1409 lines
35 KiB
C
1409 lines
35 KiB
C
|
/*
|
||
|
* RTC class driver for "CMOS RTC": PCs, ACPI, etc
|
||
|
*
|
||
|
* Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
|
||
|
* Copyright (C) 2006 David Brownell (convert to new framework)
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version
|
||
|
* 2 of the License, or (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The original "cmos clock" chip was an MC146818 chip, now obsolete.
|
||
|
* That defined the register interface now provided by all PCs, some
|
||
|
* non-PC systems, and incorporated into ACPI. Modern PC chipsets
|
||
|
* integrate an MC146818 clone in their southbridge, and boards use
|
||
|
* that instead of discrete clones like the DS12887 or M48T86. There
|
||
|
* are also clones that connect using the LPC bus.
|
||
|
*
|
||
|
* That register API is also used directly by various other drivers
|
||
|
* (notably for integrated NVRAM), infrastructure (x86 has code to
|
||
|
* bypass the RTC framework, directly reading the RTC during boot
|
||
|
* and updating minutes/seconds for systems using NTP synch) and
|
||
|
* utilities (like userspace 'hwclock', if no /dev node exists).
|
||
|
*
|
||
|
* So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
|
||
|
* interrupts disabled, holding the global rtc_lock, to exclude those
|
||
|
* other drivers and utilities on correctly configured systems.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/log2.h>
|
||
|
#include <linux/pm.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/of_platform.h>
|
||
|
#ifdef CONFIG_X86
|
||
|
#include <asm/i8259.h>
|
||
|
#endif
|
||
|
|
||
|
/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
|
||
|
#include <linux/mc146818rtc.h>
|
||
|
|
||
|
struct cmos_rtc {
|
||
|
struct rtc_device *rtc;
|
||
|
struct device *dev;
|
||
|
int irq;
|
||
|
struct resource *iomem;
|
||
|
time64_t alarm_expires;
|
||
|
|
||
|
void (*wake_on)(struct device *);
|
||
|
void (*wake_off)(struct device *);
|
||
|
|
||
|
u8 enabled_wake;
|
||
|
u8 suspend_ctrl;
|
||
|
|
||
|
/* newer hardware extends the original register set */
|
||
|
u8 day_alrm;
|
||
|
u8 mon_alrm;
|
||
|
u8 century;
|
||
|
|
||
|
struct rtc_wkalrm saved_wkalrm;
|
||
|
};
|
||
|
|
||
|
/* both platform and pnp busses use negative numbers for invalid irqs */
|
||
|
#define is_valid_irq(n) ((n) > 0)
|
||
|
|
||
|
static const char driver_name[] = "rtc_cmos";
|
||
|
|
||
|
/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
|
||
|
* always mask it against the irq enable bits in RTC_CONTROL. Bit values
|
||
|
* are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
|
||
|
*/
|
||
|
#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
|
||
|
|
||
|
static inline int is_intr(u8 rtc_intr)
|
||
|
{
|
||
|
if (!(rtc_intr & RTC_IRQF))
|
||
|
return 0;
|
||
|
return rtc_intr & RTC_IRQMASK;
|
||
|
}
|
||
|
|
||
|
/*----------------------------------------------------------------*/
|
||
|
|
||
|
/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
|
||
|
* many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
|
||
|
* used in a broken "legacy replacement" mode. The breakage includes
|
||
|
* HPET #1 hijacking the IRQ for this RTC, and being unavailable for
|
||
|
* other (better) use.
|
||
|
*
|
||
|
* When that broken mode is in use, platform glue provides a partial
|
||
|
* emulation of hardware RTC IRQ facilities using HPET #1. We don't
|
||
|
* want to use HPET for anything except those IRQs though...
|
||
|
*/
|
||
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
||
|
#include <asm/hpet.h>
|
||
|
#else
|
||
|
|
||
|
static inline int is_hpet_enabled(void)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int hpet_set_rtc_irq_bit(unsigned long mask)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int hpet_set_periodic_freq(unsigned long freq)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int hpet_rtc_dropped_irq(void)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int hpet_rtc_timer_init(void)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
extern irq_handler_t hpet_rtc_interrupt;
|
||
|
|
||
|
static inline int hpet_register_irq_handler(irq_handler_t handler)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int hpet_unregister_irq_handler(irq_handler_t handler)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*----------------------------------------------------------------*/
|
||
|
|
||
|
#ifdef RTC_PORT
|
||
|
|
||
|
/* Most newer x86 systems have two register banks, the first used
|
||
|
* for RTC and NVRAM and the second only for NVRAM. Caller must
|
||
|
* own rtc_lock ... and we won't worry about access during NMI.
|
||
|
*/
|
||
|
#define can_bank2 true
|
||
|
|
||
|
static inline unsigned char cmos_read_bank2(unsigned char addr)
|
||
|
{
|
||
|
outb(addr, RTC_PORT(2));
|
||
|
return inb(RTC_PORT(3));
|
||
|
}
|
||
|
|
||
|
static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
|
||
|
{
|
||
|
outb(addr, RTC_PORT(2));
|
||
|
outb(val, RTC_PORT(3));
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define can_bank2 false
|
||
|
|
||
|
static inline unsigned char cmos_read_bank2(unsigned char addr)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*----------------------------------------------------------------*/
|
||
|
|
||
|
static int cmos_read_time(struct device *dev, struct rtc_time *t)
|
||
|
{
|
||
|
/*
|
||
|
* If pm_trace abused the RTC for storage, set the timespec to 0,
|
||
|
* which tells the caller that this RTC value is unusable.
|
||
|
*/
|
||
|
if (!pm_trace_rtc_valid())
|
||
|
return -EIO;
|
||
|
|
||
|
/* REVISIT: if the clock has a "century" register, use
|
||
|
* that instead of the heuristic in mc146818_get_time().
|
||
|
* That'll make Y3K compatility (year > 2070) easy!
|
||
|
*/
|
||
|
mc146818_get_time(t);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cmos_set_time(struct device *dev, struct rtc_time *t)
|
||
|
{
|
||
|
/* REVISIT: set the "century" register if available
|
||
|
*
|
||
|
* NOTE: this ignores the issue whereby updating the seconds
|
||
|
* takes effect exactly 500ms after we write the register.
