lineage_kernel_xcoverpro/drivers/mfd/cirrus-pwr.c

832 lines
21 KiB
C
Raw Normal View History

2023-06-18 22:53:49 +00:00
/*
* Power-management support for Cirrus Logic CS35L41 amplifier
*
* Copyright 2018 Cirrus Logic
*
* Author: David Rhodes <david.rhodes@cirrus.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/fs.h>
#include <linux/ktime.h>
#include <linux/mfd/cs35l41/core.h>
#include <linux/mfd/cs35l41/registers.h>
#include <linux/mfd/cs35l41/power.h>
#define CIRRUS_PWR_VERSION "5.01.18"
#define CIRRUS_PWR_CLASS_NAME "cirrus"
#define CIRRUS_PWR_DIR_NAME "cirrus_pwr"
#define CIRRUS_PWR_WORKQ_NAME "cirrus_pwr_wq"
#define CIRRUS_PWR_STATUS_DISABLED 0
#define CIRRUS_PWR_STATUS_ENABLED 1
#define CIRRUS_PWR_STATUS_ERROR 3
#define CIRRUS_PWR_AMB_TEMP_OFFSET 500
#define CIRRUS_PWR_SCALING_Q15 846397
struct cirrus_pwr_t {
struct class *pwr_class;
struct device *dev;
struct cirrus_mfd_amp *amps;
int num_amps;
struct mutex pwr_lock;
struct delayed_work pwr_work;
struct workqueue_struct *pwr_workqueue;
unsigned int uptime_ms;
unsigned int interval;
unsigned int status;
unsigned int target_min_time_ms;
unsigned int target_temp[CIRRUS_MAX_AMPS];
unsigned int exit_temp[CIRRUS_MAX_AMPS];
unsigned int amb_temp[CIRRUS_MAX_AMPS];
unsigned int spk_temp[CIRRUS_MAX_AMPS];
unsigned int passport_enable[CIRRUS_MAX_AMPS];
unsigned int global_enable;
bool amp_active[CIRRUS_MAX_AMPS];
};
static struct cirrus_pwr_t *cirrus_pwr;
static struct attribute_group cirrus_pwr_attr_grp;
struct cirrus_mfd_amp *cirrus_pwr_get_amp_from_suffix(const char *suffix)
{
int i;
struct cirrus_mfd_amp *ret = NULL;
if (cirrus_pwr == NULL || cirrus_pwr->amps == NULL)
return NULL;
dev_dbg(cirrus_pwr->dev, "%s: suffix = %s\n", __func__, suffix);
for (i = 0; i < cirrus_pwr->num_amps; i++) {
dev_dbg(cirrus_pwr->dev, "comparing %s & %s\n",
cirrus_pwr->amps[i].mfd_suffix,
suffix);
if (strcmp(cirrus_pwr->amps[i].mfd_suffix, suffix) == 0)
ret = &cirrus_pwr->amps[i];
}
return ret;
}
static unsigned int sqrt_q24(unsigned long int x)
{
u32 root, remHi, remLo, testDiv, count;
root = 0;
remHi = 0;
remLo = x;
count = 24;
do {
remHi = (remHi << 2) | (remLo >> 30);
remLo <<= 2;
root <<= 1;
testDiv = (root << 1) + 1;
if (remHi >= testDiv) {
remHi -= testDiv;
root++;
}
} while (count-- != 0);
return root; /* Q21 result */
}
static unsigned int convert_power(unsigned int power_squared)
{
unsigned long long int power;
power = sqrt_q24(power_squared*2);
power *= CIRRUS_PWR_SCALING_Q15;
dev_dbg(cirrus_pwr->dev,
"converted power (%d W^2): %llu.%04llu W\n",
power_squared,
power >> 36,
(power & (((1ull << 36) - 1ull))) *
10000 / (1ull << 36));
power *= 1000;
power >>= 28;
dev_dbg(cirrus_pwr->dev,
"converted power q8 mW: %d mW = 0x%x\n",
(unsigned int)(power / 256), (unsigned int)(power));
return (unsigned int)power;
}
int cirrus_pwr_amp_add(struct regmap *regmap_new, const char *mfd_suffix,
const char *dsp_part_name)
{
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(mfd_suffix);
if (cirrus_pwr){
if (amp) {
dev_info(cirrus_pwr->dev,
"Amp added, suffix: %s dsp_part_name: %s\n",
mfd_suffix, dsp_part_name);
amp->regmap = regmap_new;
amp->dsp_part_name = dsp_part_name;
} else {
dev_err(cirrus_pwr->dev,
"No amp with suffix %s registered\n",
mfd_suffix);
}
} else {
return -EINVAL;
}
return 0;
}
int cirrus_pwr_set_params(bool global_enable, const char *mfd_suffix,
unsigned int target_temp, unsigned int exit_temp)
{
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(mfd_suffix);
if (!amp)
