3315 lines
84 KiB
C
3315 lines
84 KiB
C
|
/****************************************************************************
|
||
|
* Driver for Solarflare network controllers and boards
|
||
|
* Copyright 2005-2006 Fen Systems Ltd.
|
||
|
* Copyright 2005-2013 Solarflare Communications Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 as published
|
||
|
* by the Free Software Foundation, incorporated herein by reference.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <linux/etherdevice.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/notifier.h>
|
||
|
#include <linux/ip.h>
|
||
|
#include <linux/tcp.h>
|
||
|
#include <linux/in.h>
|
||
|
#include <linux/ethtool.h>
|
||
|
#include <linux/topology.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/aer.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include "net_driver.h"
|
||
|
#include "efx.h"
|
||
|
#include "nic.h"
|
||
|
#include "selftest.h"
|
||
|
|
||
|
#include "workarounds.h"
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Type name strings
|
||
|
*
|
||
|
**************************************************************************
|
||
|
*/
|
||
|
|
||
|
/* Loopback mode names (see LOOPBACK_MODE()) */
|
||
|
const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
|
||
|
const char *const ef4_loopback_mode_names[] = {
|
||
|
[LOOPBACK_NONE] = "NONE",
|
||
|
[LOOPBACK_DATA] = "DATAPATH",
|
||
|
[LOOPBACK_GMAC] = "GMAC",
|
||
|
[LOOPBACK_XGMII] = "XGMII",
|
||
|
[LOOPBACK_XGXS] = "XGXS",
|
||
|
[LOOPBACK_XAUI] = "XAUI",
|
||
|
[LOOPBACK_GMII] = "GMII",
|
||
|
[LOOPBACK_SGMII] = "SGMII",
|
||
|
[LOOPBACK_XGBR] = "XGBR",
|
||
|
[LOOPBACK_XFI] = "XFI",
|
||
|
[LOOPBACK_XAUI_FAR] = "XAUI_FAR",
|
||
|
[LOOPBACK_GMII_FAR] = "GMII_FAR",
|
||
|
[LOOPBACK_SGMII_FAR] = "SGMII_FAR",
|
||
|
[LOOPBACK_XFI_FAR] = "XFI_FAR",
|
||
|
[LOOPBACK_GPHY] = "GPHY",
|
||
|
[LOOPBACK_PHYXS] = "PHYXS",
|
||
|
[LOOPBACK_PCS] = "PCS",
|
||
|
[LOOPBACK_PMAPMD] = "PMA/PMD",
|
||
|
[LOOPBACK_XPORT] = "XPORT",
|
||
|
[LOOPBACK_XGMII_WS] = "XGMII_WS",
|
||
|
[LOOPBACK_XAUI_WS] = "XAUI_WS",
|
||
|
[LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
|
||
|
[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
|
||
|
[LOOPBACK_GMII_WS] = "GMII_WS",
|
||
|
[LOOPBACK_XFI_WS] = "XFI_WS",
|
||
|
[LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
|
||
|
[LOOPBACK_PHYXS_WS] = "PHYXS_WS",
|
||
|
};
|
||
|
|
||
|
const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
|
||
|
const char *const ef4_reset_type_names[] = {
|
||
|
[RESET_TYPE_INVISIBLE] = "INVISIBLE",
|
||
|
[RESET_TYPE_ALL] = "ALL",
|
||
|
[RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
|
||
|
[RESET_TYPE_WORLD] = "WORLD",
|
||
|
[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
|
||
|
[RESET_TYPE_DATAPATH] = "DATAPATH",
|
||
|
[RESET_TYPE_DISABLE] = "DISABLE",
|
||
|
[RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
|
||
|
[RESET_TYPE_INT_ERROR] = "INT_ERROR",
|
||
|
[RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
|
||
|
[RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
|
||
|
[RESET_TYPE_TX_SKIP] = "TX_SKIP",
|
||
|
};
|
||
|
|
||
|
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
|
||
|
* queued onto this work queue. This is not a per-nic work queue, because
|
||
|
* ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
|
||
|
*/
|
||
|
static struct workqueue_struct *reset_workqueue;
|
||
|
|
||
|
/* How often and how many times to poll for a reset while waiting for a
|
||
|
* BIST that another function started to complete.
|
||
|
*/
|
||
|
#define BIST_WAIT_DELAY_MS 100
|
||
|
#define BIST_WAIT_DELAY_COUNT 100
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Configurable values
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* Use separate channels for TX and RX events
|
||
|
*
|
||
|
* Set this to 1 to use separate channels for TX and RX. It allows us
|
||
|
* to control interrupt affinity separately for TX and RX.
|
||
|
*
|
||
|
* This is only used in MSI-X interrupt mode
|
||
|
*/
|
||
|
bool ef4_separate_tx_channels;
|
||
|
module_param(ef4_separate_tx_channels, bool, 0444);
|
||
|
MODULE_PARM_DESC(ef4_separate_tx_channels,
|
||
|
"Use separate channels for TX and RX");
|
||
|
|
||
|
/* This is the weight assigned to each of the (per-channel) virtual
|
||
|
* NAPI devices.
|
||
|
*/
|
||
|
static int napi_weight = 64;
|
||
|
|
||
|
/* This is the time (in jiffies) between invocations of the hardware
|
||
|
* monitor.
|
||
|
* On Falcon-based NICs, this will:
|
||
|
* - Check the on-board hardware monitor;
|
||
|
* - Poll the link state and reconfigure the hardware as necessary.
|
||
|
* On Siena-based NICs for power systems with EEH support, this will give EEH a
|
||
|
* chance to start.
|
||
|
*/
|
||
|
static unsigned int ef4_monitor_interval = 1 * HZ;
|
||
|
|
||
|
/* Initial interrupt moderation settings. They can be modified after
|
||
|
* module load with ethtool.
|
||
|
*
|
||
|
* The default for RX should strike a balance between increasing the
|
||
|
* round-trip latency and reducing overhead.
|
||
|
*/
|
||
|
static unsigned int rx_irq_mod_usec = 60;
|
||
|
|
||
|
/* Initial interrupt moderation settings. They can be modified after
|
||
|
* module load with ethtool.
|
||
|
*
|
||
|
* This default is chosen to ensure that a 10G link does not go idle
|
||
|
* while a TX queue is stopped after it has become full. A queue is
|
||
|
* restarted when it drops below half full. The time this takes (assuming
|
||
|
* worst case 3 descriptors per packet and 1024 descriptors) is
|
||
|
* 512 / 3 * 1.2 = 205 usec.
|
||
|
*/
|
||
|
static unsigned int tx_irq_mod_usec = 150;
|
||
|
|
||
|
/* This is the first interrupt mode to try out of:
|
||
|
* 0 => MSI-X
|
||
|
* 1 => MSI
|
||
|
* 2 => legacy
|
||
|
*/
|
||
|
static unsigned int interrupt_mode;
|
||
|
|
||
|
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
|
||
|
* i.e. the number of CPUs among which we may distribute simultaneous
|
||
|
* interrupt handling.
|
||
|
*
|
||
|
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
|
||
|
* The default (0) means to assign an interrupt to each core.
|
||
|
*/
|
||
|
static unsigned int rss_cpus;
|
||
|
module_param(rss_cpus, uint, 0444);
|
||
|
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
|
||
|
|
||
|
static bool phy_flash_cfg;
|
||
|
module_param(phy_flash_cfg, bool, 0644);
|
||
|
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
|
||
|
|
||
|
static unsigned irq_adapt_low_thresh = 8000;
|
||
|
module_param(irq_adapt_low_thresh, uint, 0644);
|
||
|
MODULE_PARM_DESC(irq_adapt_low_thresh,
|
||
|
"Threshold score for reducing IRQ moderation");
|
||
|
|
||
|
static unsigned irq_adapt_high_thresh = 16000;
|
||
|
module_param(irq_adapt_high_thresh, uint, 0644);
|
||
|
MODULE_PARM_DESC(irq_adapt_high_thresh,
|
||
|
"Threshold score for increasing IRQ moderation");
|
||
|
|
||
|
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
|
||
|
NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
|
||
|
NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
|
||
|
NETIF_MSG_TX_ERR | NETIF_MSG_HW);
|
||
|
module_param(debug, uint, 0);
|
||
|
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Utility functions and prototypes
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
|
||
|
static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
|
||
|
static void ef4_remove_channel(struct ef4_channel *channel);
|
||
|
static void ef4_remove_channels(struct ef4_nic *efx);
|
||
|
static const struct ef4_channel_type ef4_default_channel_type;
|
||
|
static void ef4_remove_port(struct ef4_nic *efx);
|
||
|
static void ef4_init_napi_channel(struct ef4_channel *channel);
|
||
|
static void ef4_fini_napi(struct ef4_nic *efx);
|
||
|
static void ef4_fini_napi_channel(struct ef4_channel *channel);
|
||
|
static void ef4_fini_struct(struct ef4_nic *efx);
|
||
|
static void ef4_start_all(struct ef4_nic *efx);
|
||
|
static void ef4_stop_all(struct ef4_nic *efx);
|
||
|
|
||
|
#define EF4_ASSERT_RESET_SERIALISED(efx) \
|
||
|
do { \
|
||
|
if ((efx->state == STATE_READY) || \
|
||
|
(efx->state == STATE_RECOVERY) || \
|
||
|
(efx->state == STATE_DISABLED)) \
|
||
|
ASSERT_RTNL(); \
|
||
|
} while (0)
|
||
|
|
||
|
static int ef4_check_disabled(struct ef4_nic *efx)
|
||
|
{
|
||
|
if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"device is disabled due to earlier errors\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Event queue processing
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/* Process channel's event queue
|
||
|
*
|
||
|
* This function is responsible for processing the event queue of a
|
||
|
* single channel. The caller must guarantee that this function will
|
||
|
* never be concurrently called more than once on the same channel,
|
||
|
* though different channels may be being processed concurrently.
|
||
|
*/
|
||
|
static int ef4_process_channel(struct ef4_channel *channel, int budget)
|
||
|
{
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
int spent;
|
||
|
|
||
|
if (unlikely(!channel->enabled))
|
||
|
return 0;
|
||
|
|
||
|
ef4_for_each_channel_tx_queue(tx_queue, channel) {
|
||
|
tx_queue->pkts_compl = 0;
|
||
|
tx_queue->bytes_compl = 0;
|
||
|
}
|
||
|
|
||
|
spent = ef4_nic_process_eventq(channel, budget);
|
||
|
if (spent && ef4_channel_has_rx_queue(channel)) {
|
||
|
struct ef4_rx_queue *rx_queue =
|
||
|
ef4_channel_get_rx_queue(channel);
|
||
|
|
||
|
ef4_rx_flush_packet(channel);
|
||
|
ef4_fast_push_rx_descriptors(rx_queue, true);
|
||
|
}
|
||
|
|
||
|
/* Update BQL */
|
||
|
ef4_for_each_channel_tx_queue(tx_queue, channel) {
|
||
|
if (tx_queue->bytes_compl) {
|
||
|
netdev_tx_completed_queue(tx_queue->core_txq,
|
||
|
tx_queue->pkts_compl, tx_queue->bytes_compl);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return spent;
|
||
|
}
|
||
|
|
||
|
/* NAPI poll handler
|
||
|
*
|
||
|
* NAPI guarantees serialisation of polls of the same device, which
|
||
|
* provides the guarantee required by ef4_process_channel().
|
||
|
*/
|
||
|
static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
|
||
|
{
|
||
|
int step = efx->irq_mod_step_us;
|
||
|
|
||
|
if (channel->irq_mod_score < irq_adapt_low_thresh) {
|
||
|
if (channel->irq_moderation_us > step) {
|
||
|
channel->irq_moderation_us -= step;
|
||
|
efx->type->push_irq_moderation(channel);
|
||
|
}
|
||
|
} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
|
||
|
if (channel->irq_moderation_us <
|
||
|
efx->irq_rx_moderation_us) {
|
||
|
channel->irq_moderation_us += step;
|
||
|
efx->type->push_irq_moderation(channel);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
channel->irq_count = 0;
|
||
|
channel->irq_mod_score = 0;
|
||
|
}
|
||
|
|
||
|
static int ef4_poll(struct napi_struct *napi, int budget)
|
||
|
{
|
||
|
struct ef4_channel *channel =
|
||
|
container_of(napi, struct ef4_channel, napi_str);
|
||
|
struct ef4_nic *efx = channel->efx;
|
||
|
int spent;
|
||
|
|
||
|
netif_vdbg(efx, intr, efx->net_dev,
|
||
|
"channel %d NAPI poll executing on CPU %d\n",
|
||
|
channel->channel, raw_smp_processor_id());
|
||
|
|
||
|
spent = ef4_process_channel(channel, budget);
|
||
|
|
||
|
if (spent < budget) {
|
||
|
if (ef4_channel_has_rx_queue(channel) &&
|
||
|
efx->irq_rx_adaptive &&
|
||
|
unlikely(++channel->irq_count == 1000)) {
|
||
|
ef4_update_irq_mod(efx, channel);
|
||
|
}
|
||
|
|
||
|
ef4_filter_rfs_expire(channel);
|
||
|
|
||
|
/* There is no race here; although napi_disable() will
|
||
|
* only wait for napi_complete(), this isn't a problem
|
||
|
* since ef4_nic_eventq_read_ack() will have no effect if
|
||
|
* interrupts have already been disabled.
