.chn_num = 1, /* one channels for tsadc */
.tshut_mode = TSHUT_MODE_CRU, /* default TSHUT via CRU */
.tshut_temp = 95000,
.initialize = rk_tsadcv2_initialize,
.irq_ack = rk_tsadcv3_irq_ack,
.control = rk_tsadcv3_control,
.get_temp = rk_tsadcv2_get_temp,
.set_alarm_temp = rk_tsadcv2_alarm_temp,
.set_tshut_temp = rk_tsadcv2_tshut_temp,
.set_tshut_mode = rk_tsadcv2_tshut_mode,
.table = {
.id = rk3328_code_table,
.length = ARRAY_SIZE(rk3328_code_table),
.data_mask = TSADCV2_DATA_MASK,
.mode = ADC_INCREMENT,
},
};
static const struct rockchip_tsadc_chip rk3366_tsadc_data = {
.chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */
.chn_id[SENSOR_GPU] = 1, /* gpu sensor is channel 1 */
.chn_num = 2, /* two channels for tsadc */
.tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */
.tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */
.tshut_temp = 95000,
.initialize = rk_tsadcv3_initialize,
.irq_ack = rk_tsadcv3_irq_ack,
.control = rk_tsadcv3_control,
.get_temp = rk_tsadcv2_get_temp,
.set_alarm_temp = rk_tsadcv2_alarm_temp,
.set_tshut_temp = rk_tsadcv2_tshut_temp,
.set_tshut_mode = rk_tsadcv2_tshut_mode,
.table = {
.id = rk3228_code_table,
.length = ARRAY_SIZE(rk3228_code_table),
.data_mask = TSADCV3_DATA_MASK,
.mode = ADC_INCREMENT,
},
};
static const struct rockchip_tsadc_chip rk3368_tsadc_data = {
.chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */
.chn_id[SENSOR_GPU] = 1, /* gpu sensor is channel 1 */
.chn_num = 2, /* two channels for tsadc */
.tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */
.tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */
.tshut_temp = 95000,
.initialize = rk_tsadcv2_initialize,
.irq_ack = rk_tsadcv2_irq_ack,
.control = rk_tsadcv2_control,
.get_temp = rk_tsadcv2_get_temp,
.set_alarm_temp = rk_tsadcv2_alarm_temp,
.set_tshut_temp = rk_tsadcv2_tshut_temp,
.set_tshut_mode = rk_tsadcv2_tshut_mode,
.table = {
.id = rk3368_code_table,
.length = ARRAY_SIZE(rk3368_code_table),
.data_mask = TSADCV3_DATA_MASK,
.mode = ADC_INCREMENT,
},
};
static const struct rockchip_tsadc_chip rk3399_tsadc_data = {
.chn_id[SENSOR_CPU] = 0, /* cpu sensor is channel 0 */
.chn_id[SENSOR_GPU] = 1, /* gpu sensor is channel 1 */
.chn_num = 2, /* two channels for tsadc */
.tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */
.tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */
.tshut_temp = 95000,
.initialize = rk_tsadcv3_initialize,
.irq_ack = rk_tsadcv3_irq_ack,
.control = rk_tsadcv3_control,
.get_temp = rk_tsadcv2_get_temp,
.set_alarm_temp = rk_tsadcv2_alarm_temp,
.set_tshut_temp = rk_tsadcv2_tshut_temp,
.set_tshut_mode = rk_tsadcv2_tshut_mode,
.table = {
.id = rk3399_code_table,
.length = ARRAY_SIZE(rk3399_code_table),
.data_mask = TSADCV3_DATA_MASK,
.mode = ADC_INCREMENT,
},
};
static const struct of_device_id of_rockchip_thermal_match[] = {
{
.compatible = "rockchip,rk3228-tsadc",
.data = (void *)&rk3228_tsadc_data,
},
{
.compatible = "rockchip,rk3288-tsadc",
.data = (void *)&rk3288_tsadc_data,
},
{
.compatible = "rockchip,rk3328-tsadc",
.data = (void *)&rk3328_tsadc_data,
},
{
