685 lines
20 KiB
C
685 lines
20 KiB
C
|
/*
|
||
|
* A power allocator to manage temperature
|
||
|
*
|
||
|
* Copyright (C) 2014 ARM Ltd.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
||
|
* kind, whether express or implied; without even the implied warranty
|
||
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "Power allocator: " fmt
|
||
|
|
||
|
#include <linux/rculist.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/thermal.h>
|
||
|
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include <trace/events/thermal_power_allocator.h>
|
||
|
|
||
|
#include "thermal_core.h"
|
||
|
|
||
|
#define INVALID_TRIP -1
|
||
|
|
||
|
#define FRAC_BITS 10
|
||
|
#define int_to_frac(x) ((x) << FRAC_BITS)
|
||
|
#define frac_to_int(x) ((x) >> FRAC_BITS)
|
||
|
|
||
|
/**
|
||
|
* mul_frac() - multiply two fixed-point numbers
|
||
|
* @x: first multiplicand
|
||
|
* @y: second multiplicand
|
||
|
*
|
||
|
* Return: the result of multiplying two fixed-point numbers. The
|
||
|
* result is also a fixed-point number.
|
||
|
*/
|
||
|
static inline s64 mul_frac(s64 x, s64 y)
|
||
|
{
|
||
|
return (x * y) >> FRAC_BITS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* div_frac() - divide two fixed-point numbers
|
||
|
* @x: the dividend
|
||
|
* @y: the divisor
|
||
|
*
|
||
|
* Return: the result of dividing two fixed-point numbers. The
|
||
|
* result is also a fixed-point number.
|
||
|
*/
|
||
|
static inline s64 div_frac(s64 x, s64 y)
|
||
|
{
|
||
|
return div_s64(x << FRAC_BITS, y);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* struct power_allocator_params - parameters for the power allocator governor
|
||
|
* @allocated_tzp: whether we have allocated tzp for this thermal zone and
|
||
|
* it needs to be freed on unbind
|
||
|
* @err_integral: accumulated error in the PID controller.
|
||
|
* @prev_err: error in the previous iteration of the PID controller.
|
||
|
* Used to calculate the derivative term.
|
||
|
* @trip_switch_on: first passive trip point of the thermal zone. The
|
||
|
* governor switches on when this trip point is crossed.
|
||
|
* If the thermal zone only has one passive trip point,
|
||
|
* @trip_switch_on should be INVALID_TRIP.
|
||
|
* @trip_max_desired_temperature: last passive trip point of the thermal
|
||
|
* zone. The temperature we are
|
||
|
* controlling for.
|
||
|
*/
|
||
|
struct power_allocator_params {
|
||
|
bool allocated_tzp;
|
||
|
s64 err_integral;
|
||
|
s32 prev_err;
|
||
|
int trip_switch_on;
|
||
|
int trip_max_desired_temperature;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
|
||
|
* @tz: thermal zone we are operating in
|
||
|
*
|
||
|
* For thermal zones that don't provide a sustainable_power in their
|
||
|
* thermal_zone_params, estimate one. Calculate it using the minimum
|
||
|
* power of all the cooling devices as that gives a valid value that
|
||
|
* can give some degree of functionality. For optimal performance of
|
||
|
* this governor, provide a sustainable_power in the thermal zone's
|
||
|
* thermal_zone_params.
|
||
|
*/
|
||
|
static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
|
||
|
{
|
||
|
u32 sustainable_power = 0;
|
||
|
struct thermal_instance *instance;
|
||
|
struct power_allocator_params *params = tz->governor_data;
|
||
|
|
||
|
list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
||
|
struct thermal_cooling_device *cdev = instance->cdev;
|
||
|
u32 min_power;
|
||
|
|
||
|
if (instance->trip != params->trip_max_desired_temperature)
|
||
|
continue;
|
||
|
|
||
|
if (power_actor_get_min_power(cdev, tz, &min_power))
|
||
|
continue;
|
||
|
|
||
|
sustainable_power += min_power;
|
||
|
}
|
||
|
|
||
|
return sustainable_power;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* estimate_pid_constants() - Estimate the constants for the PID controller
|
||
|
* @tz: thermal zone for which to estimate the constants
|
||
|
* @sustainable_power: sustainable power for the thermal zone
|
||
|
* @trip_switch_on: trip point number for the switch on temperature
|
||
|
* @control_temp: target temperature for the power allocator governor
|
||
|
* @force: whether to force the update of the constants
|
||
|
*
|
||
|
* This function is used to update the estimation of the PID
|
||
|
* controller constants in struct thermal_zone_parameters.