|
||
|
* (Also queueing and other delays before we get this far.)
|
||
|
*/
|
||
|
return mc146818_set_time(t);
|
||
|
}
|
||
|
|
||
|
static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
unsigned char rtc_control;
|
||
|
|
||
|
if (!is_valid_irq(cmos->irq))
|
||
|
return -EIO;
|
||
|
|
||
|
/* Basic alarms only support hour, minute, and seconds fields.
|
||
|
* Some also support day and month, for alarms up to a year in
|
||
|
* the future.
|
||
|
*/
|
||
|
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
|
||
|
t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
|
||
|
t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
|
||
|
|
||
|
if (cmos->day_alrm) {
|
||
|
/* ignore upper bits on readback per ACPI spec */
|
||
|
t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
|
||
|
if (!t->time.tm_mday)
|
||
|
t->time.tm_mday = -1;
|
||
|
|
||
|
if (cmos->mon_alrm) {
|
||
|
t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
|
||
|
if (!t->time.tm_mon)
|
||
|
t->time.tm_mon = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||
|
if (((unsigned)t->time.tm_sec) < 0x60)
|
||
|
t->time.tm_sec = bcd2bin(t->time.tm_sec);
|
||
|
else
|
||
|
t->time.tm_sec = -1;
|
||
|
if (((unsigned)t->time.tm_min) < 0x60)
|
||
|
t->time.tm_min = bcd2bin(t->time.tm_min);
|
||
|
else
|
||
|
t->time.tm_min = -1;
|
||
|
if (((unsigned)t->time.tm_hour) < 0x24)
|
||
|
t->time.tm_hour = bcd2bin(t->time.tm_hour);
|
||
|
else
|
||
|
t->time.tm_hour = -1;
|
||
|
|
||
|
if (cmos->day_alrm) {
|
||
|
if (((unsigned)t->time.tm_mday) <= 0x31)
|
||
|
t->time.tm_mday = bcd2bin(t->time.tm_mday);
|
||
|
else
|
||
|
t->time.tm_mday = -1;
|
||
|
|
||
|
if (cmos->mon_alrm) {
|
||
|
if (((unsigned)t->time.tm_mon) <= 0x12)
|
||
|
t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
|
||
|
else
|
||
|
t->time.tm_mon = -1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
t->enabled = !!(rtc_control & RTC_AIE);
|
||
|
t->pending = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
|
||
|
{
|
||
|
unsigned char rtc_intr;
|
||
|
|
||
|
/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
|
||
|
* allegedly some older rtcs need that to handle irqs properly
|
||
|
*/
|
||
|
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
|
||
|
|
||
|
if (is_hpet_enabled())
|
||
|
return;
|
||
|
|
||
|
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
|
||
|
if (is_intr(rtc_intr))
|
||
|
rtc_update_irq(cmos->rtc, 1, rtc_intr);
|
||
|
}
|
||
|
|
||
|
static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
|
||
|
{
|
||
|
unsigned char rtc_control;
|
||
|
|
||
|
/* flush any pending IRQ status, notably for update irqs,
|
||
|
* before we enable new IRQs
|
||
|
*/
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
cmos_checkintr(cmos, rtc_control);
|
||
|
|
||
|
rtc_control |= mask;
|
||
|
CMOS_WRITE(rtc_control, RTC_CONTROL);
|
||
|
hpet_set_rtc_irq_bit(mask);
|
||
|
|
||
|
cmos_checkintr(cmos, rtc_control);
|
||
|
}
|
||
|
|
||
|
static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
|
||
|
{
|
||
|
unsigned char rtc_control;
|
||
|
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
rtc_control &= ~mask;
|
||
|
CMOS_WRITE(rtc_control, RTC_CONTROL);
|
||
|
hpet_mask_rtc_irq_bit(mask);
|
||
|
|
||
|
cmos_checkintr(cmos, rtc_control);
|
||
|
}
|
||
|
|
||
|
static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
struct rtc_time now;
|
||
|
|
||
|
cmos_read_time(dev, &now);
|
||
|
|
||
|
if (!cmos->day_alrm) {
|
||
|
time64_t t_max_date;
|
||
|
time64_t t_alrm;
|
||
|
|
||
|
t_max_date = rtc_tm_to_time64(&now);
|
||
|
t_max_date += 24 * 60 * 60 - 1;
|
||
|
t_alrm = rtc_tm_to_time64(&t->time);
|
||
|
if (t_alrm > t_max_date) {
|
||
|
dev_err(dev,
|
||
|
"Alarms can be up to one day in the future\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
} else if (!cmos->mon_alrm) {
|
||
|
struct rtc_time max_date = now;
|
||
|
time64_t t_max_date;
|
||
|
time64_t t_alrm;
|
||
|
int max_mday;
|
||
|
|
||
|
if (max_date.tm_mon == 11) {
|
||
|
max_date.tm_mon = 0;
|
||
|
max_date.tm_year += 1;
|
||
|
} else {
|
||
|
max_date.tm_mon += 1;
|
||
|
}
|
||
|
max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
|
||
|
if (max_date.tm_mday > max_mday)
|
||
|
max_date.tm_mday = max_mday;
|
||
|
|
||
|
t_max_date = rtc_tm_to_time64(&max_date);
|
||
|
t_max_date -= 1;
|
||
|
t_alrm = rtc_tm_to_time64(&t->time);
|
||
|
if (t_alrm > t_max_date) {
|
||
|
dev_err(dev,
|
||
|
"Alarms can be up to one month in the future\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
} else {
|
||
|
struct rtc_time max_date = now;
|
||
|
time64_t t_max_date;
|
||
|
time64_t t_alrm;
|
||
|
int max_mday;
|
||
|
|
||
|
max_date.tm_year += 1;
|
||
|
max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
|
||
|
if (max_date.tm_mday > max_mday)
|
||
|
max_date.tm_mday = max_mday;
|
||
|
|
||
|
t_max_date = rtc_tm_to_time64(&max_date);
|
||
|
t_max_date -= 1;
|
||
|
t_alrm = rtc_tm_to_time64(&t->time);
|
||
|
if (t_alrm > t_max_date) {
|
||
|
dev_err(dev,
|
||
|