|
||
|
*/
|
||
|
napi_complete_done(napi, spent);
|
||
|
ef4_nic_eventq_read_ack(channel);
|
||
|
}
|
||
|
|
||
|
return spent;
|
||
|
}
|
||
|
|
||
|
/* Create event queue
|
||
|
* Event queue memory allocations are done only once. If the channel
|
||
|
* is reset, the memory buffer will be reused; this guards against
|
||
|
* errors during channel reset and also simplifies interrupt handling.
|
||
|
*/
|
||
|
static int ef4_probe_eventq(struct ef4_channel *channel)
|
||
|
{
|
||
|
struct ef4_nic *efx = channel->efx;
|
||
|
unsigned long entries;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"chan %d create event queue\n", channel->channel);
|
||
|
|
||
|
/* Build an event queue with room for one event per tx and rx buffer,
|
||
|
* plus some extra for link state events and MCDI completions. */
|
||
|
entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
|
||
|
EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
|
||
|
channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
|
||
|
|
||
|
return ef4_nic_probe_eventq(channel);
|
||
|
}
|
||
|
|
||
|
/* Prepare channel's event queue */
|
||
|
static int ef4_init_eventq(struct ef4_channel *channel)
|
||
|
{
|
||
|
struct ef4_nic *efx = channel->efx;
|
||
|
int rc;
|
||
|
|
||
|
EF4_WARN_ON_PARANOID(channel->eventq_init);
|
||
|
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"chan %d init event queue\n", channel->channel);
|
||
|
|
||
|
rc = ef4_nic_init_eventq(channel);
|
||
|
if (rc == 0) {
|
||
|
efx->type->push_irq_moderation(channel);
|
||
|
channel->eventq_read_ptr = 0;
|
||
|
channel->eventq_init = true;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Enable event queue processing and NAPI */
|
||
|
void ef4_start_eventq(struct ef4_channel *channel)
|
||
|
{
|
||
|
netif_dbg(channel->efx, ifup, channel->efx->net_dev,
|
||
|
"chan %d start event queue\n", channel->channel);
|
||
|
|
||
|
/* Make sure the NAPI handler sees the enabled flag set */
|
||
|
channel->enabled = true;
|
||
|
smp_wmb();
|
||
|
|
||
|
napi_enable(&channel->napi_str);
|
||
|
ef4_nic_eventq_read_ack(channel);
|
||
|
}
|
||
|
|
||
|
/* Disable event queue processing and NAPI */
|
||
|
void ef4_stop_eventq(struct ef4_channel *channel)
|
||
|
{
|
||
|
if (!channel->enabled)
|
||
|
return;
|
||
|
|
||
|
napi_disable(&channel->napi_str);
|
||
|
channel->enabled = false;
|
||
|
}
|
||
|
|
||
|
static void ef4_fini_eventq(struct ef4_channel *channel)
|
||
|
{
|
||
|
if (!channel->eventq_init)
|
||
|
return;
|
||
|
|
||
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
||
|
"chan %d fini event queue\n", channel->channel);
|
||
|
|
||
|
ef4_nic_fini_eventq(channel);
|
||
|
channel->eventq_init = false;
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_eventq(struct ef4_channel *channel)
|
||
|
{
|
||
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
||
|
"chan %d remove event queue\n", channel->channel);
|
||
|
|
||
|
ef4_nic_remove_eventq(channel);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Channel handling
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/* Allocate and initialise a channel structure. */
|
||
|
static struct ef4_channel *
|
||
|
ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
struct ef4_rx_queue *rx_queue;
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
int j;
|
||
|
|
||
|
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
|
||
|
if (!channel)
|
||
|
return NULL;
|
||
|
|
||
|
channel->efx = efx;
|
||
|
channel->channel = i;
|
||
|
channel->type = &ef4_default_channel_type;
|
||
|
|
||
|
for (j = 0; j < EF4_TXQ_TYPES; j++) {
|
||
|
tx_queue = &channel->tx_queue[j];
|
||
|
tx_queue->efx = efx;
|
||
|
tx_queue->queue = i * EF4_TXQ_TYPES + j;
|
||
|
tx_queue->channel = channel;
|
||
|
}
|
||
|
|
||
|
rx_queue = &channel->rx_queue;
|
||
|
rx_queue->efx = efx;
|
||
|
setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill,
|
||
|
(unsigned long)rx_queue);
|
||
|
|
||
|
return channel;
|
||
|
}
|
||
|
|
||
|
/* Allocate and initialise a channel structure, copying parameters
|
||
|
* (but not resources) from an old channel structure.
|
||
|
*/
|
||
|
static struct ef4_channel *
|
||
|
ef4_copy_channel(const struct ef4_channel *old_channel)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
struct ef4_rx_queue *rx_queue;
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
int j;
|
||
|
|
||
|
channel = kmalloc(sizeof(*channel), GFP_KERNEL);
|
||
|
if (!channel)
|
||
|
return NULL;
|
||
|
|
||
|
*channel = *old_channel;
|
||
|
|
||
|
channel->napi_dev = NULL;
|
||
|
INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
|
||
|
channel->napi_str.napi_id = 0;
|
||
|
channel->napi_str.state = 0;
|
||
|
memset(&channel->eventq, 0, sizeof(channel->eventq));
|
||
|
|
||
|
for (j = 0; j < EF4_TXQ_TYPES; j++) {
|
||
|
tx_queue = &channel->tx_queue[j];
|
||
|
if (tx_queue->channel)
|
||
|
tx_queue->channel = channel;
|
||
|
tx_queue->buffer = NULL;
|
||
|
memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
|
||
|
}
|
||
|
|
||
|
rx_queue = &channel->rx_queue;
|
||
|
rx_queue->buffer = NULL;
|
||
|
memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
|
||
|
setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill,
|
||
|
(unsigned long)rx_queue);
|
||
|
|
||
|
return channel;
|
||
|
}
|
||
|
|
||
|
static int ef4_probe_channel(struct ef4_channel *channel)
|
||
|
{
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
struct ef4_rx_queue *rx_queue;
|
||
|
int rc;
|
||
|
|
||
|
netif_dbg(channel->efx, probe, channel->efx->net_dev,
|
||
|
"creating channel %d\n", channel->channel);
|
||
|
|
||
|
rc = channel->type->pre_probe(channel);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
rc = ef4_probe_eventq(channel);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
ef4_for_each_channel_tx_queue(tx_queue, channel) {
|
||
|
rc = ef4_probe_tx_queue(tx_queue);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
ef4_for_each_channel_rx_queue(rx_queue, channel) {
|
||
|
rc = ef4_probe_rx_queue(rx_queue);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
ef4_remove_channel(channel);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
|
||
|
{
|
||
|
struct ef4_nic *efx = channel->efx;
|
||
|
const char *type;
|
||
|
int number;
|
||
|
|
||
|
number = channel->channel;
|
||
|
if (efx->tx_channel_offset == 0) {
|
||
|
type = "";
|
||
|
} else if (channel->channel < efx->tx_channel_offset) {
|
||
|
type = "-rx";
|
||
|
} else {
|
||
|
type = "-tx";
|
||
|
number -= efx->tx_channel_offset;
|
||
|
}
|
||
|
snprintf(buf, len, "%s%s-%d", efx->name, type, number);
|
||
|
}
|
||
|
|
||
|
static void ef4_set_channel_names(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
channel->type->get_name(channel,
|
||
|
efx->msi_context[channel->channel].name,
|
||
|
sizeof(efx->msi_context[0].name));
|
||
|
}
|
||
|
|
||
|
static int ef4_probe_channels(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
int rc;
|
||
|
|
||
|
/* Restart special buffer allocation */
|
||
|
efx->next_buffer_table = 0;
|
||
|
|
||
|
/* Probe channels in reverse, so that any 'extra' channels
|
||
|
* use the start of the buffer table. This allows the traffic
|
||
|
* channels to be resized without moving them or wasting the
|
||
|
* entries before them.
|
||
|
*/
|
||
|
ef4_for_each_channel_rev(channel, efx) {
|
||
|
rc = ef4_probe_channel(channel);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"failed to create channel %d\n",
|
||
|
channel->channel);
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
ef4_set_channel_names(efx);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
ef4_remove_channels(efx);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Channels are shutdown and reinitialised whilst the NIC is running
|
||
|
* to propagate configuration changes (mtu, checksum offload), or
|
||
|
* to clear hardware error conditions
|
||
|
*/
|
||
|
static void ef4_start_datapath(struct ef4_nic *efx)
|
||
|
{
|
||
|
netdev_features_t old_features = efx->net_dev->features;
|
||
|
bool old_rx_scatter = efx->rx_scatter;
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
struct ef4_rx_queue *rx_queue;
|
||
|
struct ef4_channel *channel;
|
||
|
size_t rx_buf_len;
|
||
|
|
||
|
/* Calculate the rx buffer allocation parameters required to
|
||
|
* support the current MTU, including padding for header
|
||
|
* alignment and overruns.
|
||
|
*/
|
||
|
efx->rx_dma_len = (efx->rx_prefix_size +
|
||
|
EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
|
||
|
efx->type->rx_buffer_padding);
|
||
|
rx_buf_len = (sizeof(struct ef4_rx_page_state) +
|
||
|
efx->rx_ip_align + efx->rx_dma_len);
|
||
|
if (rx_buf_len <= PAGE_SIZE) {
|
||
|
efx->rx_scatter = efx->type->always_rx_scatter;
|
||
|
efx->rx_buffer_order = 0;
|
||
|
} else if (efx->type->can_rx_scatter) {
|
||
|
BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
|
||
|
BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
|
||
|
2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
|
||
|
EF4_RX_BUF_ALIGNMENT) >
|
||
|
PAGE_SIZE);
|
||
|
efx->rx_scatter = true;
|
||
|
efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
|
||
|
efx->rx_buffer_order = 0;
|
||
|
} else {
|
||
|
efx->rx_scatter = false;
|
||
|
efx->rx_buffer_order = get_order(rx_buf_len);
|
||
|
}
|
||
|
|
||
|
ef4_rx_config_page_split(efx);
|
||
|
if (efx->rx_buffer_order)
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"RX buf len=%u; page order=%u batch=%u\n",
|
||
|
efx->rx_dma_len, efx->rx_buffer_order,
|
||
|
efx->rx_pages_per_batch);
|
||
|
else
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"RX buf len=%u step=%u bpp=%u; page batch=%u\n",
|
||
|
efx->rx_dma_len, efx->rx_page_buf_step,
|
||
|
efx->rx_bufs_per_page, efx->rx_pages_per_batch);
|
||
|
|
||
|
/* Restore previously fixed features in hw_features and remove
|
||
|
* features which are fixed now
|
||
|
*/
|
||
|
efx->net_dev->hw_features |= efx->net_dev->features;
|
||
|
efx->net_dev->hw_features &= ~efx->fixed_features;
|
||
|
efx->net_dev->features |= efx->fixed_features;
|
||
|
if (efx->net_dev->features != old_features)
|
||
|
netdev_features_change(efx->net_dev);
|
||
|
|
||
|
/* RX filters may also have scatter-enabled flags */
|
||
|
if (efx->rx_scatter != old_rx_scatter)
|
||
|
efx->type->filter_update_rx_scatter(efx);
|
||
|
|
||
|
/* We must keep at least one descriptor in a TX ring empty.
|
||
|
* We could avoid this when the queue size does not exactly
|
||
|
* match the hardware ring size, but it's not that important.
|
||
|
* Therefore we stop the queue when one more skb might fill
|
||
|
* the ring completely. We wake it when half way back to
|
||
|
* empty.
|
||
|
*/
|
||
|
efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
|
||
|
efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
|
||
|
|
||
|
/* Initialise the channels */
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
ef4_for_each_channel_tx_queue(tx_queue, channel) {
|
||
|
ef4_init_tx_queue(tx_queue);
|
||
|
atomic_inc(&efx->active_queues);
|
||
|
}
|
||
|
|
||
|
ef4_for_each_channel_rx_queue(rx_queue, channel) {
|
||
|
ef4_init_rx_queue(rx_queue);
|
||
|
atomic_inc(&efx->active_queues);
|
||
|
ef4_stop_eventq(channel);
|
||
|
ef4_fast_push_rx_descriptors(rx_queue, false);
|
||
|
ef4_start_eventq(channel);
|
||
|
}
|
||
|
|
||
|
WARN_ON(channel->rx_pkt_n_frags);
|
||
|
}
|
||
|
|
||
|
if (netif_device_present(efx->net_dev))
|
||
|
netif_tx_wake_all_queues(efx->net_dev);
|
||
|
}
|
||
|
|
||
|
static void ef4_stop_datapath(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
struct ef4_rx_queue *rx_queue;
|
||
|
int rc;
|
||
|
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
BUG_ON(efx->port_enabled);
|
||
|
|
||
|
/* Stop RX refill */
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
ef4_for_each_channel_rx_queue(rx_queue, channel)
|
||
|
rx_queue->refill_enabled = false;
|
||
|
}
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
/* RX packet processing is pipelined, so wait for the
|
||
|
* NAPI handler to complete. At least event queue 0
|
||
|
* might be kept active by non-data events, so don't
|
||
|
* use napi_synchronize() but actually disable NAPI
|
||
|
* temporarily.
