338 lines
9.3 KiB
C
338 lines
9.3 KiB
C
|
/*
|
||
|
* Remote Processor Framework Elf loader
|
||
|
*
|
||
|
* Copyright (C) 2011 Texas Instruments, Inc.
|
||
|
* Copyright (C) 2011 Google, Inc.
|
||
|
*
|
||
|
* Ohad Ben-Cohen <ohad@wizery.com>
|
||
|
* Brian Swetland <swetland@google.com>
|
||
|
* Mark Grosen <mgrosen@ti.com>
|
||
|
* Fernando Guzman Lugo <fernando.lugo@ti.com>
|
||
|
* Suman Anna <s-anna@ti.com>
|
||
|
* Robert Tivy <rtivy@ti.com>
|
||
|
* Armando Uribe De Leon <x0095078@ti.com>
|
||
|
* Sjur Brændeland <sjur.brandeland@stericsson.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* version 2 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/firmware.h>
|
||
|
#include <linux/remoteproc.h>
|
||
|
#include <linux/elf.h>
|
||
|
|
||
|
#include "remoteproc_internal.h"
|
||
|
|
||
|
/**
|
||
|
* rproc_elf_sanity_check() - Sanity Check ELF firmware image
|
||
|
* @rproc: the remote processor handle
|
||
|
* @fw: the ELF firmware image
|
||
|
*
|
||
|
* Make sure this fw image is sane.
|
||
|
*/
|
||
|
static int
|
||
|
rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw)
|
||
|
{
|
||
|
const char *name = rproc->firmware;
|
||
|
struct device *dev = &rproc->dev;
|
||
|
struct elf32_hdr *ehdr;
|
||
|
char class;
|
||
|
|
||
|
if (!fw) {
|
||
|
dev_err(dev, "failed to load %s\n", name);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (fw->size < sizeof(struct elf32_hdr)) {
|
||
|
dev_err(dev, "Image is too small\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
ehdr = (struct elf32_hdr *)fw->data;
|
||
|
|
||
|
/* We only support ELF32 at this point */
|
||
|
class = ehdr->e_ident[EI_CLASS];
|
||
|
if (class != ELFCLASS32) {
|
||
|
dev_err(dev, "Unsupported class: %d\n", class);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* We assume the firmware has the same endianness as the host */
|
||
|
# ifdef __LITTLE_ENDIAN
|
||
|
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
|
||
|
# else /* BIG ENDIAN */
|
||
|
if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
|
||
|
# endif
|
||
|
dev_err(dev, "Unsupported firmware endianness\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
|
||
|
dev_err(dev, "Image is too small\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
|
||
|
dev_err(dev, "Image is corrupted (bad magic)\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (ehdr->e_phnum == 0) {
|
||
|
dev_err(dev, "No loadable segments\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (ehdr->e_phoff > fw->size) {
|
||
|
dev_err(dev, "Firmware size is too small\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* rproc_elf_get_boot_addr() - Get rproc's boot address.
|
||
|
* @rproc: the remote processor handle
|
||
|
* @fw: the ELF firmware image
|
||
|
*
|
||
|
* This function returns the entry point address of the ELF
|
||
|
* image.
|
||
|
*
|
||
|
* Note that the boot address is not a configurable property of all remote
|
||
|
* processors. Some will always boot at a specific hard-coded address.
|
||
|
*/
|
||
|
static
|
||
|
u32 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw)
|
||
|
{
|
||
|
struct elf32_hdr *ehdr = (struct elf32_hdr *)fw->data;
|
||
|
|
||
|
return ehdr->e_entry;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* rproc_elf_load_segments() - load firmware segments to memory
|
||
|
* @rproc: remote processor which will be booted using these fw segments
|
||
|
* @fw: the ELF firmware image
|
||
|
*
|
||
|
* This function loads the firmware segments to memory, where the remote
|
||
|
* processor expects them.