"Alarms can be up to one year in the future\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
unsigned char mon, mday, hrs, min, sec, rtc_control;
|
||
|
int ret;
|
||
|
|
||
|
if (!is_valid_irq(cmos->irq))
|
||
|
return -EIO;
|
||
|
|
||
|
ret = cmos_validate_alarm(dev, t);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
mon = t->time.tm_mon + 1;
|
||
|
mday = t->time.tm_mday;
|
||
|
hrs = t->time.tm_hour;
|
||
|
min = t->time.tm_min;
|
||
|
sec = t->time.tm_sec;
|
||
|
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
||
|
/* Writing 0xff means "don't care" or "match all". */
|
||
|
mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
|
||
|
mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
|
||
|
hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
|
||
|
min = (min < 60) ? bin2bcd(min) : 0xff;
|
||
|
sec = (sec < 60) ? bin2bcd(sec) : 0xff;
|
||
|
}
|
||
|
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
|
||
|
/* next rtc irq must not be from previous alarm setting */
|
||
|
cmos_irq_disable(cmos, RTC_AIE);
|
||
|
|
||
|
/* update alarm */
|
||
|
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
|
||
|
CMOS_WRITE(min, RTC_MINUTES_ALARM);
|
||
|
CMOS_WRITE(sec, RTC_SECONDS_ALARM);
|
||
|
|
||
|
/* the system may support an "enhanced" alarm */
|
||
|
if (cmos->day_alrm) {
|
||
|
CMOS_WRITE(mday, cmos->day_alrm);
|
||
|
if (cmos->mon_alrm)
|
||
|
CMOS_WRITE(mon, cmos->mon_alrm);
|
||
|
}
|
||
|
|
||
|
/* FIXME the HPET alarm glue currently ignores day_alrm
|
||
|
* and mon_alrm ...
|
||
|
*/
|
||
|
hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
|
||
|
|
||
|
if (t->enabled)
|
||
|
cmos_irq_enable(cmos, RTC_AIE);
|
||
|
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
cmos->alarm_expires = rtc_tm_to_time64(&t->time);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (!is_valid_irq(cmos->irq))
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&rtc_lock, flags);
|
||
|
|
||
|
if (enabled)
|
||
|
cmos_irq_enable(cmos, RTC_AIE);
|
||
|
else
|
||
|
cmos_irq_disable(cmos, RTC_AIE);
|
||
|
|
||
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
|
||
|
|
||
|
static int cmos_procfs(struct device *dev, struct seq_file *seq)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
unsigned char rtc_control, valid;
|
||
|
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
valid = CMOS_READ(RTC_VALID);
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
/* NOTE: at least ICH6 reports battery status using a different
|
||
|
* (non-RTC) bit; and SQWE is ignored on many current systems.
|
||
|
*/
|
||
|
seq_printf(seq,
|
||
|
"periodic_IRQ\t: %s\n"
|
||
|
"update_IRQ\t: %s\n"
|
||
|
"HPET_emulated\t: %s\n"
|
||
|
// "square_wave\t: %s\n"
|
||
|
"BCD\t\t: %s\n"
|
||
|
"DST_enable\t: %s\n"
|
||
|
"periodic_freq\t: %d\n"
|
||
|
"batt_status\t: %s\n",
|
||
|
(rtc_control & RTC_PIE) ? "yes" : "no",
|
||
|
(rtc_control & RTC_UIE) ? "yes" : "no",
|
||
|
is_hpet_enabled() ? "yes" : "no",
|
||
|
// (rtc_control & RTC_SQWE) ? "yes" : "no",
|
||
|
(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
|
||
|
(rtc_control & RTC_DST_EN) ? "yes" : "no",
|
||
|
cmos->rtc->irq_freq,
|
||
|
(valid & RTC_VRT) ? "okay" : "dead");
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
#define cmos_procfs NULL
|
||
|
#endif
|
||
|
|
||
|
static const struct rtc_class_ops cmos_rtc_ops = {
|
||
|
.read_time = cmos_read_time,
|
||
|
.set_time = cmos_set_time,
|
||
|
.read_alarm = cmos_read_alarm,
|
||
|
.set_alarm = cmos_set_alarm,
|
||
|
.proc = cmos_procfs,
|
||
|
.alarm_irq_enable = cmos_alarm_irq_enable,
|
||
|
};
|
||
|
|
||
|
/*----------------------------------------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* All these chips have at least 64 bytes of address space, shared by
|
||
|
* RTC registers and NVRAM. Most of those bytes of NVRAM are used
|
||
|
* by boot firmware. Modern chips have 128 or 256 bytes.
|
||
|
*/
|
||
|
|
||
|
#define NVRAM_OFFSET (RTC_REG_D + 1)
|
||
|
|
||
|
static ssize_t
|
||
|
cmos_nvram_read(struct file *filp, struct kobject *kobj,
|
||
|
struct bin_attribute *attr,
|
||
|
char *buf, loff_t off, size_t count)
|
||
|
{
|
||
|
int retval;
|
||
|
|
||
|
off += NVRAM_OFFSET;
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
for (retval = 0; count; count--, off++, retval++) {
|
||
|
if (off < 128)
|
||
|
*buf++ = CMOS_READ(off);
|
||
|
else if (can_bank2)
|
||
|
*buf++ = cmos_read_bank2(off);
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
cmos_nvram_write(struct file *filp, struct kobject *kobj,
|
||
|
struct bin_attribute *attr,
|
||
|
char *buf, loff_t off, size_t count)
|
||
|
{
|
||
|
struct cmos_rtc *cmos;
|
||
|
int retval;
|
||
|
|
||
|
cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
|
||
|
|
||
|
/* NOTE: on at least PCs and Ataris, the boot firmware uses a
|
||
|
* checksum on part of the NVRAM data. That's currently ignored
|
||
|
* here. If userspace is smart enough to know what fields of
|
||
|
* NVRAM to update, updating checksums is also part of its job.