|
||
|
*/
|
||
|
if (ef4_channel_has_rx_queue(channel)) {
|
||
|
ef4_stop_eventq(channel);
|
||
|
ef4_start_eventq(channel);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rc = efx->type->fini_dmaq(efx);
|
||
|
if (rc && EF4_WORKAROUND_7803(efx)) {
|
||
|
/* Schedule a reset to recover from the flush failure. The
|
||
|
* descriptor caches reference memory we're about to free,
|
||
|
* but falcon_reconfigure_mac_wrapper() won't reconnect
|
||
|
* the MACs because of the pending reset.
|
||
|
*/
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"Resetting to recover from flush failure\n");
|
||
|
ef4_schedule_reset(efx, RESET_TYPE_ALL);
|
||
|
} else if (rc) {
|
||
|
netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
|
||
|
} else {
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"successfully flushed all queues\n");
|
||
|
}
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
ef4_for_each_channel_rx_queue(rx_queue, channel)
|
||
|
ef4_fini_rx_queue(rx_queue);
|
||
|
ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
|
||
|
ef4_fini_tx_queue(tx_queue);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_channel(struct ef4_channel *channel)
|
||
|
{
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
struct ef4_rx_queue *rx_queue;
|
||
|
|
||
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
||
|
"destroy chan %d\n", channel->channel);
|
||
|
|
||
|
ef4_for_each_channel_rx_queue(rx_queue, channel)
|
||
|
ef4_remove_rx_queue(rx_queue);
|
||
|
ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
|
||
|
ef4_remove_tx_queue(tx_queue);
|
||
|
ef4_remove_eventq(channel);
|
||
|
channel->type->post_remove(channel);
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_channels(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
ef4_remove_channel(channel);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
|
||
|
{
|
||
|
struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
|
||
|
u32 old_rxq_entries, old_txq_entries;
|
||
|
unsigned i, next_buffer_table = 0;
|
||
|
int rc, rc2;
|
||
|
|
||
|
rc = ef4_check_disabled(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
/* Not all channels should be reallocated. We must avoid
|
||
|
* reallocating their buffer table entries.
|
||
|
*/
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
struct ef4_rx_queue *rx_queue;
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
|
||
|
if (channel->type->copy)
|
||
|
continue;
|
||
|
next_buffer_table = max(next_buffer_table,
|
||
|
channel->eventq.index +
|
||
|
channel->eventq.entries);
|
||
|
ef4_for_each_channel_rx_queue(rx_queue, channel)
|
||
|
next_buffer_table = max(next_buffer_table,
|
||
|
rx_queue->rxd.index +
|
||
|
rx_queue->rxd.entries);
|
||
|
ef4_for_each_channel_tx_queue(tx_queue, channel)
|
||
|
next_buffer_table = max(next_buffer_table,
|
||
|
tx_queue->txd.index +
|
||
|
tx_queue->txd.entries);
|
||
|
}
|
||
|
|
||
|
ef4_device_detach_sync(efx);
|
||
|
ef4_stop_all(efx);
|
||
|
ef4_soft_disable_interrupts(efx);
|
||
|
|
||
|
/* Clone channels (where possible) */
|
||
|
memset(other_channel, 0, sizeof(other_channel));
|
||
|
for (i = 0; i < efx->n_channels; i++) {
|
||
|
channel = efx->channel[i];
|
||
|
if (channel->type->copy)
|
||
|
channel = channel->type->copy(channel);
|
||
|
if (!channel) {
|
||
|
rc = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
other_channel[i] = channel;
|
||
|
}
|
||
|
|
||
|
/* Swap entry counts and channel pointers */
|
||
|
old_rxq_entries = efx->rxq_entries;
|
||
|
old_txq_entries = efx->txq_entries;
|
||
|
efx->rxq_entries = rxq_entries;
|
||
|
efx->txq_entries = txq_entries;
|
||
|
for (i = 0; i < efx->n_channels; i++) {
|
||
|
channel = efx->channel[i];
|
||
|
efx->channel[i] = other_channel[i];
|
||
|
other_channel[i] = channel;
|
||
|
}
|
||
|
|
||
|
/* Restart buffer table allocation */
|
||
|
efx->next_buffer_table = next_buffer_table;
|
||
|
|
||
|
for (i = 0; i < efx->n_channels; i++) {
|
||
|
channel = efx->channel[i];
|
||
|
if (!channel->type->copy)
|
||
|
continue;
|
||
|
rc = ef4_probe_channel(channel);
|
||
|
if (rc)
|
||
|
goto rollback;
|
||
|
ef4_init_napi_channel(efx->channel[i]);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
/* Destroy unused channel structures */
|
||
|
for (i = 0; i < efx->n_channels; i++) {
|
||
|
channel = other_channel[i];
|
||
|
if (channel && channel->type->copy) {
|
||
|
ef4_fini_napi_channel(channel);
|
||
|
ef4_remove_channel(channel);
|
||
|
kfree(channel);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rc2 = ef4_soft_enable_interrupts(efx);
|
||
|
if (rc2) {
|
||
|
rc = rc ? rc : rc2;
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"unable to restart interrupts on channel reallocation\n");
|
||
|
ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
|
||
|
} else {
|
||
|
ef4_start_all(efx);
|
||
|
netif_device_attach(efx->net_dev);
|
||
|
}
|
||
|
return rc;
|
||
|
|
||
|
rollback:
|
||
|
/* Swap back */
|
||
|
efx->rxq_entries = old_rxq_entries;
|
||
|
efx->txq_entries = old_txq_entries;
|
||
|
for (i = 0; i < efx->n_channels; i++) {
|
||
|
channel = efx->channel[i];
|
||
|
efx->channel[i] = other_channel[i];
|
||
|
other_channel[i] = channel;
|
||
|
}
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
|
||
|
{
|
||
|
mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
|
||
|
}
|
||
|
|
||
|
static const struct ef4_channel_type ef4_default_channel_type = {
|
||
|
.pre_probe = ef4_channel_dummy_op_int,
|
||
|
.post_remove = ef4_channel_dummy_op_void,
|
||
|
.get_name = ef4_get_channel_name,
|
||
|
.copy = ef4_copy_channel,
|
||
|
.keep_eventq = false,
|
||
|
};
|
||
|
|
||
|
int ef4_channel_dummy_op_int(struct ef4_channel *channel)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void ef4_channel_dummy_op_void(struct ef4_channel *channel)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Port handling
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* This ensures that the kernel is kept informed (via
|
||
|
* netif_carrier_on/off) of the link status, and also maintains the
|
||
|
* link status's stop on the port's TX queue.
|
||
|
*/
|
||
|
void ef4_link_status_changed(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_link_state *link_state = &efx->link_state;
|
||
|
|
||
|
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
|
||
|
* that no events are triggered between unregister_netdev() and the
|
||
|
* driver unloading. A more general condition is that NETDEV_CHANGE
|
||
|
* can only be generated between NETDEV_UP and NETDEV_DOWN */
|
||
|
if (!netif_running(efx->net_dev))
|
||
|
return;
|
||
|
|
||
|
if (link_state->up != netif_carrier_ok(efx->net_dev)) {
|
||
|
efx->n_link_state_changes++;
|
||
|
|
||
|
if (link_state->up)
|
||
|
netif_carrier_on(efx->net_dev);
|
||
|
else
|
||
|
netif_carrier_off(efx->net_dev);
|
||
|
}
|
||
|
|
||
|
/* Status message for kernel log */
|
||
|
if (link_state->up)
|
||
|
netif_info(efx, link, efx->net_dev,
|
||
|
"link up at %uMbps %s-duplex (MTU %d)\n",
|
||
|
link_state->speed, link_state->fd ? "full" : "half",
|
||
|
efx->net_dev->mtu);
|
||
|
else
|
||
|
netif_info(efx, link, efx->net_dev, "link down\n");
|
||
|
}
|
||
|
|
||
|
void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
|
||
|
{
|
||
|
efx->link_advertising = advertising;
|
||
|
if (advertising) {
|
||
|
if (advertising & ADVERTISED_Pause)
|
||
|
efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
|
||
|
else
|
||
|
efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
|
||
|
if (advertising & ADVERTISED_Asym_Pause)
|
||
|
efx->wanted_fc ^= EF4_FC_TX;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
|
||
|
{
|
||
|
efx->wanted_fc = wanted_fc;
|
||
|
if (efx->link_advertising) {
|
||
|
if (wanted_fc & EF4_FC_RX)
|
||
|
efx->link_advertising |= (ADVERTISED_Pause |
|
||
|
ADVERTISED_Asym_Pause);
|
||
|
else
|
||
|
efx->link_advertising &= ~(ADVERTISED_Pause |
|
||
|
ADVERTISED_Asym_Pause);
|
||
|
if (wanted_fc & EF4_FC_TX)
|
||
|
efx->link_advertising ^= ADVERTISED_Asym_Pause;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ef4_fini_port(struct ef4_nic *efx);
|
||
|
|
||
|
/* We assume that efx->type->reconfigure_mac will always try to sync RX
|
||
|
* filters and therefore needs to read-lock the filter table against freeing
|
||
|
*/
|
||
|
void ef4_mac_reconfigure(struct ef4_nic *efx)
|
||
|
{
|
||
|
down_read(&efx->filter_sem);
|
||
|
efx->type->reconfigure_mac(efx);
|
||
|
up_read(&efx->filter_sem);
|
||
|
}
|
||
|
|
||
|
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
|
||
|
* the MAC appropriately. All other PHY configuration changes are pushed
|
||
|
* through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
|
||
|
* through ef4_monitor().
|
||
|
*
|
||
|
* Callers must hold the mac_lock
|
||
|
*/
|
||
|
int __ef4_reconfigure_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
enum ef4_phy_mode phy_mode;
|
||
|
int rc;
|
||
|
|
||
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
||
|
|
||
|
/* Disable PHY transmit in mac level loopbacks */
|
||
|
phy_mode = efx->phy_mode;
|
||
|
if (LOOPBACK_INTERNAL(efx))
|
||
|
efx->phy_mode |= PHY_MODE_TX_DISABLED;
|
||
|
else
|
||
|
efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
|
||
|
|
||
|
rc = efx->type->reconfigure_port(efx);
|
||
|
|
||
|
if (rc)
|
||
|
efx->phy_mode = phy_mode;
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
|
||
|
* disabled. */
|
||
|
int ef4_reconfigure_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
rc = __ef4_reconfigure_port(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Asynchronous work item for changing MAC promiscuity and multicast
|
||
|
* hash. Avoid a drain/rx_ingress enable by reconfiguring the current
|
||
|
* MAC directly. */
|
||
|
static void ef4_mac_work(struct work_struct *data)
|
||
|
{
|
||
|
struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
if (efx->port_enabled)
|
||
|
ef4_mac_reconfigure(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
}
|
||
|
|
||
|
static int ef4_probe_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev, "create port\n");
|
||
|
|
||
|
if (phy_flash_cfg)
|
||
|
efx->phy_mode = PHY_MODE_SPECIAL;
|
||
|
|
||
|
/* Connect up MAC/PHY operations table */
|
||
|
rc = efx->type->probe_port(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
/* Initialise MAC address to permanent address */
|
||
|
ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int ef4_init_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
netif_dbg(efx, drv, efx->net_dev, "init port\n");
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
|
||
|
rc = efx->phy_op->init(efx);
|
||
|
if (rc)
|
||
|
goto fail1;
|
||
|
|
||
|
efx->port_initialized = true;
|
||
|
|
||
|
/* Reconfigure the MAC before creating dma queues (required for
|
||
|
* Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
|
||
|
ef4_mac_reconfigure(efx);
|
||
|
|
||
|
/* Ensure the PHY advertises the correct flow control settings */
|
||
|
rc = efx->phy_op->reconfigure(efx);
|
||
|
if (rc && rc != -EPERM)
|
||
|
goto fail2;
|
||
|
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
return 0;
|
||
|
|
||
|
fail2:
|
||
|
efx->phy_op->fini(efx);
|
||
|
fail1:
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void ef4_start_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, ifup, efx->net_dev, "start port\n");
|
||
|
BUG_ON(efx->port_enabled);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
efx->port_enabled = true;
|
||
|
|
||
|
/* Ensure MAC ingress/egress is enabled */
|
||
|
ef4_mac_reconfigure(efx);
|
||
|
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
}
|
||
|
|
||
|
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
|
||
|
* and the async self-test, wait for them to finish and prevent them
|
||
|
* being scheduled again. This doesn't cover online resets, which
|
||
|
* should only be cancelled when removing the device.