|
||
|
* Sustainable power is provided in case it was estimated. The
|
||
|
* estimated sustainable_power should not be stored in the
|
||
|
* thermal_zone_parameters so it has to be passed explicitly to this
|
||
|
* function.
|
||
|
*
|
||
|
* If @force is not set, the values in the thermal zone's parameters
|
||
|
* are preserved if they are not zero. If @force is set, the values
|
||
|
* in thermal zone's parameters are overwritten.
|
||
|
*/
|
||
|
static void estimate_pid_constants(struct thermal_zone_device *tz,
|
||
|
u32 sustainable_power, int trip_switch_on,
|
||
|
int control_temp, bool force)
|
||
|
{
|
||
|
int ret;
|
||
|
int switch_on_temp;
|
||
|
u32 temperature_threshold;
|
||
|
|
||
|
ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
|
||
|
if (ret)
|
||
|
switch_on_temp = 0;
|
||
|
|
||
|
temperature_threshold = control_temp - switch_on_temp;
|
||
|
/*
|
||
|
* estimate_pid_constants() tries to find appropriate default
|
||
|
* values for thermal zones that don't provide them. If a
|
||
|
* system integrator has configured a thermal zone with two
|
||
|
* passive trip points at the same temperature, that person
|
||
|
* hasn't put any effort to set up the thermal zone properly
|
||
|
* so just give up.
|
||
|
*/
|
||
|
if (!temperature_threshold)
|
||
|
return;
|
||
|
|
||
|
if (!tz->tzp->k_po || force)
|
||
|
tz->tzp->k_po = int_to_frac(sustainable_power) /
|
||
|
temperature_threshold;
|
||
|
else
|
||
|
tz->tzp->k_po = int_to_frac(tz->tzp->k_po);
|
||
|
|
||
|
if (!tz->tzp->k_pu || force)
|
||
|
tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
|
||
|
temperature_threshold;
|
||
|
else
|
||
|
tz->tzp->k_pu = int_to_frac(tz->tzp->k_pu);
|
||
|
|
||
|
if (!tz->tzp->k_i || force)
|
||
|
tz->tzp->k_i = int_to_frac(10) / 1000;
|
||
|
else
|
||
|
tz->tzp->k_i = int_to_frac(tz->tzp->k_i);
|
||
|
|
||
|
/*
|
||
|
* The default for k_d and integral_cutoff is 0, so we can
|
||
|
* leave them as they are.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pid_controller() - PID controller
|
||
|
* @tz: thermal zone we are operating in
|
||
|
* @control_temp: the target temperature in millicelsius
|
||
|
* @max_allocatable_power: maximum allocatable power for this thermal zone
|
||
|
*
|
||
|
* This PID controller increases the available power budget so that the
|
||
|
* temperature of the thermal zone gets as close as possible to
|
||
|
* @control_temp and limits the power if it exceeds it. k_po is the
|
||
|
* proportional term when we are overshooting, k_pu is the
|
||
|
* proportional term when we are undershooting. integral_cutoff is a
|
||
|
* threshold below which we stop accumulating the error. The
|
||
|
* accumulated error is only valid if the requested power will make
|
||
|
* the system warmer. If the system is mostly idle, there's no point
|
||
|
* in accumulating positive error.
|
||
|
*
|
||
|
* Return: The power budget for the next period.