.compatible = "rockchip,rk3366-tsadc",
.data = (void *)&rk3366_tsadc_data,
},
{
.compatible = "rockchip,rk3368-tsadc",
.data = (void *)&rk3368_tsadc_data,
},
{
.compatible = "rockchip,rk3399-tsadc",
.data = (void *)&rk3399_tsadc_data,
},
{ /* end */ },
};
MODULE_DEVICE_TABLE(of, of_rockchip_thermal_match);
static void
rockchip_thermal_toggle_sensor(struct rockchip_thermal_sensor *sensor, bool on)
{
struct thermal_zone_device *tzd = sensor->tzd;
tzd->ops->set_mode(tzd,
on ? THERMAL_DEVICE_ENABLED : THERMAL_DEVICE_DISABLED);
}
static irqreturn_t rockchip_thermal_alarm_irq_thread(int irq, void *dev)
{
struct rockchip_thermal_data *thermal = dev;
int i;
dev_dbg(&thermal->pdev->dev, "thermal alarm\n");
thermal->chip->irq_ack(thermal->regs);
for (i = 0; i < thermal->chip->chn_num; i++)
thermal_zone_device_update(thermal->sensors[i].tzd,
THERMAL_EVENT_UNSPECIFIED);
return IRQ_HANDLED;
}
static int rockchip_thermal_set_trips(void *_sensor, int low, int high)
{
struct rockchip_thermal_sensor *sensor = _sensor;
struct rockchip_thermal_data *thermal = sensor->thermal;
const struct rockchip_tsadc_chip *tsadc = thermal->chip;
dev_dbg(&thermal->pdev->dev, "%s: sensor %d: low: %d, high %d\n",
__func__, sensor->id, low, high);
return tsadc->set_alarm_temp(&tsadc->table,
sensor->id, thermal->regs, high);
}
static int rockchip_thermal_get_temp(void *_sensor, int *out_temp)
{
struct rockchip_thermal_sensor *sensor = _sensor;
struct rockchip_thermal_data *thermal = sensor->thermal;
const struct rockchip_tsadc_chip *tsadc = sensor->thermal->chip;
int retval;
retval = tsadc->get_temp(&tsadc->table,
sensor->id, thermal->regs, out_temp);
dev_dbg(&thermal->pdev->dev, "sensor %d - temp: %d, retval: %d\n",
sensor->id, *out_temp, retval);
return retval;
}
static const struct thermal_zone_of_device_ops rockchip_of_thermal_ops = {
.get_temp = rockchip_thermal_get_temp,
.set_trips = rockchip_thermal_set_trips,
};
static int rockchip_configure_from_dt(struct device *dev,
struct device_node *np,
struct rockchip_thermal_data *thermal)
{
u32 shut_temp, tshut_mode, tshut_polarity;
if (of_property_read_u32(np, "rockchip,hw-tshut-temp", &shut_temp)) {
dev_warn(dev,
"Missing tshut temp property, using default %d\n",
thermal->chip->tshut_temp);
thermal->tshut_temp = thermal->chip->tshut_temp;
} else {
if (shut_temp > INT_MAX) {
dev_err(dev, "Invalid tshut temperature specified: %d\n",
shut_temp);
return -ERANGE;
}
thermal->tshut_temp = shut_temp;
}
if (of_property_read_u32(np, "rockchip,hw-tshut-mode", &tshut_mode)) {
dev_warn(dev,
"Missing tshut mode property, using default (%s)\n",
thermal->chip->tshut_mode == TSHUT_MODE_GPIO ?
"gpio" : "cru");
thermal->tshut_mode = thermal->chip->tshut_mode;
} else {
thermal->tshut_mode = tshut_mode;
}
if (thermal->tshut_mode > 1) {
dev_err(dev, "Invalid tshut mode specified: %d\n",
thermal->tshut_mode);
return -EINVAL;
}
if (of_property_read_u32(np, "rockchip,hw-tshut-polarity",
&tshut_polarity)) {
dev_warn(dev,
"Missing tshut-polarity property, using default (%s)\n",
thermal->chip->tshut_polarity == TSHUT_LOW_ACTIVE ?