|
||
|
*/
|
||
|
static void ef4_stop_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
|
||
|
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
efx->port_enabled = false;
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
/* Serialise against ef4_set_multicast_list() */
|
||
|
netif_addr_lock_bh(efx->net_dev);
|
||
|
netif_addr_unlock_bh(efx->net_dev);
|
||
|
|
||
|
cancel_delayed_work_sync(&efx->monitor_work);
|
||
|
ef4_selftest_async_cancel(efx);
|
||
|
cancel_work_sync(&efx->mac_work);
|
||
|
}
|
||
|
|
||
|
static void ef4_fini_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
|
||
|
|
||
|
if (!efx->port_initialized)
|
||
|
return;
|
||
|
|
||
|
efx->phy_op->fini(efx);
|
||
|
efx->port_initialized = false;
|
||
|
|
||
|
efx->link_state.up = false;
|
||
|
ef4_link_status_changed(efx);
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_port(struct ef4_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
|
||
|
|
||
|
efx->type->remove_port(efx);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* NIC handling
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
static LIST_HEAD(ef4_primary_list);
|
||
|
static LIST_HEAD(ef4_unassociated_list);
|
||
|
|
||
|
static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
|
||
|
{
|
||
|
return left->type == right->type &&
|
||
|
left->vpd_sn && right->vpd_sn &&
|
||
|
!strcmp(left->vpd_sn, right->vpd_sn);
|
||
|
}
|
||
|
|
||
|
static void ef4_associate(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_nic *other, *next;
|
||
|
|
||
|
if (efx->primary == efx) {
|
||
|
/* Adding primary function; look for secondaries */
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
|
||
|
list_add_tail(&efx->node, &ef4_primary_list);
|
||
|
|
||
|
list_for_each_entry_safe(other, next, &ef4_unassociated_list,
|
||
|
node) {
|
||
|
if (ef4_same_controller(efx, other)) {
|
||
|
list_del(&other->node);
|
||
|
netif_dbg(other, probe, other->net_dev,
|
||
|
"moving to secondary list of %s %s\n",
|
||
|
pci_name(efx->pci_dev),
|
||
|
efx->net_dev->name);
|
||
|
list_add_tail(&other->node,
|
||
|
&efx->secondary_list);
|
||
|
other->primary = efx;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/* Adding secondary function; look for primary */
|
||
|
|
||
|
list_for_each_entry(other, &ef4_primary_list, node) {
|
||
|
if (ef4_same_controller(efx, other)) {
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"adding to secondary list of %s %s\n",
|
||
|
pci_name(other->pci_dev),
|
||
|
other->net_dev->name);
|
||
|
list_add_tail(&efx->node,
|
||
|
&other->secondary_list);
|
||
|
efx->primary = other;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"adding to unassociated list\n");
|
||
|
list_add_tail(&efx->node, &ef4_unassociated_list);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void ef4_dissociate(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_nic *other, *next;
|
||
|
|
||
|
list_del(&efx->node);
|
||
|
efx->primary = NULL;
|
||
|
|
||
|
list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
|
||
|
list_del(&other->node);
|
||
|
netif_dbg(other, probe, other->net_dev,
|
||
|
"moving to unassociated list\n");
|
||
|
list_add_tail(&other->node, &ef4_unassociated_list);
|
||
|
other->primary = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* This configures the PCI device to enable I/O and DMA. */
|
||
|
static int ef4_init_io(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct pci_dev *pci_dev = efx->pci_dev;
|
||
|
dma_addr_t dma_mask = efx->type->max_dma_mask;
|
||
|
unsigned int mem_map_size = efx->type->mem_map_size(efx);
|
||
|
int rc, bar;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
|
||
|
|
||
|
bar = efx->type->mem_bar;
|
||
|
|
||
|
rc = pci_enable_device(pci_dev);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"failed to enable PCI device\n");
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
pci_set_master(pci_dev);
|
||
|
|
||
|
/* Set the PCI DMA mask. Try all possibilities from our
|
||
|
* genuine mask down to 32 bits, because some architectures
|
||
|
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
|
||
|
* masks event though they reject 46 bit masks.
|
||
|
*/
|
||
|
while (dma_mask > 0x7fffffffUL) {
|
||
|
rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
|
||
|
if (rc == 0)
|
||
|
break;
|
||
|
dma_mask >>= 1;
|
||
|
}
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"could not find a suitable DMA mask\n");
|
||
|
goto fail2;
|
||
|
}
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"using DMA mask %llx\n", (unsigned long long) dma_mask);
|
||
|
|
||
|
efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
|
||
|
rc = pci_request_region(pci_dev, bar, "sfc");
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"request for memory BAR failed\n");
|
||
|
rc = -EIO;
|
||
|
goto fail3;
|
||
|
}
|
||
|
efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
|
||
|
if (!efx->membase) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"could not map memory BAR at %llx+%x\n",
|
||
|
(unsigned long long)efx->membase_phys, mem_map_size);
|
||
|
rc = -ENOMEM;
|
||
|
goto fail4;
|
||
|
}
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"memory BAR at %llx+%x (virtual %p)\n",
|
||
|
(unsigned long long)efx->membase_phys, mem_map_size,
|
||
|
efx->membase);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail4:
|
||
|
pci_release_region(efx->pci_dev, bar);
|
||
|
fail3:
|
||
|
efx->membase_phys = 0;
|
||
|
fail2:
|
||
|
pci_disable_device(efx->pci_dev);
|
||
|
fail1:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void ef4_fini_io(struct ef4_nic *efx)
|
||
|
{
|
||
|
int bar;
|
||
|
|
||
|
netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
|
||
|
|
||
|
if (efx->membase) {
|
||
|
iounmap(efx->membase);
|
||
|
efx->membase = NULL;
|
||
|
}
|
||
|
|
||
|
if (efx->membase_phys) {
|
||
|
bar = efx->type->mem_bar;
|
||
|
pci_release_region(efx->pci_dev, bar);
|
||
|
efx->membase_phys = 0;
|
||
|
}
|
||
|
|
||
|
/* Don't disable bus-mastering if VFs are assigned */
|
||
|
if (!pci_vfs_assigned(efx->pci_dev))
|
||
|
pci_disable_device(efx->pci_dev);
|
||
|
}
|
||
|
|
||
|
void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
|
||
|
{
|
||
|
size_t i;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
|
||
|
efx->rx_indir_table[i] =
|
||
|
ethtool_rxfh_indir_default(i, efx->rss_spread);
|
||
|
}
|
||
|
|
||
|
static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
|
||
|
{
|
||
|
cpumask_var_t thread_mask;
|
||
|
unsigned int count;
|
||
|
int cpu;
|
||
|
|
||
|
if (rss_cpus) {
|
||
|
count = rss_cpus;
|
||
|
} else {
|
||
|
if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
|
||
|
netif_warn(efx, probe, efx->net_dev,
|
||
|
"RSS disabled due to allocation failure\n");
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
count = 0;
|
||
|
for_each_online_cpu(cpu) {
|
||
|
if (!cpumask_test_cpu(cpu, thread_mask)) {
|
||
|
++count;
|
||
|
cpumask_or(thread_mask, thread_mask,
|
||
|
topology_sibling_cpumask(cpu));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free_cpumask_var(thread_mask);
|
||
|
}
|
||
|
|
||
|
if (count > EF4_MAX_RX_QUEUES) {
|
||
|
netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
|
||
|
"Reducing number of rx queues from %u to %u.\n",
|
||
|
count, EF4_MAX_RX_QUEUES);
|
||
|
count = EF4_MAX_RX_QUEUES;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/* Probe the number and type of interrupts we are able to obtain, and
|
||
|
* the resulting numbers of channels and RX queues.
|
||
|
*/
|
||
|
static int ef4_probe_interrupts(struct ef4_nic *efx)
|
||
|
{
|
||
|
unsigned int extra_channels = 0;
|
||
|
unsigned int i, j;
|
||
|
int rc;
|
||
|
|
||
|
for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
|
||
|
if (efx->extra_channel_type[i])
|
||
|
++extra_channels;
|
||
|
|
||
|
if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
|
||
|
struct msix_entry xentries[EF4_MAX_CHANNELS];
|
||
|
unsigned int n_channels;
|
||
|
|
||
|
n_channels = ef4_wanted_parallelism(efx);
|
||
|
if (ef4_separate_tx_channels)
|
||
|
n_channels *= 2;
|
||
|
n_channels += extra_channels;
|
||
|
n_channels = min(n_channels, efx->max_channels);
|
||
|
|
||
|
for (i = 0; i < n_channels; i++)
|
||
|
xentries[i].entry = i;
|
||
|
rc = pci_enable_msix_range(efx->pci_dev,
|
||
|
xentries, 1, n_channels);
|
||
|
if (rc < 0) {
|
||
|
/* Fall back to single channel MSI */
|
||
|
efx->interrupt_mode = EF4_INT_MODE_MSI;
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"could not enable MSI-X\n");
|
||
|
} else if (rc < n_channels) {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"WARNING: Insufficient MSI-X vectors"
|
||
|
" available (%d < %u).\n", rc, n_channels);
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"WARNING: Performance may be reduced.\n");
|
||
|
n_channels = rc;
|
||
|
}
|
||
|
|
||
|
if (rc > 0) {
|
||
|
efx->n_channels = n_channels;
|
||
|
if (n_channels > extra_channels)
|
||
|
n_channels -= extra_channels;
|
||
|
if (ef4_separate_tx_channels) {
|
||
|
efx->n_tx_channels = min(max(n_channels / 2,
|
||
|
1U),
|
||
|
efx->max_tx_channels);
|
||
|
efx->n_rx_channels = max(n_channels -
|
||
|
efx->n_tx_channels,
|
||
|
1U);
|
||
|
} else {
|
||
|
efx->n_tx_channels = min(n_channels,
|
||
|
efx->max_tx_channels);
|
||
|
efx->n_rx_channels = n_channels;
|
||
|
}
|
||
|
for (i = 0; i < efx->n_channels; i++)
|
||
|
ef4_get_channel(efx, i)->irq =
|
||
|
xentries[i].vector;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Try single interrupt MSI */
|
||
|
if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
|
||
|
efx->n_channels = 1;
|
||
|
efx->n_rx_channels = 1;
|
||
|
efx->n_tx_channels = 1;
|
||
|
rc = pci_enable_msi(efx->pci_dev);
|
||
|
if (rc == 0) {
|
||
|
ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
|
||
|
} else {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"could not enable MSI\n");
|
||
|
efx->interrupt_mode = EF4_INT_MODE_LEGACY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Assume legacy interrupts */
|
||
|
if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
|
||
|
efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
|
||
|
efx->n_rx_channels = 1;
|
||
|
efx->n_tx_channels = 1;
|
||
|
efx->legacy_irq = efx->pci_dev->irq;
|
||
|
}
|
||
|
|
||
|
/* Assign extra channels if possible */
|
||
|
j = efx->n_channels;
|
||
|
for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
|
||
|
if (!efx->extra_channel_type[i])
|
||
|
continue;
|
||
|
if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
|
||
|
efx->n_channels <= extra_channels) {
|
||
|
efx->extra_channel_type[i]->handle_no_channel(efx);
|
||
|
} else {
|
||
|
--j;
|
||
|
ef4_get_channel(efx, j)->type =
|
||
|
efx->extra_channel_type[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
efx->rss_spread = efx->n_rx_channels;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel, *end_channel;
|
||
|
int rc;
|
||
|
|
||
|
BUG_ON(efx->state == STATE_DISABLED);
|
||
|
|
||
|
efx->irq_soft_enabled = true;
|
||
|
smp_wmb();
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (!channel->type->keep_eventq) {
|
||
|
rc = ef4_init_eventq(channel);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
}
|
||
|
ef4_start_eventq(channel);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
fail:
|
||
|
end_channel = channel;
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (channel == end_channel)
|
||
|
break;
|
||
|
ef4_stop_eventq(channel);
|
||
|
if (!channel->type->keep_eventq)
|
||
|
ef4_fini_eventq(channel);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
if (efx->state == STATE_DISABLED)
|
||
|
return;
|
||
|
|
||
|
efx->irq_soft_enabled = false;
|
||
|
smp_wmb();
|
||
|
|
||
|
if (efx->legacy_irq)
|
||
|
synchronize_irq(efx->legacy_irq);
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (channel->irq)
|
||
|
synchronize_irq(channel->irq);
|
||
|
|
||
|
ef4_stop_eventq(channel);
|
||
|
if (!channel->type->keep_eventq)
|
||
|
ef4_fini_eventq(channel);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int ef4_enable_interrupts(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel, *end_channel;
|
||
|
int rc;
|
||
|
|
||
|
BUG_ON(efx->state == STATE_DISABLED);
|
||
|
|
||
|
if (efx->eeh_disabled_legacy_irq) {
|
||
|
enable_irq(efx->legacy_irq);
|
||
|
efx->eeh_disabled_legacy_irq = false;
|
||
|
}
|
||
|
|
||
|
efx->type->irq_enable_master(efx);
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (channel->type->keep_eventq) {
|
||
|
rc = ef4_init_eventq(channel);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rc = ef4_soft_enable_interrupts(efx);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
end_channel = channel;
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (channel == end_channel)
|
||
|
break;
|
||
|
if (channel->type->keep_eventq)
|
||
|
ef4_fini_eventq(channel);
|
||
|
}
|
||
|
|
||
|
efx->type->irq_disable_non_ev(efx);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void ef4_disable_interrupts(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_soft_disable_interrupts(efx);
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (channel->type->keep_eventq)
|
||
|
ef4_fini_eventq(channel);
|
||
|
}
|
||
|
|
||
|
efx->type->irq_disable_non_ev(efx);
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_interrupts(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
/* Remove MSI/MSI-X interrupts */
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
channel->irq = 0;
|
||
|
pci_disable_msi(efx->pci_dev);
|
||
|
pci_disable_msix(efx->pci_dev);
|
||
|
|
||
|
/* Remove legacy interrupt */
|
||
|
efx->legacy_irq = 0;
|
||
|
}
|
||
|
|
||
|
static void ef4_set_channels(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
|
||
|
efx->tx_channel_offset =
|
||
|
ef4_separate_tx_channels ?