return 0;
cirrus_pwr->global_enable = global_enable;
cirrus_pwr->target_temp[amp->index] = target_temp;
cirrus_pwr->exit_temp[amp->index] = exit_temp;
dev_info(cirrus_pwr->dev,
"%s: global enable = %d, cs35l41%s, target temp = %d, exit temp = %d\n",
__func__, global_enable,
mfd_suffix,
target_temp, exit_temp);
return 0;
}
static void cirrus_pwr_passport_enable(struct regmap *regmap_enable,
bool enable)
{
if (regmap_enable)
regmap_write(regmap_enable,
CIRRUS_PWR_CSPL_PASSPORT_ENABLE,
(uint)enable);
}
void cirrus_pwr_start(const char *mfd_suffix)
{
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(mfd_suffix);
if (!cirrus_pwr)
return;
if (!amp)
return;
cirrus_pwr->amp_active[amp->index] = 1;
if (!cirrus_pwr->global_enable)
return;
mutex_lock(&cirrus_pwr->pwr_lock);
if (cirrus_pwr->status == CIRRUS_PWR_STATUS_ENABLED) {
/* State machine already active on one amp */
dev_dbg(cirrus_pwr->dev,
"cirrus_pwr_start(), additional amp activated");
} else {
/* Init state machine */
dev_dbg(cirrus_pwr->dev,
"cirrus_pwr_start() Entering wait period.\n");
cirrus_pwr->status = CIRRUS_PWR_STATUS_ENABLED;
/* Queue state machine operation */
queue_delayed_work(cirrus_pwr->pwr_workqueue,
&cirrus_pwr->pwr_work,
msecs_to_jiffies(cirrus_pwr->interval));
}
mutex_unlock(&cirrus_pwr->pwr_lock);
}
EXPORT_SYMBOL_GPL(cirrus_pwr_start);
void cirrus_pwr_stop(const char *mfd_suffix)
{
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(mfd_suffix);
int i;
bool amps_active = 0;
if (!cirrus_pwr)
return;
if (!amp)
return;
cirrus_pwr->amp_active[amp->index] = 0;
if (!cirrus_pwr->global_enable)
return;
mutex_lock(&cirrus_pwr->pwr_lock);
for (i = 0; i < cirrus_pwr->num_amps; i++)
amps_active |= cirrus_pwr->amp_active[i];
if (amps_active) {
/* One amp still active */
dev_dbg(cirrus_pwr->dev,
"Amp cs35l41%s deactivated\n", mfd_suffix);
} else {
/* Exit state machine */
dev_dbg(cirrus_pwr->dev,
"cirrus_pwr_stop(). Disabling PASSPORT\n");
for (i = 0; i < cirrus_pwr->num_amps; i++) {
cirrus_pwr_passport_enable(
cirrus_pwr->amps[i].regmap, false);
cirrus_pwr->passport_enable[i] = 0;
}
/* Reset state machine variables */
cirrus_pwr->uptime_ms = 0;
cirrus_pwr->status = CIRRUS_PWR_STATUS_DISABLED;
/* cancel workqueue */
if (delayed_work_pending(&cirrus_pwr->pwr_work))
cancel_delayed_work(&cirrus_pwr->pwr_work);
}
mutex_unlock(&cirrus_pwr->pwr_lock);
}
EXPORT_SYMBOL_GPL(cirrus_pwr_stop);
static void cirrus_pwr_work(struct work_struct *work)
{
int i;
struct cirrus_mfd_amp *amp;
mutex_lock(&cirrus_pwr->pwr_lock);
/* Run state machine and enable/disable Passport accordingly */
switch (cirrus_pwr->status) {
case CIRRUS_PWR_STATUS_ENABLED:
cirrus_pwr->uptime_ms += cirrus_pwr->interval;
if (cirrus_pwr->uptime_ms <= cirrus_pwr->target_min_time_ms) {
dev_dbg(cirrus_pwr->dev,
"Waiting for min time... (%d / %d ms)\n",
cirrus_pwr->uptime_ms,
cirrus_pwr->target_min_time_ms);
break;
}
/* Enabled and > min time */
/* Evaluate temp for each amp and enable/disable Passport */
for (i = 0; i < cirrus_pwr->num_amps; i++) {
amp = &cirrus_pwr->amps[i];
dev_dbg(cirrus_pwr->dev,
"Amp cs35l41%s\n", amp->mfd_suffix);
dev_dbg(cirrus_pwr->dev,
"Spk Temp:\t%d.%d C\t(Target: %d.%d C)\n",
cirrus_pwr->spk_temp[i] / 100,
cirrus_pwr->spk_temp[i] % 100,
cirrus_pwr->target_temp[i] / 100,
cirrus_pwr->target_temp[i] % 100);
dev_dbg(cirrus_pwr->dev, "Amb Temp:\t%d.%d\n",
cirrus_pwr->amb_temp[i] / 100,
cirrus_pwr->amb_temp[i] % 100);
if (cirrus_pwr->amp_active[i]) {
if (cirrus_pwr->passport_enable[i]) {