|
||
|
*/
|
||
|
off += NVRAM_OFFSET;
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
for (retval = 0; count; count--, off++, retval++) {
|
||
|
/* don't trash RTC registers */
|
||
|
if (off == cmos->day_alrm
|
||
|
|| off == cmos->mon_alrm
|
||
|
|| off == cmos->century)
|
||
|
buf++;
|
||
|
else if (off < 128)
|
||
|
CMOS_WRITE(*buf++, off);
|
||
|
else if (can_bank2)
|
||
|
cmos_write_bank2(*buf++, off);
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static struct bin_attribute nvram = {
|
||
|
.attr = {
|
||
|
.name = "nvram",
|
||
|
.mode = S_IRUGO | S_IWUSR,
|
||
|
},
|
||
|
|
||
|
.read = cmos_nvram_read,
|
||
|
.write = cmos_nvram_write,
|
||
|
/* size gets set up later */
|
||
|
};
|
||
|
|
||
|
/*----------------------------------------------------------------*/
|
||
|
|
||
|
static struct cmos_rtc cmos_rtc;
|
||
|
|
||
|
static irqreturn_t cmos_interrupt(int irq, void *p)
|
||
|
{
|
||
|
u8 irqstat;
|
||
|
u8 rtc_control;
|
||
|
|
||
|
spin_lock(&rtc_lock);
|
||
|
|
||
|
/* When the HPET interrupt handler calls us, the interrupt
|
||
|
* status is passed as arg1 instead of the irq number. But
|
||
|
* always clear irq status, even when HPET is in the way.
|
||
|
*
|
||
|
* Note that HPET and RTC are almost certainly out of phase,
|
||
|
* giving different IRQ status ...
|
||
|
*/
|
||
|
irqstat = CMOS_READ(RTC_INTR_FLAGS);
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
if (is_hpet_enabled())
|
||
|
irqstat = (unsigned long)irq & 0xF0;
|
||
|
|
||
|
/* If we were suspended, RTC_CONTROL may not be accurate since the
|
||
|
* bios may have cleared it.
|
||
|
*/
|
||
|
if (!cmos_rtc.suspend_ctrl)
|
||
|
irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
|
||
|
else
|
||
|
irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
|
||
|
|
||
|
/* All Linux RTC alarms should be treated as if they were oneshot.
|
||
|
* Similar code may be needed in system wakeup paths, in case the
|
||
|
* alarm woke the system.
|
||
|
*/
|
||
|
if (irqstat & RTC_AIE) {
|
||
|
cmos_rtc.suspend_ctrl &= ~RTC_AIE;
|
||
|
rtc_control &= ~RTC_AIE;
|
||
|
CMOS_WRITE(rtc_control, RTC_CONTROL);
|
||
|
hpet_mask_rtc_irq_bit(RTC_AIE);
|
||
|
CMOS_READ(RTC_INTR_FLAGS);
|
||
|
}
|
||
|
spin_unlock(&rtc_lock);
|
||
|
|
||
|
if (is_intr(irqstat)) {
|
||
|
rtc_update_irq(p, 1, irqstat);
|
||
|
return IRQ_HANDLED;
|
||
|
} else
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PNP
|
||
|
#define INITSECTION
|
||
|
|
||
|
#else
|
||
|
#define INITSECTION __init
|
||
|
#endif
|
||
|
|
||
|
static int INITSECTION
|
||
|
cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
|
||
|
{
|
||
|
struct cmos_rtc_board_info *info = dev_get_platdata(dev);
|
||
|
int retval = 0;
|
||
|
unsigned char rtc_control;
|
||
|
unsigned address_space;
|
||
|
u32 flags = 0;
|
||
|
|
||
|
/* there can be only one ... */
|
||
|
if (cmos_rtc.dev)
|
||
|
return -EBUSY;
|
||
|
|
||
|
if (!ports)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
|
||
|
*
|
||
|
* REVISIT non-x86 systems may instead use memory space resources
|
||
|
* (needing ioremap etc), not i/o space resources like this ...
|
||
|
*/
|
||
|
if (RTC_IOMAPPED)
|
||
|
ports = request_region(ports->start, resource_size(ports),
|
||
|
driver_name);
|
||
|
else
|
||
|
ports = request_mem_region(ports->start, resource_size(ports),
|
||
|
driver_name);
|
||
|
if (!ports) {
|
||
|
dev_dbg(dev, "i/o registers already in use\n");
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
cmos_rtc.irq = rtc_irq;
|
||
|
cmos_rtc.iomem = ports;
|
||
|
|
||
|
/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
|
||
|
* driver did, but don't reject unknown configs. Old hardware
|
||
|
* won't address 128 bytes. Newer chips have multiple banks,
|
||
|
* though they may not be listed in one I/O resource.
|
||
|
*/
|
||
|
#if defined(CONFIG_ATARI)
|
||
|
address_space = 64;
|
||
|
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
|
||
|
|| defined(__sparc__) || defined(__mips__) \
|
||
|
|| defined(__powerpc__) || defined(CONFIG_MN10300)
|
||
|
address_space = 128;
|
||
|
#else
|
||
|
#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
|
||
|
address_space = 128;
|
||
|
#endif
|
||
|
if (can_bank2 && ports->end > (ports->start + 1))
|
||
|
address_space = 256;
|
||
|
|
||
|
/* For ACPI systems extension info comes from the FADT. On others,
|
||
|
* board specific setup provides it as appropriate. Systems where
|
||
|
* the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
|
||
|
* some almost-clones) can provide hooks to make that behave.
|
||
|
*
|
||
|
* Note that ACPI doesn't preclude putting these registers into
|
||
|
* "extended" areas of the chip, including some that we won't yet
|
||
|
* expect CMOS_READ and friends to handle.