|
||
|
efx->n_channels - efx->n_tx_channels : 0;
|
||
|
|
||
|
/* We need to mark which channels really have RX and TX
|
||
|
* queues, and adjust the TX queue numbers if we have separate
|
||
|
* RX-only and TX-only channels.
|
||
|
*/
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (channel->channel < efx->n_rx_channels)
|
||
|
channel->rx_queue.core_index = channel->channel;
|
||
|
else
|
||
|
channel->rx_queue.core_index = -1;
|
||
|
|
||
|
ef4_for_each_channel_tx_queue(tx_queue, channel)
|
||
|
tx_queue->queue -= (efx->tx_channel_offset *
|
||
|
EF4_TXQ_TYPES);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int ef4_probe_nic(struct ef4_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
|
||
|
|
||
|
/* Carry out hardware-type specific initialisation */
|
||
|
rc = efx->type->probe(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
do {
|
||
|
if (!efx->max_channels || !efx->max_tx_channels) {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"Insufficient resources to allocate"
|
||
|
" any channels\n");
|
||
|
rc = -ENOSPC;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
/* Determine the number of channels and queues by trying
|
||
|
* to hook in MSI-X interrupts.
|
||
|
*/
|
||
|
rc = ef4_probe_interrupts(efx);
|
||
|
if (rc)
|
||
|
goto fail1;
|
||
|
|
||
|
ef4_set_channels(efx);
|
||
|
|
||
|
/* dimension_resources can fail with EAGAIN */
|
||
|
rc = efx->type->dimension_resources(efx);
|
||
|
if (rc != 0 && rc != -EAGAIN)
|
||
|
goto fail2;
|
||
|
|
||
|
if (rc == -EAGAIN)
|
||
|
/* try again with new max_channels */
|
||
|
ef4_remove_interrupts(efx);
|
||
|
|
||
|
} while (rc == -EAGAIN);
|
||
|
|
||
|
if (efx->n_channels > 1)
|
||
|
netdev_rss_key_fill(&efx->rx_hash_key,
|
||
|
sizeof(efx->rx_hash_key));
|
||
|
ef4_set_default_rx_indir_table(efx);
|
||
|
|
||
|
netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
|
||
|
netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
|
||
|
|
||
|
/* Initialise the interrupt moderation settings */
|
||
|
efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
|
||
|
ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
|
||
|
true);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail2:
|
||
|
ef4_remove_interrupts(efx);
|
||
|
fail1:
|
||
|
efx->type->remove(efx);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_nic(struct ef4_nic *efx)
|
||
|
{
|
||
|
netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
|
||
|
|
||
|
ef4_remove_interrupts(efx);
|
||
|
efx->type->remove(efx);
|
||
|
}
|
||
|
|
||
|
static int ef4_probe_filters(struct ef4_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
spin_lock_init(&efx->filter_lock);
|
||
|
init_rwsem(&efx->filter_sem);
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
down_write(&efx->filter_sem);
|
||
|
rc = efx->type->filter_table_probe(efx);
|
||
|
if (rc)
|
||
|
goto out_unlock;
|
||
|
|
||
|
#ifdef CONFIG_RFS_ACCEL
|
||
|
if (efx->type->offload_features & NETIF_F_NTUPLE) {
|
||
|
struct ef4_channel *channel;
|
||
|
int i, success = 1;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
channel->rps_flow_id =
|
||
|
kcalloc(efx->type->max_rx_ip_filters,
|
||
|
sizeof(*channel->rps_flow_id),
|
||
|
GFP_KERNEL);
|
||
|
if (!channel->rps_flow_id)
|
||
|
success = 0;
|
||
|
else
|
||
|
for (i = 0;
|
||
|
i < efx->type->max_rx_ip_filters;
|
||
|
++i)
|
||
|
channel->rps_flow_id[i] =
|
||
|
RPS_FLOW_ID_INVALID;
|
||
|
}
|
||
|
|
||
|
if (!success) {
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
kfree(channel->rps_flow_id);
|
||
|
efx->type->filter_table_remove(efx);
|
||
|
rc = -ENOMEM;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
efx->rps_expire_index = efx->rps_expire_channel = 0;
|
||
|
}
|
||
|
#endif
|
||
|
out_unlock:
|
||
|
up_write(&efx->filter_sem);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_filters(struct ef4_nic *efx)
|
||
|
{
|
||
|
#ifdef CONFIG_RFS_ACCEL
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
kfree(channel->rps_flow_id);
|
||
|
#endif
|
||
|
down_write(&efx->filter_sem);
|
||
|
efx->type->filter_table_remove(efx);
|
||
|
up_write(&efx->filter_sem);
|
||
|
}
|
||
|
|
||
|
static void ef4_restore_filters(struct ef4_nic *efx)
|
||
|
{
|
||
|
down_read(&efx->filter_sem);
|
||
|
efx->type->filter_table_restore(efx);
|
||
|
up_read(&efx->filter_sem);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* NIC startup/shutdown
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
static int ef4_probe_all(struct ef4_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
rc = ef4_probe_nic(efx);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
rc = ef4_probe_port(efx);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev, "failed to create port\n");
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
|
||
|
if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
|
||
|
rc = -EINVAL;
|
||
|
goto fail3;
|
||
|
}
|
||
|
efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
|
||
|
|
||
|
rc = ef4_probe_filters(efx);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"failed to create filter tables\n");
|
||
|
goto fail4;
|
||
|
}
|
||
|
|
||
|
rc = ef4_probe_channels(efx);
|
||
|
if (rc)
|
||
|
goto fail5;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail5:
|
||
|
ef4_remove_filters(efx);
|
||
|
fail4:
|
||
|
fail3:
|
||
|
ef4_remove_port(efx);
|
||
|
fail2:
|
||
|
ef4_remove_nic(efx);
|
||
|
fail1:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* If the interface is supposed to be running but is not, start
|
||
|
* the hardware and software data path, regular activity for the port
|
||
|
* (MAC statistics, link polling, etc.) and schedule the port to be
|
||
|
* reconfigured. Interrupts must already be enabled. This function
|
||
|
* is safe to call multiple times, so long as the NIC is not disabled.
|
||
|
* Requires the RTNL lock.
|
||
|
*/
|
||
|
static void ef4_start_all(struct ef4_nic *efx)
|
||
|
{
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
BUG_ON(efx->state == STATE_DISABLED);
|
||
|
|
||
|
/* Check that it is appropriate to restart the interface. All
|
||
|
* of these flags are safe to read under just the rtnl lock */
|
||
|
if (efx->port_enabled || !netif_running(efx->net_dev) ||
|
||
|
efx->reset_pending)
|
||
|
return;
|
||
|
|
||
|
ef4_start_port(efx);
|
||
|
ef4_start_datapath(efx);
|
||
|
|
||
|
/* Start the hardware monitor if there is one */
|
||
|
if (efx->type->monitor != NULL)
|
||
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
||
|
ef4_monitor_interval);
|
||
|
|
||
|
efx->type->start_stats(efx);
|
||
|
efx->type->pull_stats(efx);
|
||
|
spin_lock_bh(&efx->stats_lock);
|
||
|
efx->type->update_stats(efx, NULL, NULL);
|
||
|
spin_unlock_bh(&efx->stats_lock);
|
||
|
}
|
||
|
|
||
|
/* Quiesce the hardware and software data path, and regular activity
|
||
|
* for the port without bringing the link down. Safe to call multiple
|
||
|
* times with the NIC in almost any state, but interrupts should be
|
||
|
* enabled. Requires the RTNL lock.
|
||
|
*/
|
||
|
static void ef4_stop_all(struct ef4_nic *efx)
|
||
|
{
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
/* port_enabled can be read safely under the rtnl lock */
|
||
|
if (!efx->port_enabled)
|
||
|
return;
|
||
|
|
||
|
/* update stats before we go down so we can accurately count
|
||
|
* rx_nodesc_drops
|
||
|
*/
|
||
|
efx->type->pull_stats(efx);
|
||
|
spin_lock_bh(&efx->stats_lock);
|
||
|
efx->type->update_stats(efx, NULL, NULL);
|
||
|
spin_unlock_bh(&efx->stats_lock);
|
||
|
efx->type->stop_stats(efx);
|
||
|
ef4_stop_port(efx);
|
||
|
|
||
|
/* Stop the kernel transmit interface. This is only valid if
|
||
|
* the device is stopped or detached; otherwise the watchdog
|
||
|
* may fire immediately.
|
||
|
*/
|
||
|
WARN_ON(netif_running(efx->net_dev) &&
|
||
|
netif_device_present(efx->net_dev));
|
||
|
netif_tx_disable(efx->net_dev);
|
||
|
|
||
|
ef4_stop_datapath(efx);
|
||
|
}
|
||
|
|
||
|
static void ef4_remove_all(struct ef4_nic *efx)
|
||
|
{
|
||
|
ef4_remove_channels(efx);
|
||
|
ef4_remove_filters(efx);
|
||
|
ef4_remove_port(efx);
|
||
|
ef4_remove_nic(efx);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Interrupt moderation
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
|
||
|
{
|
||
|
if (usecs == 0)
|
||
|
return 0;
|
||
|
if (usecs * 1000 < efx->timer_quantum_ns)
|
||
|
return 1; /* never round down to 0 */
|
||
|
return usecs * 1000 / efx->timer_quantum_ns;
|
||
|
}
|
||
|
|
||
|
unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
|
||
|
{
|
||
|
/* We must round up when converting ticks to microseconds
|
||
|
* because we round down when converting the other way.
|
||
|
*/
|
||
|
return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
|
||
|
}
|
||
|
|
||
|
/* Set interrupt moderation parameters */
|
||
|
int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
|
||
|
unsigned int rx_usecs, bool rx_adaptive,
|
||
|
bool rx_may_override_tx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
unsigned int timer_max_us;
|
||
|
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
timer_max_us = efx->timer_max_ns / 1000;
|
||
|
|
||
|
if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
|
||
|
!rx_may_override_tx) {
|
||
|
netif_err(efx, drv, efx->net_dev, "Channels are shared. "
|
||
|
"RX and TX IRQ moderation must be equal\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
efx->irq_rx_adaptive = rx_adaptive;
|
||
|
efx->irq_rx_moderation_us = rx_usecs;
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
if (ef4_channel_has_rx_queue(channel))
|
||
|
channel->irq_moderation_us = rx_usecs;
|
||
|
else if (ef4_channel_has_tx_queues(channel))
|
||
|
channel->irq_moderation_us = tx_usecs;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
|
||
|
unsigned int *rx_usecs, bool *rx_adaptive)
|
||
|
{
|
||
|
*rx_adaptive = efx->irq_rx_adaptive;
|
||
|
*rx_usecs = efx->irq_rx_moderation_us;
|
||
|
|
||
|
/* If channels are shared between RX and TX, so is IRQ
|
||
|
* moderation. Otherwise, IRQ moderation is the same for all
|
||
|
* TX channels and is not adaptive.
|
||
|
*/
|
||
|
if (efx->tx_channel_offset == 0) {
|
||
|
*tx_usecs = *rx_usecs;
|
||
|
} else {
|
||
|
struct ef4_channel *tx_channel;
|
||
|
|
||
|
tx_channel = efx->channel[efx->tx_channel_offset];
|
||
|
*tx_usecs = tx_channel->irq_moderation_us;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Hardware monitor
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Run periodically off the general workqueue */
|
||
|
static void ef4_monitor(struct work_struct *data)
|
||
|
{
|
||
|
struct ef4_nic *efx = container_of(data, struct ef4_nic,
|
||
|
monitor_work.work);
|
||
|
|
||
|
netif_vdbg(efx, timer, efx->net_dev,
|
||
|
"hardware monitor executing on CPU %d\n",
|
||
|
raw_smp_processor_id());
|
||
|
BUG_ON(efx->type->monitor == NULL);
|
||
|
|
||
|
/* If the mac_lock is already held then it is likely a port
|
||
|
* reconfiguration is already in place, which will likely do
|
||
|
* most of the work of monitor() anyway. */
|
||
|
if (mutex_trylock(&efx->mac_lock)) {
|
||
|
if (efx->port_enabled)
|
||
|
efx->type->monitor(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
}
|
||
|
|
||
|
queue_delayed_work(efx->workqueue, &efx->monitor_work,
|
||
|
ef4_monitor_interval);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* ioctls
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/* Net device ioctl
|
||
|
* Context: process, rtnl_lock() held.
|
||
|
*/
|
||
|
static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
struct mii_ioctl_data *data = if_mii(ifr);
|
||
|
|
||
|
/* Convert phy_id from older PRTAD/DEVAD format */
|
||
|
if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
|
||
|
(data->phy_id & 0xfc00) == 0x0400)
|
||
|
data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
|
||
|
|
||
|
return mdio_mii_ioctl(&efx->mdio, data, cmd);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* NAPI interface
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
static void ef4_init_napi_channel(struct ef4_channel *channel)
|
||
|
{
|
||
|
struct ef4_nic *efx = channel->efx;
|
||
|
|
||
|
channel->napi_dev = efx->net_dev;
|
||
|
netif_napi_add(channel->napi_dev, &channel->napi_str,
|
||
|
ef4_poll, napi_weight);
|
||
|
}
|
||
|
|
||
|
static void ef4_init_napi(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
ef4_init_napi_channel(channel);
|
||
|
}
|
||
|
|
||
|
static void ef4_fini_napi_channel(struct ef4_channel *channel)
|
||
|
{
|
||
|
if (channel->napi_dev)
|
||
|
netif_napi_del(&channel->napi_str);
|
||
|
|
||
|
channel->napi_dev = NULL;
|
||
|
}
|
||
|
|
||
|
static void ef4_fini_napi(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
ef4_fini_napi_channel(channel);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Kernel netpoll interface
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
|
|
||
|
/* Although in the common case interrupts will be disabled, this is not
|
||
|
* guaranteed. However, all our work happens inside the NAPI callback,
|
||
|
* so no locking is required.