|
||
|
*/
|
||
|
static u32 pid_controller(struct thermal_zone_device *tz,
|
||
|
int control_temp,
|
||
|
u32 max_allocatable_power)
|
||
|
{
|
||
|
s64 p, i, d, power_range;
|
||
|
s32 err, max_power_frac;
|
||
|
u32 sustainable_power;
|
||
|
struct power_allocator_params *params = tz->governor_data;
|
||
|
|
||
|
max_power_frac = int_to_frac(max_allocatable_power);
|
||
|
|
||
|
if (tz->tzp->sustainable_power) {
|
||
|
sustainable_power = tz->tzp->sustainable_power;
|
||
|
} else {
|
||
|
sustainable_power = estimate_sustainable_power(tz);
|
||
|
estimate_pid_constants(tz, sustainable_power,
|
||
|
params->trip_switch_on, control_temp,
|
||
|
true);
|
||
|
}
|
||
|
|
||
|
err = (control_temp - tz->temperature) / 1000;
|
||
|
err = int_to_frac(err);
|
||
|
|
||
|
/* Calculate the proportional term */
|
||
|
p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
|
||
|
|
||
|
/*
|
||
|
* Calculate the integral term
|
||
|
*
|
||
|
* if the error is less than cut off allow integration (but
|
||
|
* the integral is limited to max power)
|
||
|
*/
|
||
|
i = mul_frac(tz->tzp->k_i, params->err_integral);
|
||
|
|
||
|
if (err < int_to_frac(tz->tzp->integral_cutoff)) {
|
||
|
s64 i_next = i + mul_frac(tz->tzp->k_i, err);
|
||
|
s64 i_windup = int_to_frac(-1 * (s64)tz->tzp->sustainable_power);
|
||
|
|
||
|
if (i_next > int_to_frac((s64)tz->tzp->integral_max)) {
|
||
|
i = int_to_frac((s64)tz->tzp->integral_max);
|
||
|
params->err_integral = div_frac(i, tz->tzp->k_i);
|
||
|
} else if (i_next <= i_windup) {
|
||
|
i = i_windup;
|
||
|
params->err_integral = div_frac(i, tz->tzp->k_i);
|
||
|
} else {
|
||
|
i = i_next;
|
||
|
params->err_integral += err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the derivative term
|
||
|
*
|
||
|
* We do err - prev_err, so with a positive k_d, a decreasing
|
||
|
* error (i.e. driving closer to the line) results in less
|
||
|
* power being applied, slowing down the controller)
|
||
|
*/
|
||
|
d = mul_frac(tz->tzp->k_d, err - params->prev_err);
|
||
|
d = div_frac(d, tz->passive_delay);
|
||
|
params->prev_err = err;
|
||
|
|
||
|
power_range = p + i + d;
|
||
|
|
||
|
/* feed-forward the known sustainable dissipatable power */
|
||
|
power_range = sustainable_power + frac_to_int(power_range);
|
||
|
|
||
|
power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
|
||
|
|
||
|
trace_thermal_power_allocator_pid(tz, frac_to_int(err),
|
||
|
frac_to_int(params->err_integral),
|
||
|
frac_to_int(p), frac_to_int(i),
|
||
|
frac_to_int(d), power_range);
|
||
|
|
||
|
return power_range;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* divvy_up_power() - divvy the allocated power between the actors
|
||
|
* @req_power: each actor's requested power
|
||
|
* @max_power: each actor's maximum available power
|
||
|
* @num_actors: size of the @req_power, @max_power and @granted_power's array
|
||
|
* @total_req_power: sum of @req_power
|
||
|
* @power_range: total allocated power
|
||
|
* @granted_power: output array: each actor's granted power
|
||
|
* @extra_actor_power: an appropriately sized array to be used in the
|
||
|
* function as temporary storage of the extra power given
|
||
|
* to the actors
|
||
|
*
|
||
|
* This function divides the total allocated power (@power_range)
|
||
|
* fairly between the actors. It first tries to give each actor a
|
||
|
* share of the @power_range according to how much power it requested
|
||
|
* compared to the rest of the actors. For example, if only one actor
|
||
|
* requests power, then it receives all the @power_range. If
|
||
|
* three actors each requests 1mW, each receives a third of the
|
||
|
* @power_range.
|
||
|
*
|
||
|
* If any actor received more than their maximum power, then that
|
||
|
* surplus is re-divvied among the actors based on how far they are
|
||
|
* from their respective maximums.
|
||
|
*
|
||
|
* Granted power for each actor is written to @granted_power, which
|
||
|
* should've been allocated by the calling function.
|
||
|
*/
|
||
|
static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
|
||
|
u32 total_req_power, u32 power_range,
|
||
|
u32 *granted_power, u32 *extra_actor_power)
|
||
|
{
|
||
|
u32 extra_power, capped_extra_power;
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Prevent division by 0 if none of the actors request power.