|
||
|
*/
|
||
|
if (info) {
|
||
|
if (info->flags)
|
||
|
flags = info->flags;
|
||
|
if (info->address_space)
|
||
|
address_space = info->address_space;
|
||
|
|
||
|
if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
|
||
|
cmos_rtc.day_alrm = info->rtc_day_alarm;
|
||
|
if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
|
||
|
cmos_rtc.mon_alrm = info->rtc_mon_alarm;
|
||
|
if (info->rtc_century && info->rtc_century < 128)
|
||
|
cmos_rtc.century = info->rtc_century;
|
||
|
|
||
|
if (info->wake_on && info->wake_off) {
|
||
|
cmos_rtc.wake_on = info->wake_on;
|
||
|
cmos_rtc.wake_off = info->wake_off;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cmos_rtc.dev = dev;
|
||
|
dev_set_drvdata(dev, &cmos_rtc);
|
||
|
|
||
|
cmos_rtc.rtc = rtc_device_register(driver_name, dev,
|
||
|
&cmos_rtc_ops, THIS_MODULE);
|
||
|
if (IS_ERR(cmos_rtc.rtc)) {
|
||
|
retval = PTR_ERR(cmos_rtc.rtc);
|
||
|
goto cleanup0;
|
||
|
}
|
||
|
|
||
|
rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
|
||
|
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
|
||
|
if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
|
||
|
/* force periodic irq to CMOS reset default of 1024Hz;
|
||
|
*
|
||
|
* REVISIT it's been reported that at least one x86_64 ALI
|
||
|
* mobo doesn't use 32KHz here ... for portability we might
|
||
|
* need to do something about other clock frequencies.
|
||
|
*/
|
||
|
cmos_rtc.rtc->irq_freq = 1024;
|
||
|
hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
|
||
|
CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
|
||
|
}
|
||
|
|
||
|
/* disable irqs */
|
||
|
if (is_valid_irq(rtc_irq))
|
||
|
cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
|
||
|
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
|
||
|
dev_warn(dev, "only 24-hr supported\n");
|
||
|
retval = -ENXIO;
|
||
|
goto cleanup1;
|
||
|
}
|
||
|
|
||
|
hpet_rtc_timer_init();
|
||
|
|
||
|
if (is_valid_irq(rtc_irq)) {
|
||
|
irq_handler_t rtc_cmos_int_handler;
|
||
|
|
||
|
if (is_hpet_enabled()) {
|
||
|
rtc_cmos_int_handler = hpet_rtc_interrupt;
|
||
|
retval = hpet_register_irq_handler(cmos_interrupt);
|
||
|
if (retval) {
|
||
|
hpet_mask_rtc_irq_bit(RTC_IRQMASK);
|
||
|
dev_warn(dev, "hpet_register_irq_handler "
|
||
|
" failed in rtc_init().");
|
||
|
goto cleanup1;
|
||
|
}
|
||
|
} else
|
||
|
rtc_cmos_int_handler = cmos_interrupt;
|
||
|
|
||
|
retval = request_irq(rtc_irq, rtc_cmos_int_handler,
|
||
|
IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
|
||
|
cmos_rtc.rtc);
|
||
|
if (retval < 0) {
|
||
|
dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
|
||
|
goto cleanup1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* export at least the first block of NVRAM */
|
||
|
nvram.size = address_space - NVRAM_OFFSET;
|
||
|
retval = sysfs_create_bin_file(&dev->kobj, &nvram);
|
||
|
if (retval < 0) {
|
||
|
dev_dbg(dev, "can't create nvram file? %d\n", retval);
|
||
|
goto cleanup2;
|
||
|
}
|
||
|
|
||
|
dev_info(dev, "%s%s, %zd bytes nvram%s\n",
|
||
|
!is_valid_irq(rtc_irq) ? "no alarms" :
|
||
|
cmos_rtc.mon_alrm ? "alarms up to one year" :
|
||
|
cmos_rtc.day_alrm ? "alarms up to one month" :
|
||
|
"alarms up to one day",
|
||
|
cmos_rtc.century ? ", y3k" : "",
|
||
|
nvram.size,
|
||
|
is_hpet_enabled() ? ", hpet irqs" : "");
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
cleanup2:
|
||
|
if (is_valid_irq(rtc_irq))
|
||
|
free_irq(rtc_irq, cmos_rtc.rtc);
|
||
|
cleanup1:
|
||
|
cmos_rtc.dev = NULL;
|
||
|
rtc_device_unregister(cmos_rtc.rtc);
|
||
|
cleanup0:
|
||
|
if (RTC_IOMAPPED)
|
||
|
release_region(ports->start, resource_size(ports));
|
||
|
else
|
||
|
release_mem_region(ports->start, resource_size(ports));
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static void cmos_do_shutdown(int rtc_irq)
|
||
|
{
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
if (is_valid_irq(rtc_irq))
|
||
|
cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
}
|
||
|
|
||
|
static void cmos_do_remove(struct device *dev)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
struct resource *ports;
|
||
|
|
||
|
cmos_do_shutdown(cmos->irq);
|
||
|
|
||
|
sysfs_remove_bin_file(&dev->kobj, &nvram);
|
||
|
|
||
|
if (is_valid_irq(cmos->irq)) {
|
||
|
free_irq(cmos->irq, cmos->rtc);
|
||
|
hpet_unregister_irq_handler(cmos_interrupt);
|
||
|
}
|
||
|
|
||
|
rtc_device_unregister(cmos->rtc);
|
||
|
cmos->rtc = NULL;
|
||
|
|
||
|
ports = cmos->iomem;
|
||
|
if (RTC_IOMAPPED)
|
||
|
release_region(ports->start, resource_size(ports));
|
||
|
else
|
||
|
release_mem_region(ports->start, resource_size(ports));
|
||
|
cmos->iomem = NULL;
|
||
|
|
||
|
cmos->dev = NULL;
|
||
|
}
|
||
|
|
||
|
static int cmos_aie_poweroff(struct device *dev)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
struct rtc_time now;
|
||
|
time64_t t_now;
|
||
|
int retval = 0;
|
||
|
unsigned char rtc_control;
|
||
|
|
||
|
if (!cmos->alarm_expires)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
/* We only care about the situation where AIE is disabled. */
|
||
|
if (rtc_control & RTC_AIE)
|
||
|
return -EBUSY;
|
||
|
|
||
|
cmos_read_time(dev, &now);
|
||
|
t_now = rtc_tm_to_time64(&now);
|
||
|
|
||
|
/*
|
||
|
* When enabling "RTC wake-up" in BIOS setup, the machine reboots
|
||
|
* automatically right after shutdown on some buggy boxes.