|
||
|
*/
|
||
|
static void ef4_netpoll(struct net_device *net_dev)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
ef4_schedule_channel(channel);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Kernel net device interface
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/* Context: process, rtnl_lock() held. */
|
||
|
int ef4_net_open(struct net_device *net_dev)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
int rc;
|
||
|
|
||
|
netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
|
||
|
raw_smp_processor_id());
|
||
|
|
||
|
rc = ef4_check_disabled(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
if (efx->phy_mode & PHY_MODE_SPECIAL)
|
||
|
return -EBUSY;
|
||
|
|
||
|
/* Notify the kernel of the link state polled during driver load,
|
||
|
* before the monitor starts running */
|
||
|
ef4_link_status_changed(efx);
|
||
|
|
||
|
ef4_start_all(efx);
|
||
|
ef4_selftest_async_start(efx);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Context: process, rtnl_lock() held.
|
||
|
* Note that the kernel will ignore our return code; this method
|
||
|
* should really be a void.
|
||
|
*/
|
||
|
int ef4_net_stop(struct net_device *net_dev)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
|
||
|
raw_smp_processor_id());
|
||
|
|
||
|
/* Stop the device and flush all the channels */
|
||
|
ef4_stop_all(efx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
|
||
|
static void ef4_net_stats(struct net_device *net_dev,
|
||
|
struct rtnl_link_stats64 *stats)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
spin_lock_bh(&efx->stats_lock);
|
||
|
efx->type->update_stats(efx, NULL, stats);
|
||
|
spin_unlock_bh(&efx->stats_lock);
|
||
|
}
|
||
|
|
||
|
/* Context: netif_tx_lock held, BHs disabled. */
|
||
|
static void ef4_watchdog(struct net_device *net_dev)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
netif_err(efx, tx_err, efx->net_dev,
|
||
|
"TX stuck with port_enabled=%d: resetting channels\n",
|
||
|
efx->port_enabled);
|
||
|
|
||
|
ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Context: process, rtnl_lock() held. */
|
||
|
static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
int rc;
|
||
|
|
||
|
rc = ef4_check_disabled(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
|
||
|
|
||
|
ef4_device_detach_sync(efx);
|
||
|
ef4_stop_all(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
net_dev->mtu = new_mtu;
|
||
|
ef4_mac_reconfigure(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
ef4_start_all(efx);
|
||
|
netif_device_attach(efx->net_dev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int ef4_set_mac_address(struct net_device *net_dev, void *data)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
struct sockaddr *addr = data;
|
||
|
u8 *new_addr = addr->sa_data;
|
||
|
u8 old_addr[6];
|
||
|
int rc;
|
||
|
|
||
|
if (!is_valid_ether_addr(new_addr)) {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"invalid ethernet MAC address requested: %pM\n",
|
||
|
new_addr);
|
||
|
return -EADDRNOTAVAIL;
|
||
|
}
|
||
|
|
||
|
/* save old address */
|
||
|
ether_addr_copy(old_addr, net_dev->dev_addr);
|
||
|
ether_addr_copy(net_dev->dev_addr, new_addr);
|
||
|
if (efx->type->set_mac_address) {
|
||
|
rc = efx->type->set_mac_address(efx);
|
||
|
if (rc) {
|
||
|
ether_addr_copy(net_dev->dev_addr, old_addr);
|
||
|
return rc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Reconfigure the MAC */
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
ef4_mac_reconfigure(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Context: netif_addr_lock held, BHs disabled. */
|
||
|
static void ef4_set_rx_mode(struct net_device *net_dev)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
|
||
|
if (efx->port_enabled)
|
||
|
queue_work(efx->workqueue, &efx->mac_work);
|
||
|
/* Otherwise ef4_start_port() will do this */
|
||
|
}
|
||
|
|
||
|
static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
|
||
|
{
|
||
|
struct ef4_nic *efx = netdev_priv(net_dev);
|
||
|
int rc;
|
||
|
|
||
|
/* If disabling RX n-tuple filtering, clear existing filters */
|
||
|
if (net_dev->features & ~data & NETIF_F_NTUPLE) {
|
||
|
rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
|
||
|
if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
|
||
|
/* ef4_set_rx_mode() will schedule MAC work to update filters
|
||
|
* when a new features are finally set in net_dev.
|
||
|
*/
|
||
|
ef4_set_rx_mode(net_dev);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct net_device_ops ef4_netdev_ops = {
|
||
|
.ndo_open = ef4_net_open,
|
||
|
.ndo_stop = ef4_net_stop,
|
||
|
.ndo_get_stats64 = ef4_net_stats,
|
||
|
.ndo_tx_timeout = ef4_watchdog,
|
||
|
.ndo_start_xmit = ef4_hard_start_xmit,
|
||
|
.ndo_validate_addr = eth_validate_addr,
|
||
|
.ndo_do_ioctl = ef4_ioctl,
|
||
|
.ndo_change_mtu = ef4_change_mtu,
|
||
|
.ndo_set_mac_address = ef4_set_mac_address,
|
||
|
.ndo_set_rx_mode = ef4_set_rx_mode,
|
||
|
.ndo_set_features = ef4_set_features,
|
||
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
|
.ndo_poll_controller = ef4_netpoll,
|
||
|
#endif
|
||
|
.ndo_setup_tc = ef4_setup_tc,
|
||
|
#ifdef CONFIG_RFS_ACCEL
|
||
|
.ndo_rx_flow_steer = ef4_filter_rfs,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
static void ef4_update_name(struct ef4_nic *efx)
|
||
|
{
|
||
|
strcpy(efx->name, efx->net_dev->name);
|
||
|
ef4_mtd_rename(efx);
|
||
|
ef4_set_channel_names(efx);
|
||
|
}
|
||
|
|
||
|
static int ef4_netdev_event(struct notifier_block *this,
|
||
|
unsigned long event, void *ptr)
|
||
|
{
|
||
|
struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
|
||
|
|
||
|
if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
|
||
|
event == NETDEV_CHANGENAME)
|
||
|
ef4_update_name(netdev_priv(net_dev));
|
||
|
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block ef4_netdev_notifier = {
|
||
|
.notifier_call = ef4_netdev_event,
|
||
|
};
|
||
|
|
||
|
static ssize_t
|
||
|
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
|
||
|
{
|
||
|
struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
||
|
return sprintf(buf, "%d\n", efx->phy_type);
|
||
|
}
|
||
|
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
|
||
|
|
||
|
static int ef4_register_netdev(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct net_device *net_dev = efx->net_dev;
|
||
|
struct ef4_channel *channel;
|
||
|
int rc;
|
||
|
|
||
|
net_dev->watchdog_timeo = 5 * HZ;
|
||
|
net_dev->irq = efx->pci_dev->irq;
|
||
|
net_dev->netdev_ops = &ef4_netdev_ops;
|
||
|
net_dev->ethtool_ops = &ef4_ethtool_ops;
|
||
|
net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
|
||
|
net_dev->min_mtu = EF4_MIN_MTU;
|
||
|
net_dev->max_mtu = EF4_MAX_MTU;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
/* Enable resets to be scheduled and check whether any were
|
||
|
* already requested. If so, the NIC is probably hosed so we
|
||
|
* abort.
|
||
|
*/
|
||
|
efx->state = STATE_READY;
|
||
|
smp_mb(); /* ensure we change state before checking reset_pending */
|
||
|
if (efx->reset_pending) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"aborting probe due to scheduled reset\n");
|
||
|
rc = -EIO;
|
||
|
goto fail_locked;
|
||
|
}
|
||
|
|
||
|
rc = dev_alloc_name(net_dev, net_dev->name);
|
||
|
if (rc < 0)
|
||
|
goto fail_locked;
|
||
|
ef4_update_name(efx);
|
||
|
|
||
|
/* Always start with carrier off; PHY events will detect the link */
|
||
|
netif_carrier_off(net_dev);
|
||
|
|
||
|
rc = register_netdevice(net_dev);
|
||
|
if (rc)
|
||
|
goto fail_locked;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx) {
|
||
|
struct ef4_tx_queue *tx_queue;
|
||
|
ef4_for_each_channel_tx_queue(tx_queue, channel)
|
||
|
ef4_init_tx_queue_core_txq(tx_queue);
|
||
|
}
|
||
|
|
||
|
ef4_associate(efx);
|
||
|
|
||
|
rtnl_unlock();
|
||
|
|
||
|
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
||
|
if (rc) {
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"failed to init net dev attributes\n");
|
||
|
goto fail_registered;
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
fail_registered:
|
||
|
rtnl_lock();
|
||
|
ef4_dissociate(efx);
|
||
|
unregister_netdevice(net_dev);
|
||
|
fail_locked:
|
||
|
efx->state = STATE_UNINIT;
|
||
|
rtnl_unlock();
|
||
|
netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void ef4_unregister_netdev(struct ef4_nic *efx)
|
||
|
{
|
||
|
if (!efx->net_dev)
|
||
|
return;
|
||
|
|
||
|
BUG_ON(netdev_priv(efx->net_dev) != efx);
|
||
|
|
||
|
if (ef4_dev_registered(efx)) {
|
||
|
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
|
||
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
||
|
unregister_netdev(efx->net_dev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Device reset and suspend
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Tears down the entire software state and most of the hardware state
|
||
|
* before reset. */
|
||
|
void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
|
||
|
{
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
ef4_stop_all(efx);
|
||
|
ef4_disable_interrupts(efx);
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
|
||
|
method != RESET_TYPE_DATAPATH)
|
||
|
efx->phy_op->fini(efx);
|
||
|
efx->type->fini(efx);
|
||
|
}
|
||
|
|
||
|
/* This function will always ensure that the locks acquired in
|
||
|
* ef4_reset_down() are released. A failure return code indicates
|
||
|
* that we were unable to reinitialise the hardware, and the
|
||
|
* driver should be disabled. If ok is false, then the rx and tx
|
||
|
* engines are not restarted, pending a RESET_DISABLE. */
|
||
|
int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
EF4_ASSERT_RESET_SERIALISED(efx);
|
||
|
|
||
|
/* Ensure that SRAM is initialised even if we're disabling the device */
|
||
|
rc = efx->type->init(efx);
|
||
|
if (rc) {
|
||
|
netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if (!ok)
|
||
|
goto fail;
|
||
|
|
||
|
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
|
||
|
method != RESET_TYPE_DATAPATH) {
|
||
|
rc = efx->phy_op->init(efx);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
rc = efx->phy_op->reconfigure(efx);
|
||
|
if (rc && rc != -EPERM)
|
||
|
netif_err(efx, drv, efx->net_dev,
|
||
|
"could not restore PHY settings\n");
|
||
|
}
|
||
|
|
||
|
rc = ef4_enable_interrupts(efx);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
down_read(&efx->filter_sem);
|
||
|
ef4_restore_filters(efx);
|
||
|
up_read(&efx->filter_sem);
|
||
|
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
ef4_start_all(efx);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
efx->port_initialized = false;
|
||
|
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Reset the NIC using the specified method. Note that the reset may
|
||
|
* fail, in which case the card will be left in an unusable state.
|
||
|
*
|
||
|
* Caller must hold the rtnl_lock.
|
||
|
*/
|
||
|
int ef4_reset(struct ef4_nic *efx, enum reset_type method)
|
||
|
{
|
||
|
int rc, rc2;
|
||
|
bool disabled;
|
||
|
|
||
|
netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
|
||
|
RESET_TYPE(method));
|
||
|
|
||
|
ef4_device_detach_sync(efx);
|
||
|
ef4_reset_down(efx, method);
|
||
|
|
||
|
rc = efx->type->reset(efx, method);
|
||
|
if (rc) {
|
||
|
netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Clear flags for the scopes we covered. We assume the NIC and
|
||
|
* driver are now quiescent so that there is no race here.
|
||
|
*/
|
||
|
if (method < RESET_TYPE_MAX_METHOD)
|
||
|
efx->reset_pending &= -(1 << (method + 1));
|
||
|
else /* it doesn't fit into the well-ordered scope hierarchy */
|
||
|
__clear_bit(method, &efx->reset_pending);
|
||
|
|
||
|
/* Reinitialise bus-mastering, which may have been turned off before
|
||
|
* the reset was scheduled. This is still appropriate, even in the
|
||
|
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
|
||
|
* can respond to requests. */
|
||
|
pci_set_master(efx->pci_dev);
|
||
|
|
||
|
out:
|
||
|
/* Leave device stopped if necessary */
|
||
|
disabled = rc ||
|
||
|
method == RESET_TYPE_DISABLE ||
|
||
|
method == RESET_TYPE_RECOVER_OR_DISABLE;
|
||
|
rc2 = ef4_reset_up(efx, method, !disabled);
|
||
|
if (rc2) {
|
||
|
disabled = true;
|
||
|
if (!rc)
|
||
|
rc = rc2;
|
||
|
}
|
||
|
|
||
|
if (disabled) {
|
||
|
dev_close(efx->net_dev);
|
||
|
netif_err(efx, drv, efx->net_dev, "has been disabled\n");
|
||
|
efx->state = STATE_DISABLED;
|
||
|
} else {
|
||
|
netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
|
||
|
netif_device_attach(efx->net_dev);
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Try recovery mechanisms.