"low" : "high");
thermal->tshut_polarity = thermal->chip->tshut_polarity;
} else {
thermal->tshut_polarity = tshut_polarity;
}
if (thermal->tshut_polarity > 1) {
dev_err(dev, "Invalid tshut-polarity specified: %d\n",
thermal->tshut_polarity);
return -EINVAL;
}
/* The tsadc wont to handle the error in here since some SoCs didn't
* need this property.
*/
thermal->grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
if (IS_ERR(thermal->grf))
dev_warn(dev, "Missing rockchip,grf property\n");
return 0;
}
static int
rockchip_thermal_register_sensor(struct platform_device *pdev,
struct rockchip_thermal_data *thermal,
struct rockchip_thermal_sensor *sensor,
int id)
{
const struct rockchip_tsadc_chip *tsadc = thermal->chip;
int error;
tsadc->set_tshut_mode(id, thermal->regs, thermal->tshut_mode);
error = tsadc->set_tshut_temp(&tsadc->table, id, thermal->regs,
thermal->tshut_temp);
if (error)
dev_err(&pdev->dev, "%s: invalid tshut=%d, error=%d\n",
__func__, thermal->tshut_temp, error);
sensor->thermal = thermal;
sensor->id = id;
sensor->tzd = devm_thermal_zone_of_sensor_register(&pdev->dev, id,
sensor, &rockchip_of_thermal_ops);
if (IS_ERR(sensor->tzd)) {
error = PTR_ERR(sensor->tzd);
dev_err(&pdev->dev, "failed to register sensor %d: %d\n",
id, error);
return error;
}
return 0;
}
/**
* Reset TSADC Controller, reset all tsadc registers.
*/
static void rockchip_thermal_reset_controller(struct reset_control *reset)
{
reset_control_assert(reset);
usleep_range(10, 20);
reset_control_deassert(reset);
}
static int rockchip_thermal_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct rockchip_thermal_data *thermal;
const struct of_device_id *match;
struct resource *res;
int irq;
int i;
int error;
match = of_match_node(of_rockchip_thermal_match, np);
if (!match)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return -EINVAL;
}
thermal = devm_kzalloc(&pdev->dev, sizeof(struct rockchip_thermal_data),
GFP_KERNEL);
if (!thermal)
return -ENOMEM;
thermal->pdev = pdev;
thermal->chip = (const struct rockchip_tsadc_chip *)match->data;
if (!thermal->chip)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
thermal->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(thermal->regs))
return PTR_ERR(thermal->regs);
thermal->reset = devm_reset_control_get(&pdev->dev, "tsadc-apb");
if (IS_ERR(thermal->reset)) {
error = PTR_ERR(thermal->reset);
dev_err(&pdev->dev, "failed to get tsadc reset: %d\n", error);
return error;
}
thermal->clk = devm_clk_get(&pdev->dev, "tsadc");
if (IS_ERR(thermal->clk)) {
error = PTR_ERR(thermal->clk);
dev_err(&pdev->dev, "failed to get tsadc clock: %d\n", error);
return error;
}
thermal->pclk = devm_clk_get(&pdev->dev, "apb_pclk");
if (IS_ERR(thermal->pclk)) {
error = PTR_ERR(thermal->pclk);
dev_err(&pdev->dev, "failed to get apb_pclk clock: %d\n",
error);
return error;
}
error = clk_prepare_enable(thermal->clk);
if (error) {
dev_err(&pdev->dev, "failed to enable converter clock: %d\n",
error);
return error;
}
error = clk_prepare_enable(thermal->pclk);
if (error) {
dev_err(&pdev->dev, "failed to enable pclk: %d\n", error);
goto err_disable_clk;
}
rockchip_thermal_reset_controller(thermal->reset);
error = rockchip_configure_from_dt(&pdev->dev, np, thermal);
if (error) {
dev_err(&pdev->dev, "failed to parse device tree data: %d\n",
error);
goto err_disable_pclk;