|
||
|
* This automatic rebooting issue won't happen when the alarm
|
||
|
* time is larger than now+1 seconds.
|
||
|
*
|
||
|
* If the alarm time is equal to now+1 seconds, the issue can be
|
||
|
* prevented by cancelling the alarm.
|
||
|
*/
|
||
|
if (cmos->alarm_expires == t_now + 1) {
|
||
|
struct rtc_wkalrm alarm;
|
||
|
|
||
|
/* Cancel the AIE timer by configuring the past time. */
|
||
|
rtc_time64_to_tm(t_now - 1, &alarm.time);
|
||
|
alarm.enabled = 0;
|
||
|
retval = cmos_set_alarm(dev, &alarm);
|
||
|
} else if (cmos->alarm_expires > t_now + 1) {
|
||
|
retval = -EBUSY;
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static int cmos_suspend(struct device *dev)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
unsigned char tmp;
|
||
|
|
||
|
/* only the alarm might be a wakeup event source */
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
|
||
|
if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
|
||
|
unsigned char mask;
|
||
|
|
||
|
if (device_may_wakeup(dev))
|
||
|
mask = RTC_IRQMASK & ~RTC_AIE;
|
||
|
else
|
||
|
mask = RTC_IRQMASK;
|
||
|
tmp &= ~mask;
|
||
|
CMOS_WRITE(tmp, RTC_CONTROL);
|
||
|
hpet_mask_rtc_irq_bit(mask);
|
||
|
|
||
|
cmos_checkintr(cmos, tmp);
|
||
|
}
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
if (tmp & RTC_AIE) {
|
||
|
cmos->enabled_wake = 1;
|
||
|
if (cmos->wake_on)
|
||
|
cmos->wake_on(dev);
|
||
|
else
|
||
|
enable_irq_wake(cmos->irq);
|
||
|
}
|
||
|
|
||
|
cmos_read_alarm(dev, &cmos->saved_wkalrm);
|
||
|
|
||
|
dev_dbg(dev, "suspend%s, ctrl %02x\n",
|
||
|
(tmp & RTC_AIE) ? ", alarm may wake" : "",
|
||
|
tmp);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
|
||
|
* after a detour through G3 "mechanical off", although the ACPI spec
|
||
|
* says wakeup should only work from G1/S4 "hibernate". To most users,
|
||
|
* distinctions between S4 and S5 are pointless. So when the hardware
|
||
|
* allows, don't draw that distinction.
|
||
|
*/
|
||
|
static inline int cmos_poweroff(struct device *dev)
|
||
|
{
|
||
|
if (!IS_ENABLED(CONFIG_PM))
|
||
|
return -ENOSYS;
|
||
|
|
||
|
return cmos_suspend(dev);
|
||
|
}
|
||
|
|
||
|
static void cmos_check_wkalrm(struct device *dev)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
struct rtc_wkalrm current_alarm;
|
||
|
time64_t t_current_expires;
|
||
|
time64_t t_saved_expires;
|
||
|
|
||
|
cmos_read_alarm(dev, ¤t_alarm);
|
||
|
t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
|
||
|
t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
|
||
|
if (t_current_expires != t_saved_expires ||
|
||
|
cmos->saved_wkalrm.enabled != current_alarm.enabled) {
|
||
|
cmos_set_alarm(dev, &cmos->saved_wkalrm);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cmos_check_acpi_rtc_status(struct device *dev,
|
||
|
unsigned char *rtc_control);
|
||
|
|
||
|
static int __maybe_unused cmos_resume(struct device *dev)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
unsigned char tmp;
|
||
|
|
||
|
if (cmos->enabled_wake) {
|
||
|
if (cmos->wake_off)
|
||
|
cmos->wake_off(dev);
|
||
|
else
|
||
|
disable_irq_wake(cmos->irq);
|
||
|
cmos->enabled_wake = 0;
|
||
|
}
|
||
|
|
||
|
/* The BIOS might have changed the alarm, restore it */
|
||
|
cmos_check_wkalrm(dev);
|
||
|
|
||
|
spin_lock_irq(&rtc_lock);
|
||
|
tmp = cmos->suspend_ctrl;
|
||
|
cmos->suspend_ctrl = 0;
|
||
|
/* re-enable any irqs previously active */
|
||
|
if (tmp & RTC_IRQMASK) {
|
||
|
unsigned char mask;
|
||
|
|
||
|
if (device_may_wakeup(dev))
|
||
|
hpet_rtc_timer_init();
|
||
|
|
||
|
do {
|
||
|
CMOS_WRITE(tmp, RTC_CONTROL);
|
||
|
hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
|
||
|
|
||
|
mask = CMOS_READ(RTC_INTR_FLAGS);
|
||
|
mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
|
||
|
if (!is_hpet_enabled() || !is_intr(mask))
|
||
|
break;
|
||
|
|
||
|
/* force one-shot behavior if HPET blocked
|
||
|
* the wake alarm's irq
|
||
|
*/
|
||
|
rtc_update_irq(cmos->rtc, 1, mask);
|
||
|
tmp &= ~RTC_AIE;
|
||
|
hpet_mask_rtc_irq_bit(RTC_AIE);
|
||
|
} while (mask & RTC_AIE);
|
||
|
|
||
|
if (tmp & RTC_AIE)
|
||
|
cmos_check_acpi_rtc_status(dev, &tmp);
|
||
|
}
|
||
|
spin_unlock_irq(&rtc_lock);
|
||
|
|
||
|
dev_dbg(dev, "resume, ctrl %02x\n", tmp);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
|
||
|
|
||
|
/*----------------------------------------------------------------*/
|
||
|
|
||
|
/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
|
||
|
* ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
|
||
|
* probably list them in similar PNPBIOS tables; so PNP is more common.