|
||
|
* For now only EEH is supported.
|
||
|
* Returns 0 if the recovery mechanisms are unsuccessful.
|
||
|
* Returns a non-zero value otherwise.
|
||
|
*/
|
||
|
int ef4_try_recovery(struct ef4_nic *efx)
|
||
|
{
|
||
|
#ifdef CONFIG_EEH
|
||
|
/* A PCI error can occur and not be seen by EEH because nothing
|
||
|
* happens on the PCI bus. In this case the driver may fail and
|
||
|
* schedule a 'recover or reset', leading to this recovery handler.
|
||
|
* Manually call the eeh failure check function.
|
||
|
*/
|
||
|
struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
|
||
|
if (eeh_dev_check_failure(eehdev)) {
|
||
|
/* The EEH mechanisms will handle the error and reset the
|
||
|
* device if necessary.
|
||
|
*/
|
||
|
return 1;
|
||
|
}
|
||
|
#endif
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* The worker thread exists so that code that cannot sleep can
|
||
|
* schedule a reset for later.
|
||
|
*/
|
||
|
static void ef4_reset_work(struct work_struct *data)
|
||
|
{
|
||
|
struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
|
||
|
unsigned long pending;
|
||
|
enum reset_type method;
|
||
|
|
||
|
pending = ACCESS_ONCE(efx->reset_pending);
|
||
|
method = fls(pending) - 1;
|
||
|
|
||
|
if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
|
||
|
method == RESET_TYPE_RECOVER_OR_ALL) &&
|
||
|
ef4_try_recovery(efx))
|
||
|
return;
|
||
|
|
||
|
if (!pending)
|
||
|
return;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
/* We checked the state in ef4_schedule_reset() but it may
|
||
|
* have changed by now. Now that we have the RTNL lock,
|
||
|
* it cannot change again.
|
||
|
*/
|
||
|
if (efx->state == STATE_READY)
|
||
|
(void)ef4_reset(efx, method);
|
||
|
|
||
|
rtnl_unlock();
|
||
|
}
|
||
|
|
||
|
void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
|
||
|
{
|
||
|
enum reset_type method;
|
||
|
|
||
|
if (efx->state == STATE_RECOVERY) {
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"recovering: skip scheduling %s reset\n",
|
||
|
RESET_TYPE(type));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (type) {
|
||
|
case RESET_TYPE_INVISIBLE:
|
||
|
case RESET_TYPE_ALL:
|
||
|
case RESET_TYPE_RECOVER_OR_ALL:
|
||
|
case RESET_TYPE_WORLD:
|
||
|
case RESET_TYPE_DISABLE:
|
||
|
case RESET_TYPE_RECOVER_OR_DISABLE:
|
||
|
case RESET_TYPE_DATAPATH:
|
||
|
method = type;
|
||
|
netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
|
||
|
RESET_TYPE(method));
|
||
|
break;
|
||
|
default:
|
||
|
method = efx->type->map_reset_reason(type);
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"scheduling %s reset for %s\n",
|
||
|
RESET_TYPE(method), RESET_TYPE(type));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
set_bit(method, &efx->reset_pending);
|
||
|
smp_mb(); /* ensure we change reset_pending before checking state */
|
||
|
|
||
|
/* If we're not READY then just leave the flags set as the cue
|
||
|
* to abort probing or reschedule the reset later.
|
||
|
*/
|
||
|
if (ACCESS_ONCE(efx->state) != STATE_READY)
|
||
|
return;
|
||
|
|
||
|
queue_work(reset_workqueue, &efx->reset_work);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* List of NICs we support
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* PCI device ID table */
|
||
|
static const struct pci_device_id ef4_pci_table[] = {
|
||
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
|
||
|
PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
|
||
|
.driver_data = (unsigned long) &falcon_a1_nic_type},
|
||
|
{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
|
||
|
PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
|
||
|
.driver_data = (unsigned long) &falcon_b0_nic_type},
|
||
|
{0} /* end of list */
|
||
|
};
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Dummy PHY/MAC operations
|
||
|
*
|
||
|
* Can be used for some unimplemented operations
|
||
|
* Needed so all function pointers are valid and do not have to be tested
|
||
|
* before use
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
int ef4_port_dummy_op_int(struct ef4_nic *efx)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
|
||
|
|
||
|
static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static const struct ef4_phy_operations ef4_dummy_phy_operations = {
|
||
|
.init = ef4_port_dummy_op_int,
|
||
|
.reconfigure = ef4_port_dummy_op_int,
|
||
|
.poll = ef4_port_dummy_op_poll,
|
||
|
.fini = ef4_port_dummy_op_void,
|
||
|
};
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Data housekeeping
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* This zeroes out and then fills in the invariants in a struct
|
||
|
* ef4_nic (including all sub-structures).
|
||
|
*/
|
||
|
static int ef4_init_struct(struct ef4_nic *efx,
|
||
|
struct pci_dev *pci_dev, struct net_device *net_dev)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
/* Initialise common structures */
|
||
|
INIT_LIST_HEAD(&efx->node);
|
||
|
INIT_LIST_HEAD(&efx->secondary_list);
|
||
|
spin_lock_init(&efx->biu_lock);
|
||
|
#ifdef CONFIG_SFC_FALCON_MTD
|
||
|
INIT_LIST_HEAD(&efx->mtd_list);
|
||
|
#endif
|
||
|
INIT_WORK(&efx->reset_work, ef4_reset_work);
|
||
|
INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
|
||
|
INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
|
||
|
efx->pci_dev = pci_dev;
|
||
|
efx->msg_enable = debug;
|
||
|
efx->state = STATE_UNINIT;
|
||
|
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
|
||
|
|
||
|
efx->net_dev = net_dev;
|
||
|
efx->rx_prefix_size = efx->type->rx_prefix_size;
|
||
|
efx->rx_ip_align =
|
||
|
NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
|
||
|
efx->rx_packet_hash_offset =
|
||
|
efx->type->rx_hash_offset - efx->type->rx_prefix_size;
|
||
|
efx->rx_packet_ts_offset =
|
||
|
efx->type->rx_ts_offset - efx->type->rx_prefix_size;
|
||
|
spin_lock_init(&efx->stats_lock);
|
||
|
mutex_init(&efx->mac_lock);
|
||
|
efx->phy_op = &ef4_dummy_phy_operations;
|
||
|
efx->mdio.dev = net_dev;
|
||
|
INIT_WORK(&efx->mac_work, ef4_mac_work);
|
||
|
init_waitqueue_head(&efx->flush_wq);
|
||
|
|
||
|
for (i = 0; i < EF4_MAX_CHANNELS; i++) {
|
||
|
efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
|
||
|
if (!efx->channel[i])
|
||
|
goto fail;
|
||
|
efx->msi_context[i].efx = efx;
|
||
|
efx->msi_context[i].index = i;
|
||
|
}
|
||
|
|
||
|
/* Higher numbered interrupt modes are less capable! */
|
||
|
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
|
||
|
interrupt_mode);
|
||
|
|
||
|
/* Would be good to use the net_dev name, but we're too early */
|
||
|
snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
|
||
|
pci_name(pci_dev));
|
||
|
efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
|
||
|
if (!efx->workqueue)
|
||
|
goto fail;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
ef4_fini_struct(efx);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static void ef4_fini_struct(struct ef4_nic *efx)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < EF4_MAX_CHANNELS; i++)
|
||
|
kfree(efx->channel[i]);
|
||
|
|
||
|
kfree(efx->vpd_sn);
|
||
|
|
||
|
if (efx->workqueue) {
|
||
|
destroy_workqueue(efx->workqueue);
|
||
|
efx->workqueue = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
|
||
|
{
|
||
|
u64 n_rx_nodesc_trunc = 0;
|
||
|
struct ef4_channel *channel;
|
||
|
|
||
|
ef4_for_each_channel(channel, efx)
|
||
|
n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
|
||
|
stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
|
||
|
stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* PCI interface
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Main body of final NIC shutdown code
|
||
|
* This is called only at module unload (or hotplug removal).
|
||
|
*/
|
||
|
static void ef4_pci_remove_main(struct ef4_nic *efx)
|
||
|
{
|
||
|
/* Flush reset_work. It can no longer be scheduled since we
|
||
|
* are not READY.
|
||
|
*/
|
||
|
BUG_ON(efx->state == STATE_READY);
|
||
|
cancel_work_sync(&efx->reset_work);
|
||
|
|
||
|
ef4_disable_interrupts(efx);
|
||
|
ef4_nic_fini_interrupt(efx);
|
||
|
ef4_fini_port(efx);
|
||
|
efx->type->fini(efx);
|
||
|
ef4_fini_napi(efx);
|
||
|
ef4_remove_all(efx);
|
||
|
}
|
||
|
|
||
|
/* Final NIC shutdown
|
||
|
* This is called only at module unload (or hotplug removal). A PF can call
|
||
|
* this on its VFs to ensure they are unbound first.
|
||
|
*/
|
||
|
static void ef4_pci_remove(struct pci_dev *pci_dev)
|
||
|
{
|
||
|
struct ef4_nic *efx;
|
||
|
|
||
|
efx = pci_get_drvdata(pci_dev);
|
||
|
if (!efx)
|
||
|
return;
|
||
|
|
||
|
/* Mark the NIC as fini, then stop the interface */
|
||
|
rtnl_lock();
|
||
|
ef4_dissociate(efx);
|
||
|
dev_close(efx->net_dev);
|
||
|
ef4_disable_interrupts(efx);
|
||
|
efx->state = STATE_UNINIT;
|
||
|
rtnl_unlock();
|
||
|
|
||
|
ef4_unregister_netdev(efx);
|
||
|
|
||
|
ef4_mtd_remove(efx);
|
||
|
|
||
|
ef4_pci_remove_main(efx);
|
||
|
|
||
|
ef4_fini_io(efx);
|
||
|
netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
|
||
|
|
||
|
ef4_fini_struct(efx);
|
||
|
free_netdev(efx->net_dev);
|
||
|
|
||
|
pci_disable_pcie_error_reporting(pci_dev);
|
||
|
};
|
||
|
|
||
|
/* NIC VPD information
|
||
|
* Called during probe to display the part number of the
|
||
|
* installed NIC. VPD is potentially very large but this should
|
||
|
* always appear within the first 512 bytes.
|
||
|
*/
|
||
|
#define SFC_VPD_LEN 512
|
||
|
static void ef4_probe_vpd_strings(struct ef4_nic *efx)
|
||
|
{
|
||
|
struct pci_dev *dev = efx->pci_dev;
|
||
|
char vpd_data[SFC_VPD_LEN];
|
||
|
ssize_t vpd_size;
|
||
|
int ro_start, ro_size, i, j;
|
||
|
|
||
|
/* Get the vpd data from the device */
|
||
|
vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
|
||
|
if (vpd_size <= 0) {
|
||
|
netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Get the Read only section */
|
||
|
ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
|
||
|
if (ro_start < 0) {
|
||
|
netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
|
||
|
j = ro_size;
|
||
|
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
|
||
|
if (i + j > vpd_size)
|
||
|
j = vpd_size - i;
|
||
|
|
||
|
/* Get the Part number */
|
||
|
i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
|
||
|
if (i < 0) {
|
||
|
netif_err(efx, drv, efx->net_dev, "Part number not found\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
j = pci_vpd_info_field_size(&vpd_data[i]);
|
||
|
i += PCI_VPD_INFO_FLD_HDR_SIZE;
|
||
|
if (i + j > vpd_size) {
|
||
|
netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
netif_info(efx, drv, efx->net_dev,
|
||
|
"Part Number : %.*s\n", j, &vpd_data[i]);
|
||
|
|
||
|
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
|
||
|
j = ro_size;
|
||
|
i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
|
||
|
if (i < 0) {
|
||
|
netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
j = pci_vpd_info_field_size(&vpd_data[i]);
|
||
|
i += PCI_VPD_INFO_FLD_HDR_SIZE;
|
||
|
if (i + j > vpd_size) {
|
||
|
netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
|
||
|
if (!efx->vpd_sn)
|
||
|
return;
|
||
|
|
||
|
snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Main body of NIC initialisation
|
||
|
* This is called at module load (or hotplug insertion, theoretically).