|
||
|
*/
|
||
|
if (!total_req_power)
|
||
|
total_req_power = 1;
|
||
|
|
||
|
capped_extra_power = 0;
|
||
|
extra_power = 0;
|
||
|
for (i = 0; i < num_actors; i++) {
|
||
|
u64 req_range = (u64)req_power[i] * power_range;
|
||
|
|
||
|
granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
|
||
|
total_req_power);
|
||
|
|
||
|
if (granted_power[i] > max_power[i]) {
|
||
|
extra_power += granted_power[i] - max_power[i];
|
||
|
granted_power[i] = max_power[i];
|
||
|
}
|
||
|
|
||
|
extra_actor_power[i] = max_power[i] - granted_power[i];
|
||
|
capped_extra_power += extra_actor_power[i];
|
||
|
}
|
||
|
|
||
|
if (!extra_power)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Re-divvy the reclaimed extra among actors based on
|
||
|
* how far they are from the max
|
||
|
*/
|
||
|
extra_power = min(extra_power, capped_extra_power);
|
||
|
if (capped_extra_power > 0)
|
||
|
for (i = 0; i < num_actors; i++)
|
||
|
granted_power[i] += (extra_actor_power[i] *
|
||
|
extra_power) / capped_extra_power;
|
||
|
}
|
||
|
|
||
|
static int allocate_power(struct thermal_zone_device *tz,
|
||
|
int control_temp)
|
||
|
{
|
||
|
struct thermal_instance *instance;
|
||
|
struct power_allocator_params *params = tz->governor_data;
|
||
|
u32 *req_power, *max_power, *granted_power, *extra_actor_power;
|
||
|
u32 *weighted_req_power;
|
||
|
u32 total_req_power, max_allocatable_power, total_weighted_req_power;
|
||
|
u32 total_granted_power, power_range;
|
||
|
int i, num_actors, total_weight, ret = 0;
|
||
|
int trip_max_desired_temperature = params->trip_max_desired_temperature;
|
||
|
|
||
|
mutex_lock(&tz->lock);
|
||
|
|
||
|
num_actors = 0;
|
||
|
total_weight = 0;
|
||
|
list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
||
|
if ((instance->trip == trip_max_desired_temperature) &&
|
||
|
cdev_is_power_actor(instance->cdev)) {
|
||
|
num_actors++;
|
||
|
total_weight += instance->weight;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!num_actors) {
|
||
|
ret = -ENODEV;
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to allocate five arrays of the same size:
|
||
|
* req_power, max_power, granted_power, extra_actor_power and
|
||
|
* weighted_req_power. They are going to be needed until this
|
||
|
* function returns. Allocate them all in one go to simplify
|
||
|
* the allocation and deallocation logic.
|
||
|
*/
|
||
|
BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
|
||
|
BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
|
||
|
BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
|
||
|
BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
|
||
|
req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
|
||
|
if (!req_power) {
|
||
|
ret = -ENOMEM;
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
max_power = &req_power[num_actors];
|
||
|
granted_power = &req_power[2 * num_actors];
|
||
|
extra_actor_power = &req_power[3 * num_actors];
|
||
|
weighted_req_power = &req_power[4 * num_actors];
|
||
|
|
||
|
i = 0;
|
||
|
total_weighted_req_power = 0;
|
||
|
total_req_power = 0;
|
||
|
max_allocatable_power = 0;
|
||
|
|
||
|
list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
||
|
int weight;
|
||
|
struct thermal_cooling_device *cdev = instance->cdev;
|
||
|
|
||
|
if (instance->trip != trip_max_desired_temperature)
|
||
|
continue;
|
||
|
|
||
|
if (!cdev_is_power_actor(cdev))
|
||
|
continue;
|
||
|
|
||
|
if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
|
||
|
continue;
|
||
|
|
||
|
if (!total_weight)
|
||
|
weight = 1 << FRAC_BITS;
|
||
|
else
|
||
|
weight = instance->weight;
|
||
|
|
||
|
if (req_power[i] == 0)
|
||
|
req_power[i] = 1;
|
||
|
|
||
|
weighted_req_power[i] = frac_to_int(weight * req_power[i]);
|
||
|
|
||
|
if (power_actor_get_max_power(cdev, tz, &max_power[i]))
|
||
|
continue;
|
||
|
|
||
|
total_req_power += req_power[i];
|
||
|
max_allocatable_power += max_power[i];
|
||
|
total_weighted_req_power += weighted_req_power[i];
|
||
|
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
power_range = pid_controller(tz, control_temp, max_allocatable_power);
|
||
|
|
||
|
divvy_up_power(weighted_req_power, max_power, num_actors,
|
||
|
total_weighted_req_power, power_range, granted_power,