|
||
|
*
|
||
|
* Some remote processors will expect their code and data to be placed
|
||
|
* in specific device addresses, and can't have them dynamically assigned.
|
||
|
*
|
||
|
* We currently support only those kind of remote processors, and expect
|
||
|
* the program header's paddr member to contain those addresses. We then go
|
||
|
* through the physically contiguous "carveout" memory regions which we
|
||
|
* allocated (and mapped) earlier on behalf of the remote processor,
|
||
|
* and "translate" device address to kernel addresses, so we can copy the
|
||
|
* segments where they are expected.
|
||
|
*
|
||
|
* Currently we only support remote processors that required carveout
|
||
|
* allocations and got them mapped onto their iommus. Some processors
|
||
|
* might be different: they might not have iommus, and would prefer to
|
||
|
* directly allocate memory for every segment/resource. This is not yet
|
||
|
* supported, though.
|
||
|
*/
|
||
|
static int
|
||
|
rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
|
||
|
{
|
||
|
struct device *dev = &rproc->dev;
|
||
|
struct elf32_hdr *ehdr;
|
||
|
struct elf32_phdr *phdr;
|
||
|
int i, ret = 0;
|
||
|
const u8 *elf_data = fw->data;
|
||
|
|
||
|
ehdr = (struct elf32_hdr *)elf_data;
|
||
|
phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
|
||
|
|
||
|
/* go through the available ELF segments */
|
||
|
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
|
||
|
u32 da = phdr->p_paddr;
|
||
|
u32 memsz = phdr->p_memsz;
|
||
|
u32 filesz = phdr->p_filesz;
|
||
|
u32 offset = phdr->p_offset;
|
||
|
void *ptr;
|
||
|
|
||
|
if (phdr->p_type != PT_LOAD)
|
||
|
continue;
|
||
|
|
||
|
dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
|
||
|
phdr->p_type, da, memsz, filesz);
|
||
|
|
||
|
if (filesz > memsz) {
|
||
|
dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
|
||
|
filesz, memsz);
|
||
|
ret = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (offset + filesz > fw->size) {
|
||
|
dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
|
||
|
offset + filesz, fw->size);
|
||
|
ret = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* grab the kernel address for this device address */
|
||
|
ptr = rproc_da_to_va(rproc, da, memsz);
|
||
|
if (!ptr) {
|
||
|
dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
|
||
|
ret = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* put the segment where the remote processor expects it */
|
||
|
if (phdr->p_filesz)
|
||
|
memcpy(ptr, elf_data + phdr->p_offset, filesz);
|
||
|
|
||
|
/*
|
||
|
* Zero out remaining memory for this segment.
|
||
|
*
|
||
|
* This isn't strictly required since dma_alloc_coherent already
|
||
|
* did this for us. albeit harmless, we may consider removing
|
||
|
* this.
|
||
|
*/
|
||
|
if (memsz > filesz)
|
||
|
memset(ptr + filesz, 0, memsz - filesz);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static struct elf32_shdr *
|
||
|
find_table(struct device *dev, struct elf32_hdr *ehdr, size_t fw_size)
|
||
|
{
|
||
|
struct elf32_shdr *shdr;
|
||
|
int i;
|
||
|
const char *name_table;
|
||
|
struct resource_table *table = NULL;
|
||
|
const u8 *elf_data = (void *)ehdr;
|
||
|
|
||
|
/* look for the resource table and handle it */
|
||
|
shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
|
||
|
name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
|
||
|
|
||
|
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
|
||
|
u32 size = shdr->sh_size;
|
||
|
u32 offset = shdr->sh_offset;
|
||
|
|
||
|
if (strcmp(name_table + shdr->sh_name, ".resource_table"))
|
||
|
continue;
|
||
|
|
||
|
table = (struct resource_table *)(elf_data + offset);