/* Evaluate exit criteria */
if (cirrus_pwr->spk_temp[i] <
cirrus_pwr->exit_temp[i]) {
cirrus_pwr_passport_enable(
amp->regmap,
false);
dev_info(cirrus_pwr->dev,
"Amp cs35l41%s below exit temp. Disabling PASSPORT\n",
amp->mfd_suffix);
cirrus_pwr->passport_enable[i] = 0;
}
} else {
/* Evaluate entry criteria */
if ((cirrus_pwr->amb_temp[i] +
CIRRUS_PWR_AMB_TEMP_OFFSET <
cirrus_pwr->spk_temp[i]) &&
(cirrus_pwr->spk_temp[i] >
cirrus_pwr->target_temp[i])) {
cirrus_pwr_passport_enable(
amp->regmap, true);
dev_info(cirrus_pwr->dev,
"Amp cs35l41%s above target temp and ambient + 5.\n",
amp->mfd_suffix);
dev_info(cirrus_pwr->dev, "Enabling PASSPORT\n");
cirrus_pwr->passport_enable[i] = 1;
}
}
}
dev_dbg(cirrus_pwr->dev, "Amp cs35l41%s: Passport %s\n",
amp->mfd_suffix,
cirrus_pwr->passport_enable[i] ?
"Enabled" : "Disabled");
}
break;
case CIRRUS_PWR_STATUS_ERROR:
case CIRRUS_PWR_STATUS_DISABLED:
default:
break;
}
mutex_unlock(&cirrus_pwr->pwr_lock);
/* Queue next operation */
if (cirrus_pwr->global_enable) {
queue_delayed_work(cirrus_pwr->pwr_workqueue,
&cirrus_pwr->pwr_work,
msecs_to_jiffies(cirrus_pwr->interval));
}
}
/***** SYSFS Interfaces *****/
static ssize_t cirrus_pwr_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, CIRRUS_PWR_VERSION "\n");
}
static ssize_t cirrus_pwr_version_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_uptime_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", cirrus_pwr->uptime_ms);
}
static ssize_t cirrus_pwr_uptime_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_power_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("value")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
unsigned int power_squared;
unsigned int power = 0;
if (!amp)
return 0;
if (cirrus_pwr->amp_active[amp->index]) {
regmap_read(amp->regmap,
CIRRUS_PWR_CSPL_OUTPUT_POWER_SQ,
&power_squared);
power = convert_power(power_squared);
}
return sprintf(buf, "%x\n", power);
}
static ssize_t cirrus_pwr_power_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_interval_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", cirrus_pwr->interval);
}
static ssize_t cirrus_pwr_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
if (kstrtou32(buf, 0, &cirrus_pwr->interval))
dev_err(cirrus_pwr->dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
static ssize_t cirrus_pwr_status_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
switch (cirrus_pwr->status) {
case CIRRUS_PWR_STATUS_DISABLED:
return sprintf(buf, "Disabled\n");
case CIRRUS_PWR_STATUS_ENABLED:
return sprintf(buf, "Enabled\n");
case CIRRUS_PWR_STATUS_ERROR:
return sprintf(buf, "Error\n");
default:
return sprintf(buf, "\n");
}
}
static ssize_t cirrus_pwr_status_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
return size;
}
static ssize_t cirrus_pwr_target_min_time_ms_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", cirrus_pwr->target_min_time_ms);
}
static ssize_t cirrus_pwr_target_min_time_ms_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
if (kstrtou32(buf, 0, &cirrus_pwr->target_min_time_ms))
dev_err(cirrus_pwr->dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
static ssize_t cirrus_pwr_target_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("target_temp")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", cirrus_pwr->target_temp[amp->index]);
}
static ssize_t cirrus_pwr_target_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("target_temp")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &cirrus_pwr->target_temp[amp->index]))