|
||
|
extra_actor_power);
|
||
|
|
||
|
total_granted_power = 0;
|
||
|
i = 0;
|
||
|
list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
||
|
if (instance->trip != trip_max_desired_temperature)
|
||
|
continue;
|
||
|
|
||
|
if (!cdev_is_power_actor(instance->cdev))
|
||
|
continue;
|
||
|
|
||
|
power_actor_set_power(instance->cdev, instance,
|
||
|
granted_power[i]);
|
||
|
total_granted_power += granted_power[i];
|
||
|
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
trace_thermal_power_allocator(tz, req_power, total_req_power,
|
||
|
granted_power, total_granted_power,
|
||
|
num_actors, power_range,
|
||
|
max_allocatable_power, tz->temperature,
|
||
|
control_temp - tz->temperature);
|
||
|
|
||
|
kfree(req_power);
|
||
|
unlock:
|
||
|
mutex_unlock(&tz->lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* get_governor_trips() - get the number of the two trip points that are key for this governor
|
||
|
* @tz: thermal zone to operate on
|
||
|
* @params: pointer to private data for this governor
|
||
|
*
|
||
|
* The power allocator governor works optimally with two trips points:
|
||
|
* a "switch on" trip point and a "maximum desired temperature". These
|
||
|
* are defined as the first and last passive trip points.
|
||
|
*
|
||
|
* If there is only one trip point, then that's considered to be the
|
||
|
* "maximum desired temperature" trip point and the governor is always
|
||
|
* on. If there are no passive or active trip points, then the
|
||
|
* governor won't do anything. In fact, its throttle function
|
||
|
* won't be called at all.
|
||
|
*/
|
||
|
static void get_governor_trips(struct thermal_zone_device *tz,
|
||
|
struct power_allocator_params *params)
|
||
|
{
|
||
|
int i, last_active, last_passive;
|
||
|
bool found_first_passive;
|
||
|
|
||
|
found_first_passive = false;
|
||
|
last_active = INVALID_TRIP;
|
||
|
last_passive = INVALID_TRIP;
|
||
|
|
||
|
for (i = 0; i < tz->trips; i++) {
|
||
|
enum thermal_trip_type type;
|
||
|
int ret;
|
||
|
|
||
|
ret = tz->ops->get_trip_type(tz, i, &type);
|
||
|
if (ret) {
|
||
|
dev_warn(&tz->device,
|
||
|
"Failed to get trip point %d type: %d\n", i,
|
||
|
ret);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (type == THERMAL_TRIP_PASSIVE) {
|
||
|
if (!found_first_passive) {
|
||
|
params->trip_switch_on = i;
|
||
|
found_first_passive = true;
|
||
|
break;
|
||
|
} else {
|
||
|
last_passive = i;
|
||
|
}
|
||
|
} else if (type == THERMAL_TRIP_ACTIVE) {
|
||
|
last_active = i;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (last_passive != INVALID_TRIP) {
|
||
|
params->trip_max_desired_temperature = last_passive;
|
||
|
} else if (found_first_passive) {
|
||
|
params->trip_max_desired_temperature = params->trip_switch_on;
|
||
|
params->trip_switch_on = last_active;
|
||
|
} else {
|
||
|
params->trip_switch_on = INVALID_TRIP;
|
||
|
params->trip_max_desired_temperature = last_active;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void reset_pid_controller(struct power_allocator_params *params, struct thermal_zone_device *tz)
|
||
|
{
|
||
|
s64 i = int_to_frac((s64)tz->tzp->integral_max);
|
||
|
|
||
|
params->err_integral = div_frac(i, tz->tzp->k_i);
|
||
|
params->prev_err = 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
static void allow_maximum_power(struct thermal_zone_device *tz)
|
||
|
{
|
||
|
struct thermal_instance *instance;
|
||
|
struct power_allocator_params *params = tz->governor_data;
|
||
|
|
||
|
mutex_lock(&tz->lock);
|
||
|
list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
||
|
if ((instance->trip != params->trip_max_desired_temperature) ||
|
||
|
(!cdev_is_power_actor(instance->cdev)))
|
||
|
continue;
|
||
|
|
||
|
instance->target = 0;
|
||
|
mutex_lock(&instance->cdev->lock);
|
||
|
instance->cdev->updated = false;
|
||
|
mutex_unlock(&instance->cdev->lock);
|
||
|
thermal_cdev_update(instance->cdev);
|
||
|
}
|
||
|
mutex_unlock(&tz->lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* power_allocator_bind() - bind the power_allocator governor to a thermal zone
|
||
|
* @tz: thermal zone to bind it to
|
||
|
*
|
||
|
* Initialize the PID controller parameters and bind it to the thermal
|
||
|
* zone.