|
||
|
*
|
||
|
* We don't use legacy "poke at the hardware" probing. Ancient PCs that
|
||
|
* predate even PNPBIOS should set up platform_bus devices.
|
||
|
*/
|
||
|
|
||
|
#ifdef CONFIG_ACPI
|
||
|
|
||
|
#include <linux/acpi.h>
|
||
|
|
||
|
static u32 rtc_handler(void *context)
|
||
|
{
|
||
|
struct device *dev = context;
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
unsigned char rtc_control = 0;
|
||
|
unsigned char rtc_intr;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&rtc_lock, flags);
|
||
|
if (cmos_rtc.suspend_ctrl)
|
||
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
||
|
if (rtc_control & RTC_AIE) {
|
||
|
cmos_rtc.suspend_ctrl &= ~RTC_AIE;
|
||
|
CMOS_WRITE(rtc_control, RTC_CONTROL);
|
||
|
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
|
||
|
rtc_update_irq(cmos->rtc, 1, rtc_intr);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
||
|
|
||
|
pm_wakeup_hard_event(dev);
|
||
|
acpi_clear_event(ACPI_EVENT_RTC);
|
||
|
acpi_disable_event(ACPI_EVENT_RTC, 0);
|
||
|
return ACPI_INTERRUPT_HANDLED;
|
||
|
}
|
||
|
|
||
|
static inline void rtc_wake_setup(struct device *dev)
|
||
|
{
|
||
|
acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
|
||
|
/*
|
||
|
* After the RTC handler is installed, the Fixed_RTC event should
|
||
|
* be disabled. Only when the RTC alarm is set will it be enabled.
|
||
|
*/
|
||
|
acpi_clear_event(ACPI_EVENT_RTC);
|
||
|
acpi_disable_event(ACPI_EVENT_RTC, 0);
|
||
|
}
|
||
|
|
||
|
static void rtc_wake_on(struct device *dev)
|
||
|
{
|
||
|
acpi_clear_event(ACPI_EVENT_RTC);
|
||
|
acpi_enable_event(ACPI_EVENT_RTC, 0);
|
||
|
}
|
||
|
|
||
|
static void rtc_wake_off(struct device *dev)
|
||
|
{
|
||
|
acpi_disable_event(ACPI_EVENT_RTC, 0);
|
||
|
}
|
||
|
|
||
|
/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
|
||
|
* its device node and pass extra config data. This helps its driver use
|
||
|
* capabilities that the now-obsolete mc146818 didn't have, and informs it
|
||
|
* that this board's RTC is wakeup-capable (per ACPI spec).
|
||
|
*/
|
||
|
static struct cmos_rtc_board_info acpi_rtc_info;
|
||
|
|
||
|
static void cmos_wake_setup(struct device *dev)
|
||
|
{
|
||
|
if (acpi_disabled)
|
||
|
return;
|
||
|
|
||
|
rtc_wake_setup(dev);
|
||
|
acpi_rtc_info.wake_on = rtc_wake_on;
|
||
|
acpi_rtc_info.wake_off = rtc_wake_off;
|
||
|
|
||
|
/* workaround bug in some ACPI tables */
|
||
|
if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
|
||
|
dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
|
||
|
acpi_gbl_FADT.month_alarm);
|
||
|
acpi_gbl_FADT.month_alarm = 0;
|
||
|
}
|
||
|
|
||
|
acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
|
||
|
acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
|
||
|
acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
|
||
|
|
||
|
/* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
|
||
|
if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
|
||
|
dev_info(dev, "RTC can wake from S4\n");
|
||
|
|
||
|
dev->platform_data = &acpi_rtc_info;
|
||
|
|
||
|
/* RTC always wakes from S1/S2/S3, and often S4/STD */
|
||
|
device_init_wakeup(dev, 1);
|
||
|
}
|
||
|
|
||
|
static void cmos_check_acpi_rtc_status(struct device *dev,
|
||
|
unsigned char *rtc_control)
|
||
|
{
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
acpi_event_status rtc_status;
|
||
|
acpi_status status;
|
||
|
|
||
|
if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
|
||
|
return;
|
||
|
|
||
|
status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
dev_err(dev, "Could not get RTC status\n");
|
||
|
} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
|
||
|
unsigned char mask;
|
||
|
*rtc_control &= ~RTC_AIE;
|
||
|
CMOS_WRITE(*rtc_control, RTC_CONTROL);
|
||
|
mask = CMOS_READ(RTC_INTR_FLAGS);
|
||
|
rtc_update_irq(cmos->rtc, 1, mask);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
static void cmos_wake_setup(struct device *dev)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static void cmos_check_acpi_rtc_status(struct device *dev,
|
||
|
unsigned char *rtc_control)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_PNP
|
||
|
|
||
|
#include <linux/pnp.h>
|
||
|
|
||
|
static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
|
||
|
{
|
||
|
cmos_wake_setup(&pnp->dev);
|
||
|
|
||
|
if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
|
||
|
unsigned int irq = 0;
|
||
|
#ifdef CONFIG_X86
|
||
|
/* Some machines contain a PNP entry for the RTC, but
|
||
|
* don't define the IRQ. It should always be safe to
|
||
|
* hardcode it on systems with a legacy PIC.