|
||
|
*/
|
||
|
static int ef4_pci_probe_main(struct ef4_nic *efx)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
/* Do start-of-day initialisation */
|
||
|
rc = ef4_probe_all(efx);
|
||
|
if (rc)
|
||
|
goto fail1;
|
||
|
|
||
|
ef4_init_napi(efx);
|
||
|
|
||
|
rc = efx->type->init(efx);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"failed to initialise NIC\n");
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
rc = ef4_init_port(efx);
|
||
|
if (rc) {
|
||
|
netif_err(efx, probe, efx->net_dev,
|
||
|
"failed to initialise port\n");
|
||
|
goto fail4;
|
||
|
}
|
||
|
|
||
|
rc = ef4_nic_init_interrupt(efx);
|
||
|
if (rc)
|
||
|
goto fail5;
|
||
|
rc = ef4_enable_interrupts(efx);
|
||
|
if (rc)
|
||
|
goto fail6;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail6:
|
||
|
ef4_nic_fini_interrupt(efx);
|
||
|
fail5:
|
||
|
ef4_fini_port(efx);
|
||
|
fail4:
|
||
|
efx->type->fini(efx);
|
||
|
fail3:
|
||
|
ef4_fini_napi(efx);
|
||
|
ef4_remove_all(efx);
|
||
|
fail1:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* NIC initialisation
|
||
|
*
|
||
|
* This is called at module load (or hotplug insertion,
|
||
|
* theoretically). It sets up PCI mappings, resets the NIC,
|
||
|
* sets up and registers the network devices with the kernel and hooks
|
||
|
* the interrupt service routine. It does not prepare the device for
|
||
|
* transmission; this is left to the first time one of the network
|
||
|
* interfaces is brought up (i.e. ef4_net_open).
|
||
|
*/
|
||
|
static int ef4_pci_probe(struct pci_dev *pci_dev,
|
||
|
const struct pci_device_id *entry)
|
||
|
{
|
||
|
struct net_device *net_dev;
|
||
|
struct ef4_nic *efx;
|
||
|
int rc;
|
||
|
|
||
|
/* Allocate and initialise a struct net_device and struct ef4_nic */
|
||
|
net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
|
||
|
EF4_MAX_RX_QUEUES);
|
||
|
if (!net_dev)
|
||
|
return -ENOMEM;
|
||
|
efx = netdev_priv(net_dev);
|
||
|
efx->type = (const struct ef4_nic_type *) entry->driver_data;
|
||
|
efx->fixed_features |= NETIF_F_HIGHDMA;
|
||
|
|
||
|
pci_set_drvdata(pci_dev, efx);
|
||
|
SET_NETDEV_DEV(net_dev, &pci_dev->dev);
|
||
|
rc = ef4_init_struct(efx, pci_dev, net_dev);
|
||
|
if (rc)
|
||
|
goto fail1;
|
||
|
|
||
|
netif_info(efx, probe, efx->net_dev,
|
||
|
"Solarflare NIC detected\n");
|
||
|
|
||
|
ef4_probe_vpd_strings(efx);
|
||
|
|
||
|
/* Set up basic I/O (BAR mappings etc) */
|
||
|
rc = ef4_init_io(efx);
|
||
|
if (rc)
|
||
|
goto fail2;
|
||
|
|
||
|
rc = ef4_pci_probe_main(efx);
|
||
|
if (rc)
|
||
|
goto fail3;
|
||
|
|
||
|
net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
|
||
|
NETIF_F_RXCSUM);
|
||
|
/* Mask for features that also apply to VLAN devices */
|
||
|
net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
|
||
|
NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
|
||
|
|
||
|
net_dev->hw_features = net_dev->features & ~efx->fixed_features;
|
||
|
|
||
|
/* Disable VLAN filtering by default. It may be enforced if
|
||
|
* the feature is fixed (i.e. VLAN filters are required to
|
||
|
* receive VLAN tagged packets due to vPort restrictions).
|
||
|
*/
|
||
|
net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
|
||
|
net_dev->features |= efx->fixed_features;
|
||
|
|
||
|
rc = ef4_register_netdev(efx);
|
||
|
if (rc)
|
||
|
goto fail4;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
|
||
|
|
||
|
/* Try to create MTDs, but allow this to fail */
|
||
|
rtnl_lock();
|
||
|
rc = ef4_mtd_probe(efx);
|
||
|
rtnl_unlock();
|
||
|
if (rc && rc != -EPERM)
|
||
|
netif_warn(efx, probe, efx->net_dev,
|
||
|
"failed to create MTDs (%d)\n", rc);
|
||
|
|
||
|
rc = pci_enable_pcie_error_reporting(pci_dev);
|
||
|
if (rc && rc != -EINVAL)
|
||
|
netif_notice(efx, probe, efx->net_dev,
|
||
|
"PCIE error reporting unavailable (%d).\n",
|
||
|
rc);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail4:
|
||
|
ef4_pci_remove_main(efx);
|
||
|
fail3:
|
||
|
ef4_fini_io(efx);
|
||
|
fail2:
|
||
|
ef4_fini_struct(efx);
|
||
|
fail1:
|
||
|
WARN_ON(rc > 0);
|
||
|
netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
|
||
|
free_netdev(net_dev);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int ef4_pm_freeze(struct device *dev)
|
||
|
{
|
||
|
struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
if (efx->state != STATE_DISABLED) {
|
||
|
efx->state = STATE_UNINIT;
|
||
|
|
||
|
ef4_device_detach_sync(efx);
|
||
|
|
||
|
ef4_stop_all(efx);
|
||
|
ef4_disable_interrupts(efx);
|
||
|
}
|
||
|
|
||
|
rtnl_unlock();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int ef4_pm_thaw(struct device *dev)
|
||
|
{
|
||
|
int rc;
|
||
|
struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
if (efx->state != STATE_DISABLED) {
|
||
|
rc = ef4_enable_interrupts(efx);
|
||
|
if (rc)
|
||
|
goto fail;
|
||
|
|
||
|
mutex_lock(&efx->mac_lock);
|
||
|
efx->phy_op->reconfigure(efx);
|
||
|
mutex_unlock(&efx->mac_lock);
|
||
|
|
||
|
ef4_start_all(efx);
|
||
|
|
||
|
netif_device_attach(efx->net_dev);
|
||
|
|
||
|
efx->state = STATE_READY;
|
||
|
|
||
|
efx->type->resume_wol(efx);
|
||
|
}
|
||
|
|
||
|
rtnl_unlock();
|
||
|
|
||
|
/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
|
||
|
queue_work(reset_workqueue, &efx->reset_work);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
rtnl_unlock();
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int ef4_pm_poweroff(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
||
|
struct ef4_nic *efx = pci_get_drvdata(pci_dev);
|
||
|
|
||
|
efx->type->fini(efx);
|
||
|
|
||
|
efx->reset_pending = 0;
|
||
|
|
||
|
pci_save_state(pci_dev);
|
||
|
return pci_set_power_state(pci_dev, PCI_D3hot);
|
||
|
}
|
||
|
|
||
|
/* Used for both resume and restore */
|
||
|
static int ef4_pm_resume(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
||
|
struct ef4_nic *efx = pci_get_drvdata(pci_dev);
|
||
|
int rc;
|
||
|
|
||
|
rc = pci_set_power_state(pci_dev, PCI_D0);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
pci_restore_state(pci_dev);
|
||
|
rc = pci_enable_device(pci_dev);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
pci_set_master(efx->pci_dev);
|
||
|
rc = efx->type->reset(efx, RESET_TYPE_ALL);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
rc = efx->type->init(efx);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
rc = ef4_pm_thaw(dev);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int ef4_pm_suspend(struct device *dev)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
ef4_pm_freeze(dev);
|
||
|
rc = ef4_pm_poweroff(dev);
|
||
|
if (rc)
|
||
|
ef4_pm_resume(dev);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static const struct dev_pm_ops ef4_pm_ops = {
|
||
|
.suspend = ef4_pm_suspend,
|
||
|
.resume = ef4_pm_resume,
|
||
|
.freeze = ef4_pm_freeze,
|
||
|
.thaw = ef4_pm_thaw,
|
||
|
.poweroff = ef4_pm_poweroff,
|
||
|
.restore = ef4_pm_resume,
|
||
|
};
|
||
|
|
||
|
/* A PCI error affecting this device was detected.
|
||
|
* At this point MMIO and DMA may be disabled.
|
||
|
* Stop the software path and request a slot reset.
|
||
|
*/
|
||
|
static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
|
||
|
enum pci_channel_state state)
|
||
|
{
|
||
|
pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
|
||
|
struct ef4_nic *efx = pci_get_drvdata(pdev);
|
||
|
|
||
|
if (state == pci_channel_io_perm_failure)
|
||
|
return PCI_ERS_RESULT_DISCONNECT;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
if (efx->state != STATE_DISABLED) {
|
||
|
efx->state = STATE_RECOVERY;
|
||
|
efx->reset_pending = 0;
|
||
|
|
||
|
ef4_device_detach_sync(efx);
|
||
|
|
||
|
ef4_stop_all(efx);
|
||
|
ef4_disable_interrupts(efx);
|
||
|
|
||
|
status = PCI_ERS_RESULT_NEED_RESET;
|
||
|
} else {
|
||
|
/* If the interface is disabled we don't want to do anything
|
||
|
* with it.
|
||
|
*/
|
||
|
status = PCI_ERS_RESULT_RECOVERED;
|
||
|
}
|
||
|
|
||
|
rtnl_unlock();
|
||
|
|
||
|
pci_disable_device(pdev);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Fake a successful reset, which will be performed later in ef4_io_resume. */
|
||
|
static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct ef4_nic *efx = pci_get_drvdata(pdev);
|
||
|
pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
|
||
|
int rc;
|
||
|
|
||
|
if (pci_enable_device(pdev)) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"Cannot re-enable PCI device after reset.\n");
|
||
|
status = PCI_ERS_RESULT_DISCONNECT;
|
||
|
}
|
||
|
|
||
|
rc = pci_cleanup_aer_uncorrect_error_status(pdev);
|
||
|
if (rc) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
|
||
|
/* Non-fatal error. Continue. */
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Perform the actual reset and resume I/O operations. */
|
||
|
static void ef4_io_resume(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct ef4_nic *efx = pci_get_drvdata(pdev);
|
||
|
int rc;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
if (efx->state == STATE_DISABLED)
|
||
|
goto out;
|
||
|
|
||
|
rc = ef4_reset(efx, RESET_TYPE_ALL);
|
||
|
if (rc) {
|
||
|
netif_err(efx, hw, efx->net_dev,
|
||
|
"ef4_reset failed after PCI error (%d)\n", rc);
|
||
|
} else {
|
||
|
efx->state = STATE_READY;
|
||
|
netif_dbg(efx, hw, efx->net_dev,
|
||
|
"Done resetting and resuming IO after PCI error.\n");
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
rtnl_unlock();
|
||
|
}
|
||
|
|
||
|
/* For simplicity and reliability, we always require a slot reset and try to
|
||
|
* reset the hardware when a pci error affecting the device is detected.
|
||
|
* We leave both the link_reset and mmio_enabled callback unimplemented:
|
||
|
* with our request for slot reset the mmio_enabled callback will never be
|
||
|
* called, and the link_reset callback is not used by AER or EEH mechanisms.
|
||
|
*/
|
||
|
static const struct pci_error_handlers ef4_err_handlers = {
|
||
|
.error_detected = ef4_io_error_detected,
|
||
|
.slot_reset = ef4_io_slot_reset,
|
||
|
.resume = ef4_io_resume,
|
||
|
};
|
||
|
|
||
|
static struct pci_driver ef4_pci_driver = {
|
||
|
.name = KBUILD_MODNAME,
|
||
|
.id_table = ef4_pci_table,
|
||
|
.probe = ef4_pci_probe,
|
||
|
.remove = ef4_pci_remove,
|
||
|
.driver.pm = &ef4_pm_ops,
|
||
|
.err_handler = &ef4_err_handlers,
|
||
|
};
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Kernel module interface
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
module_param(interrupt_mode, uint, 0444);
|
||
|
MODULE_PARM_DESC(interrupt_mode,
|
||
|
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
|
||
|
|
||
|
static int __init ef4_init_module(void)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
|
||
|
|
||
|
rc = register_netdevice_notifier(&ef4_netdev_notifier);
|
||
|
if (rc)
|
||
|
goto err_notifier;
|
||
|
|
||
|
reset_workqueue = create_singlethread_workqueue("sfc_reset");
|
||
|
if (!reset_workqueue) {
|
||
|
rc = -ENOMEM;
|
||
|
goto err_reset;
|
||
|
}
|
||
|
|
||
|
rc = pci_register_driver(&ef4_pci_driver);
|
||
|
if (rc < 0)
|
||
|
goto err_pci;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_pci:
|
||
|
destroy_workqueue(reset_workqueue);
|
||
|
err_reset:
|
||
|
unregister_netdevice_notifier(&ef4_netdev_notifier);
|
||
|
err_notifier:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void __exit ef4_exit_module(void)
|
||
|
{
|
||
|
printk(KERN_INFO "Solarflare Falcon driver unloading\n");
|
||
|
|
||
|
pci_unregister_driver(&ef4_pci_driver);
|
||
|
destroy_workqueue(reset_workqueue);
|
||
|
unregister_netdevice_notifier(&ef4_netdev_notifier);
|
||
|
|
||
|
}
|
||
|
|
||
|
module_init(ef4_init_module);
|
||
|
module_exit(ef4_exit_module);
|
||
|
|
||
|
MODULE_AUTHOR("Solarflare Communications and "
|
||
|
"Michael Brown <mbrown@fensystems.co.uk>");
|
||
|
MODULE_DESCRIPTION("Solarflare Falcon network driver");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_DEVICE_TABLE(pci, ef4_pci_table);
|
||
|
MODULE_VERSION(EF4_DRIVER_VERSION);
|