|
||
|
|
||
|
/* make sure we have the entire table */
|
||
|
if (offset + size > fw_size || offset + size < size) {
|
||
|
dev_err(dev, "resource table truncated\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* make sure table has at least the header */
|
||
|
if (sizeof(struct resource_table) > size) {
|
||
|
dev_err(dev, "header-less resource table\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* we don't support any version beyond the first */
|
||
|
if (table->ver != 1) {
|
||
|
dev_err(dev, "unsupported fw ver: %d\n", table->ver);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* make sure reserved bytes are zeroes */
|
||
|
if (table->reserved[0] || table->reserved[1]) {
|
||
|
dev_err(dev, "non zero reserved bytes\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* make sure the offsets array isn't truncated */
|
||
|
if (table->num * sizeof(table->offset[0]) +
|
||
|
sizeof(struct resource_table) > size) {
|
||
|
dev_err(dev, "resource table incomplete\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return shdr;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* rproc_elf_find_rsc_table() - find the resource table
|
||
|
* @rproc: the rproc handle
|
||
|
* @fw: the ELF firmware image
|
||
|
* @tablesz: place holder for providing back the table size
|
||
|
*
|
||
|
* This function finds the resource table inside the remote processor's
|
||
|
* firmware. It is used both upon the registration of @rproc (in order
|
||
|
* to look for and register the supported virito devices), and when the
|
||
|
* @rproc is booted.
|
||
|
*
|
||
|
* Returns the pointer to the resource table if it is found, and write its
|
||
|
* size into @tablesz. If a valid table isn't found, NULL is returned
|
||
|
* (and @tablesz isn't set).
|
||
|
*/
|
||
|
static struct resource_table *
|
||
|
rproc_elf_find_rsc_table(struct rproc *rproc, const struct firmware *fw,
|
||
|
int *tablesz)
|
||
|
{
|
||
|
struct elf32_hdr *ehdr;
|
||
|
struct elf32_shdr *shdr;
|
||
|
struct device *dev = &rproc->dev;
|
||
|
struct resource_table *table = NULL;
|
||
|
const u8 *elf_data = fw->data;
|
||
|
|
||
|
ehdr = (struct elf32_hdr *)elf_data;
|
||
|
|
||
|
shdr = find_table(dev, ehdr, fw->size);
|
||
|
if (!shdr)
|
||
|
return NULL;
|
||
|
|
||
|
table = (struct resource_table *)(elf_data + shdr->sh_offset);
|
||
|
*tablesz = shdr->sh_size;
|
||
|
|
||
|
return table;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* rproc_elf_find_loaded_rsc_table() - find the loaded resource table
|
||
|
* @rproc: the rproc handle
|
||
|
* @fw: the ELF firmware image
|
||
|
*
|
||
|
* This function finds the location of the loaded resource table. Don't
|
||
|
* call this function if the table wasn't loaded yet - it's a bug if you do.
|
||
|
*
|
||
|
* Returns the pointer to the resource table if it is found or NULL otherwise.
|
||
|
* If the table wasn't loaded yet the result is unspecified.
|
||
|
*/
|
||
|
static struct resource_table *
|
||
|
rproc_elf_find_loaded_rsc_table(struct rproc *rproc, const struct firmware *fw)
|
||
|
{
|
||
|
struct elf32_hdr *ehdr = (struct elf32_hdr *)fw->data;
|
||
|
struct elf32_shdr *shdr;
|
||
|
|
||
|
shdr = find_table(&rproc->dev, ehdr, fw->size);
|
||
|
if (!shdr)
|
||
|
return NULL;
|
||
|
|
||
|
return rproc_da_to_va(rproc, shdr->sh_addr, shdr->sh_size);
|
||
|
}
|
||
|
|
||
|
const struct rproc_fw_ops rproc_elf_fw_ops = {
|
||
|
.load = rproc_elf_load_segments,
|
||
|
.find_rsc_table = rproc_elf_find_rsc_table,
|
||
|
.find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table,
|
||
|
.sanity_check = rproc_elf_sanity_check,
|
||
|
.get_boot_addr = rproc_elf_get_boot_addr
|
||
|
};
|