|
||
|
*/
|
||
|
if (nr_legacy_irqs())
|
||
|
irq = 8;
|
||
|
#endif
|
||
|
return cmos_do_probe(&pnp->dev,
|
||
|
pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
|
||
|
} else {
|
||
|
return cmos_do_probe(&pnp->dev,
|
||
|
pnp_get_resource(pnp, IORESOURCE_IO, 0),
|
||
|
pnp_irq(pnp, 0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cmos_pnp_remove(struct pnp_dev *pnp)
|
||
|
{
|
||
|
cmos_do_remove(&pnp->dev);
|
||
|
}
|
||
|
|
||
|
static void cmos_pnp_shutdown(struct pnp_dev *pnp)
|
||
|
{
|
||
|
struct device *dev = &pnp->dev;
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
|
||
|
if (system_state == SYSTEM_POWER_OFF) {
|
||
|
int retval = cmos_poweroff(dev);
|
||
|
|
||
|
if (cmos_aie_poweroff(dev) < 0 && !retval)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cmos_do_shutdown(cmos->irq);
|
||
|
}
|
||
|
|
||
|
static const struct pnp_device_id rtc_ids[] = {
|
||
|
{ .id = "PNP0b00", },
|
||
|
{ .id = "PNP0b01", },
|
||
|
{ .id = "PNP0b02", },
|
||
|
{ },
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(pnp, rtc_ids);
|
||
|
|
||
|
static struct pnp_driver cmos_pnp_driver = {
|
||
|
.name = (char *) driver_name,
|
||
|
.id_table = rtc_ids,
|
||
|
.probe = cmos_pnp_probe,
|
||
|
.remove = cmos_pnp_remove,
|
||
|
.shutdown = cmos_pnp_shutdown,
|
||
|
|
||
|
/* flag ensures resume() gets called, and stops syslog spam */
|
||
|
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
|
||
|
.driver = {
|
||
|
.pm = &cmos_pm_ops,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
#endif /* CONFIG_PNP */
|
||
|
|
||
|
#ifdef CONFIG_OF
|
||
|
static const struct of_device_id of_cmos_match[] = {
|
||
|
{
|
||
|
.compatible = "motorola,mc146818",
|
||
|
},
|
||
|
{ },
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, of_cmos_match);
|
||
|
|
||
|
static __init void cmos_of_init(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device_node *node = pdev->dev.of_node;
|
||
|
struct rtc_time time;
|
||
|
int ret;
|
||
|
const __be32 *val;
|
||
|
|
||
|
if (!node)
|
||
|
return;
|
||
|
|
||
|
val = of_get_property(node, "ctrl-reg", NULL);
|
||
|
if (val)
|
||
|
CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
|
||
|
|
||
|
val = of_get_property(node, "freq-reg", NULL);
|
||
|
if (val)
|
||
|
CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
|
||
|
|
||
|
cmos_read_time(&pdev->dev, &time);
|
||
|
ret = rtc_valid_tm(&time);
|
||
|
if (ret) {
|
||
|
struct rtc_time def_time = {
|
||
|
.tm_year = 1,
|
||
|
.tm_mday = 1,
|
||
|
};
|
||
|
cmos_set_time(&pdev->dev, &def_time);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
static inline void cmos_of_init(struct platform_device *pdev) {}
|
||
|
#endif
|
||
|
/*----------------------------------------------------------------*/
|
||
|
|
||
|
/* Platform setup should have set up an RTC device, when PNP is
|
||
|
* unavailable ... this could happen even on (older) PCs.
|
||
|
*/
|
||
|
|
||
|
static int __init cmos_platform_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct resource *resource;
|
||
|
int irq;
|
||
|
|
||
|
cmos_of_init(pdev);
|
||
|
cmos_wake_setup(&pdev->dev);
|
||
|
|
||
|
if (RTC_IOMAPPED)
|
||
|
resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
|
||
|
else
|
||
|
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
irq = platform_get_irq(pdev, 0);
|
||
|
if (irq < 0)
|
||
|
irq = -1;
|
||
|
|
||
|
return cmos_do_probe(&pdev->dev, resource, irq);
|
||
|
}
|
||
|
|
||
|
static int cmos_platform_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
cmos_do_remove(&pdev->dev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void cmos_platform_shutdown(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
||
|
|
||
|
if (system_state == SYSTEM_POWER_OFF) {
|
||
|
int retval = cmos_poweroff(dev);
|
||
|
|
||
|
if (cmos_aie_poweroff(dev) < 0 && !retval)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cmos_do_shutdown(cmos->irq);
|
||
|
}
|
||
|
|
||
|
/* work with hotplug and coldplug */
|
||
|
MODULE_ALIAS("platform:rtc_cmos");
|
||
|
|
||
|
static struct platform_driver cmos_platform_driver = {
|
||
|
.remove = cmos_platform_remove,
|
||
|
.shutdown = cmos_platform_shutdown,
|
||
|
.driver = {
|
||
|
.name = driver_name,
|
||
|
.pm = &cmos_pm_ops,
|
||
|
.of_match_table = of_match_ptr(of_cmos_match),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#ifdef CONFIG_PNP
|
||
|
static bool pnp_driver_registered;
|
||
|
#endif
|
||
|
static bool platform_driver_registered;
|
||
|
|
||
|
static int __init cmos_init(void)
|
||
|
{
|
||
|
int retval = 0;
|
||
|
|
||
|
#ifdef CONFIG_PNP
|
||
|
retval = pnp_register_driver(&cmos_pnp_driver);
|
||
|
if (retval == 0)
|
||
|
pnp_driver_registered = true;
|
||
|
#endif
|
||
|
|
||
|
if (!cmos_rtc.dev) {
|
||
|
retval = platform_driver_probe(&cmos_platform_driver,
|
||
|
cmos_platform_probe);
|
||
|
if (retval == 0)
|
||
|
platform_driver_registered = true;
|
||
|
}
|
||
|
|
||
|
if (retval == 0)
|
||
|
return 0;
|
||
|
|
||
|
#ifdef CONFIG_PNP
|
||
|
if (pnp_driver_registered)
|
||
|
pnp_unregister_driver(&cmos_pnp_driver);
|
||
|
#endif
|
||
|
return retval;
|
||
|
}
|
||
|
module_init(cmos_init);
|
||
|
|
||
|
static void __exit cmos_exit(void)
|
||
|
{
|
||
|
#ifdef CONFIG_PNP
|
||
|
if (pnp_driver_registered)
|
||
|
pnp_unregister_driver(&cmos_pnp_driver);
|
||
|
#endif
|
||
|
if (platform_driver_registered)
|
||
|
platform_driver_unregister(&cmos_platform_driver);
|
||
|
}
|
||
|
module_exit(cmos_exit);
|
||
|
|
||
|
|
||
|
MODULE_AUTHOR("David Brownell");
|
||
|
MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
|
||
|
MODULE_LICENSE("GPL");
|