dev_err(cirrus_pwr->dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
static ssize_t cirrus_pwr_exit_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("exit_temp")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", cirrus_pwr->exit_temp[amp->index]);
}
static ssize_t cirrus_pwr_exit_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("exit_temp")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &cirrus_pwr->exit_temp[amp->index]))
dev_err(cirrus_pwr->dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
static ssize_t cirrus_pwr_amb_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("amb_temp")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", cirrus_pwr->amb_temp[amp->index]);
}
static ssize_t cirrus_pwr_amb_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("amb_temp")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &cirrus_pwr->amb_temp[amp->index]))
dev_err(cirrus_pwr->dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
static ssize_t cirrus_pwr_spk_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const char *suffix = &(attr->attr.name[strlen("spk_t")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
return sprintf(buf, "%d\n", cirrus_pwr->spk_temp[amp->index]);
}
static ssize_t cirrus_pwr_spk_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
const char *suffix = &(attr->attr.name[strlen("spk_t")]);
struct cirrus_mfd_amp *amp = cirrus_pwr_get_amp_from_suffix(suffix);
if (!amp)
return 0;
if (kstrtou32(buf, 0, &cirrus_pwr->spk_temp[amp->index]))
dev_err(cirrus_pwr->dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
static ssize_t cirrus_pwr_global_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", cirrus_pwr->global_enable);
}
static ssize_t cirrus_pwr_global_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned int enable;
int i;
if (kstrtou32(buf, 0, &enable)) {
dev_err(cirrus_pwr->dev,
"%s: Failed to convert from str to u32.\n",
__func__);
return size;
}
cirrus_pwr->global_enable = enable;
if (enable == 0 &&
cirrus_pwr->status == CIRRUS_PWR_STATUS_ENABLED) {
/* Stop all amps */
for (i = 0; i < cirrus_pwr->num_amps; i++)
cirrus_pwr_stop(cirrus_pwr->amps[i].mfd_suffix);
}
return size;
}
static DEVICE_ATTR(version, 0444, cirrus_pwr_version_show,
cirrus_pwr_version_store);
static DEVICE_ATTR(uptime, 0444, cirrus_pwr_uptime_show,
cirrus_pwr_uptime_store);
static DEVICE_ATTR(global_enable, 0664, cirrus_pwr_global_enable_show,
cirrus_pwr_global_enable_store);
static DEVICE_ATTR(interval, 0664, cirrus_pwr_interval_show,
cirrus_pwr_interval_store);
static DEVICE_ATTR(status, 0664, cirrus_pwr_status_show,
cirrus_pwr_status_store);
static DEVICE_ATTR(target_min_time_ms, 0664, cirrus_pwr_target_min_time_ms_show,
cirrus_pwr_target_min_time_ms_store);
static struct attribute *cirrus_pwr_attr_base[] = {
&dev_attr_version.attr,
&dev_attr_uptime.attr,
&dev_attr_interval.attr,
&dev_attr_status.attr,
&dev_attr_target_min_time_ms.attr,
&dev_attr_global_enable.attr,
NULL,
};
static struct device_attribute generic_amp_attrs[CIRRUS_PWR_NUM_ATTRS_AMP] = {
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0444)},
.show = cirrus_pwr_power_show,
.store = cirrus_pwr_power_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_target_temp_show,
.store = cirrus_pwr_target_temp_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_exit_temp_show,
.store = cirrus_pwr_exit_temp_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_amb_temp_show,
.store = cirrus_pwr_amb_temp_store,