|
||
|
*
|
||
|
* Return: 0 on success, or -ENOMEM if we ran out of memory.
|
||
|
*/
|
||
|
static int power_allocator_bind(struct thermal_zone_device *tz)
|
||
|
{
|
||
|
int ret;
|
||
|
struct power_allocator_params *params;
|
||
|
int control_temp;
|
||
|
|
||
|
params = kzalloc(sizeof(*params), GFP_KERNEL);
|
||
|
if (!params)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (!tz->tzp) {
|
||
|
tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
|
||
|
if (!tz->tzp) {
|
||
|
ret = -ENOMEM;
|
||
|
goto free_params;
|
||
|
}
|
||
|
|
||
|
params->allocated_tzp = true;
|
||
|
}
|
||
|
|
||
|
if (!tz->tzp->sustainable_power)
|
||
|
dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
|
||
|
|
||
|
get_governor_trips(tz, params);
|
||
|
|
||
|
if (tz->trips > 0) {
|
||
|
ret = tz->ops->get_trip_temp(tz,
|
||
|
params->trip_max_desired_temperature,
|
||
|
&control_temp);
|
||
|
if (!ret)
|
||
|
estimate_pid_constants(tz, tz->tzp->sustainable_power,
|
||
|
params->trip_switch_on,
|
||
|
control_temp, false);
|
||
|
}
|
||
|
|
||
|
reset_pid_controller(params, tz);
|
||
|
|
||
|
tz->governor_data = params;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
free_params:
|
||
|
kfree(params);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void power_allocator_unbind(struct thermal_zone_device *tz)
|
||
|
{
|
||
|
struct power_allocator_params *params = tz->governor_data;
|
||
|
|
||
|
dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
|
||
|
|
||
|
if (params->allocated_tzp) {
|
||
|
kfree(tz->tzp);
|
||
|
tz->tzp = NULL;
|
||
|
}
|
||
|
|
||
|
kfree(tz->governor_data);
|
||
|
tz->governor_data = NULL;
|
||
|
}
|
||
|
|
||
|
static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
|
||
|
{
|
||
|
int ret;
|
||
|
int switch_on_temp, control_temp;
|
||
|
struct power_allocator_params *params = tz->governor_data;
|
||
|
|
||
|
/*
|
||
|
* We get called for every trip point but we only need to do
|
||
|
* our calculations once
|
||
|
*/
|
||
|
if (trip != params->trip_max_desired_temperature)
|
||
|
return 0;
|
||
|
|
||
|
ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
|
||
|
&switch_on_temp);
|
||
|
if (!ret && (tz->temperature < switch_on_temp)) {
|
||
|
tz->passive = 0;
|
||
|
reset_pid_controller(params, tz);
|
||
|
allow_maximum_power(tz);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
tz->passive = 1;
|
||
|
|
||
|
ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
|
||
|
&control_temp);
|
||
|
if (ret) {
|
||
|
dev_warn(&tz->device,
|
||
|
"Failed to get the maximum desired temperature: %d\n",
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return allocate_power(tz, control_temp);
|
||
|
}
|
||
|
|
||
|
static struct thermal_governor thermal_gov_power_allocator = {
|
||
|
.name = "power_allocator",
|
||
|
.bind_to_tz = power_allocator_bind,
|
||
|
.unbind_from_tz = power_allocator_unbind,
|
||
|
.throttle = power_allocator_throttle,
|
||
|
};
|
||
|
|
||
|
int thermal_gov_power_allocator_register(void)
|
||
|
{
|
||
|
return thermal_register_governor(&thermal_gov_power_allocator);
|
||
|
}
|
||
|
|
||
|
void thermal_gov_power_allocator_unregister(void)
|
||
|
{
|
||
|
thermal_unregister_governor(&thermal_gov_power_allocator);
|
||
|
}
|