}
thermal->chip->initialize(thermal->grf, thermal->regs,
thermal->tshut_polarity);
for (i = 0; i < thermal->chip->chn_num; i++) {
error = rockchip_thermal_register_sensor(pdev, thermal,
&thermal->sensors[i],
thermal->chip->chn_id[i]);
if (error) {
dev_err(&pdev->dev,
"failed to register sensor[%d] : error = %d\n",
i, error);
goto err_disable_pclk;
}
}
error = devm_request_threaded_irq(&pdev->dev, irq, NULL,
&rockchip_thermal_alarm_irq_thread,
IRQF_ONESHOT,
"rockchip_thermal", thermal);
if (error) {
dev_err(&pdev->dev,
"failed to request tsadc irq: %d\n", error);
goto err_disable_pclk;
}
thermal->chip->control(thermal->regs, true);
for (i = 0; i < thermal->chip->chn_num; i++)
rockchip_thermal_toggle_sensor(&thermal->sensors[i], true);
platform_set_drvdata(pdev, thermal);
return 0;
err_disable_pclk:
clk_disable_unprepare(thermal->pclk);
err_disable_clk:
clk_disable_unprepare(thermal->clk);
return error;
}
static int rockchip_thermal_remove(struct platform_device *pdev)
{
struct rockchip_thermal_data *thermal = platform_get_drvdata(pdev);
int i;
for (i = 0; i < thermal->chip->chn_num; i++) {
struct rockchip_thermal_sensor *sensor = &thermal->sensors[i];
rockchip_thermal_toggle_sensor(sensor, false);
}
thermal->chip->control(thermal->regs, false);
clk_disable_unprepare(thermal->pclk);
clk_disable_unprepare(thermal->clk);
return 0;
}
static int __maybe_unused rockchip_thermal_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rockchip_thermal_data *thermal = platform_get_drvdata(pdev);
int i;
for (i = 0; i < thermal->chip->chn_num; i++)
rockchip_thermal_toggle_sensor(&thermal->sensors[i], false);
thermal->chip->control(thermal->regs, false);
clk_disable(thermal->pclk);
clk_disable(thermal->clk);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused rockchip_thermal_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rockchip_thermal_data *thermal = platform_get_drvdata(pdev);
int i;
int error;
error = clk_enable(thermal->clk);
if (error)
return error;
error = clk_enable(thermal->pclk);
if (error) {
clk_disable(thermal->clk);
return error;
}
rockchip_thermal_reset_controller(thermal->reset);
thermal->chip->initialize(thermal->grf, thermal->regs,
thermal->tshut_polarity);
for (i = 0; i < thermal->chip->chn_num; i++) {
int id = thermal->sensors[i].id;
thermal->chip->set_tshut_mode(id, thermal->regs,
thermal->tshut_mode);
error = thermal->chip->set_tshut_temp(&thermal->chip->table,
id, thermal->regs,
thermal->tshut_temp);
if (error)
dev_err(&pdev->dev, "%s: invalid tshut=%d, error=%d\n",
__func__, thermal->tshut_temp, error);
}
thermal->chip->control(thermal->regs, true);
for (i = 0; i < thermal->chip->chn_num; i++)
rockchip_thermal_toggle_sensor(&thermal->sensors[i], true);
pinctrl_pm_select_default_state(dev);
return 0;
}
static SIMPLE_DEV_PM_OPS(rockchip_thermal_pm_ops,
rockchip_thermal_suspend, rockchip_thermal_resume);
static struct platform_driver rockchip_thermal_driver = {
.driver = {
.name = "rockchip-thermal",
.pm = &rockchip_thermal_pm_ops,
.of_match_table = of_rockchip_thermal_match,
},
.probe = rockchip_thermal_probe,
.remove = rockchip_thermal_remove,
};
module_platform_driver(rockchip_thermal_driver);
MODULE_DESCRIPTION("ROCKCHIP THERMAL Driver");
MODULE_AUTHOR("Rockchip, Inc.");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:rockchip-thermal");