},
{
.attr = {.mode = VERIFY_OCTAL_PERMISSIONS(0664)},
.show = cirrus_pwr_spk_temp_show,
.store = cirrus_pwr_spk_temp_store,
},
};
static const char *generic_amp_attr_names[CIRRUS_PWR_NUM_ATTRS_AMP] = {
"value",
"target_temp",
"exit_temp",
"env_temp",
"spk_t",
};
static struct device_attribute
amp_attrs_prealloc[CIRRUS_MAX_AMPS][CIRRUS_PWR_NUM_ATTRS_AMP];
static char attr_names_prealloc[CIRRUS_MAX_AMPS][CIRRUS_PWR_NUM_ATTRS_AMP][20];
struct device_attribute *cirrus_pwr_create_amp_attrs(const char *mfd_suffix,
int index)
{
struct device_attribute *amp_attrs_new;
int i, suffix_len = strlen(mfd_suffix);
amp_attrs_new = &(amp_attrs_prealloc[index][0]);
if (amp_attrs_new == NULL)
return amp_attrs_new;
memcpy(amp_attrs_new, &generic_amp_attrs,
sizeof(struct device_attribute) *
CIRRUS_PWR_NUM_ATTRS_AMP);
for (i = 0; i < CIRRUS_PWR_NUM_ATTRS_AMP; i++) {
amp_attrs_new[i].attr.name = attr_names_prealloc[index][i];
snprintf((char *)amp_attrs_new[i].attr.name,
strlen(generic_amp_attr_names[i]) + suffix_len + 1,
"%s%s", generic_amp_attr_names[i], mfd_suffix);
}
return amp_attrs_new;
}
int cirrus_pwr_init(struct class *cirrus_amp_class, int num_amps,
const char **mfd_suffixes)
{
int ret = 0, i, j;
struct device_attribute *new_attrs;
cirrus_pwr = kzalloc(sizeof(struct cirrus_pwr_t), GFP_KERNEL);
if (cirrus_pwr == NULL)
return -ENOMEM;
cirrus_pwr->amps = kzalloc(sizeof(struct cirrus_mfd_amp) * num_amps,
GFP_KERNEL);
if (cirrus_pwr->amps == NULL) {
kfree(cirrus_pwr);
return -ENOMEM;
}
cirrus_pwr->num_amps = num_amps;
for (i = 0; i < num_amps; i++) {
cirrus_pwr->amps[i].mfd_suffix = mfd_suffixes[i];
cirrus_pwr->amps[i].index = i;
cirrus_pwr->amb_temp[i] = 2500;
cirrus_pwr->spk_temp[i] = 2500;
cirrus_pwr->target_temp[i] = 3400;
cirrus_pwr->exit_temp[i] = 3250;
cirrus_pwr->passport_enable[i] = 0;
}
cirrus_pwr->pwr_class = cirrus_amp_class;
cirrus_pwr->dev = device_create(cirrus_pwr->pwr_class, NULL, 1, NULL,
CIRRUS_PWR_DIR_NAME);
if (IS_ERR(cirrus_pwr->dev)) {
ret = PTR_ERR(cirrus_pwr->dev);
pr_err("Failed to create cirrus_pwr device\n");
class_destroy(cirrus_pwr->pwr_class);
goto err;
}
cirrus_pwr_attr_grp.attrs = kzalloc(sizeof(struct attribute *) *
(CIRRUS_PWR_NUM_ATTRS_AMP * num_amps +
CIRRUS_PWR_NUM_ATTRS_BASE + 1),
GFP_KERNEL);
for (i = 0; i < num_amps; i++) {
new_attrs = cirrus_pwr_create_amp_attrs(mfd_suffixes[i], i);
for (j = 0; j < CIRRUS_PWR_NUM_ATTRS_AMP; j++) {
dev_dbg(cirrus_pwr->dev, "New attribute: %s\n",
new_attrs[j].attr.name);
cirrus_pwr_attr_grp.attrs[i * CIRRUS_PWR_NUM_ATTRS_AMP
+ j] = &new_attrs[j].attr;
}
}
memcpy(&cirrus_pwr_attr_grp.attrs[num_amps * CIRRUS_PWR_NUM_ATTRS_AMP],
cirrus_pwr_attr_base, sizeof(struct attribute *) *
CIRRUS_PWR_NUM_ATTRS_BASE);
cirrus_pwr_attr_grp.attrs[num_amps * CIRRUS_PWR_NUM_ATTRS_AMP +
CIRRUS_PWR_NUM_ATTRS_BASE] = NULL;
cirrus_pwr->pwr_workqueue = create_singlethread_workqueue(
CIRRUS_PWR_WORKQ_NAME);
if (cirrus_pwr->pwr_workqueue == NULL) {
dev_err(cirrus_pwr->dev, "Failed to create workqueue\n");
ret = -ENOENT;
goto err;
}
cirrus_pwr->interval = 10000;
cirrus_pwr->uptime_ms = 0;
cirrus_pwr->target_min_time_ms = 300000;
cirrus_pwr->global_enable = 1;
ret = sysfs_create_group(&cirrus_pwr->dev->kobj, &cirrus_pwr_attr_grp);
if (ret) {
dev_err(cirrus_pwr->dev, "Failed to create sysfs group\n");
goto err;
}
mutex_init(&cirrus_pwr->pwr_lock);
INIT_DELAYED_WORK(&cirrus_pwr->pwr_work,
cirrus_pwr_work);
return 0;
err:
kfree(cirrus_pwr);
return ret;
}
void cirrus_pwr_exit(void)
{
kfree(cirrus_pwr);
}