lineage_kernel_xcoverpro/drivers/gpu/drm/bridge/tc358767.c

1405 lines
36 KiB
C
Raw Normal View History

2023-06-18 22:53:49 +00:00
/*
* tc358767 eDP bridge driver
*
* Copyright (C) 2016 CogentEmbedded Inc
* Author: Andrey Gusakov <andrey.gusakov@cogentembedded.com>
*
* Copyright (C) 2016 Pengutronix, Philipp Zabel <p.zabel@pengutronix.de>
*
* Initially based on: drivers/gpu/drm/i2c/tda998x_drv.c
*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
/* Registers */
/* Display Parallel Interface */
#define DPIPXLFMT 0x0440
#define VS_POL_ACTIVE_LOW (1 << 10)
#define HS_POL_ACTIVE_LOW (1 << 9)
#define DE_POL_ACTIVE_HIGH (0 << 8)
#define SUB_CFG_TYPE_CONFIG1 (0 << 2) /* LSB aligned */
#define SUB_CFG_TYPE_CONFIG2 (1 << 2) /* Loosely Packed */
#define SUB_CFG_TYPE_CONFIG3 (2 << 2) /* LSB aligned 8-bit */
#define DPI_BPP_RGB888 (0 << 0)
#define DPI_BPP_RGB666 (1 << 0)
#define DPI_BPP_RGB565 (2 << 0)
/* Video Path */
#define VPCTRL0 0x0450
#define OPXLFMT_RGB666 (0 << 8)
#define OPXLFMT_RGB888 (1 << 8)
#define FRMSYNC_DISABLED (0 << 4) /* Video Timing Gen Disabled */
#define FRMSYNC_ENABLED (1 << 4) /* Video Timing Gen Enabled */
#define MSF_DISABLED (0 << 0) /* Magic Square FRC disabled */
#define MSF_ENABLED (1 << 0) /* Magic Square FRC enabled */
#define HTIM01 0x0454
#define HTIM02 0x0458
#define VTIM01 0x045c
#define VTIM02 0x0460
#define VFUEN0 0x0464
#define VFUEN BIT(0) /* Video Frame Timing Upload */
/* System */
#define TC_IDREG 0x0500
#define SYSCTRL 0x0510
#define DP0_AUDSRC_NO_INPUT (0 << 3)
#define DP0_AUDSRC_I2S_RX (1 << 3)
#define DP0_VIDSRC_NO_INPUT (0 << 0)
#define DP0_VIDSRC_DSI_RX (1 << 0)
#define DP0_VIDSRC_DPI_RX (2 << 0)
#define DP0_VIDSRC_COLOR_BAR (3 << 0)
/* Control */
#define DP0CTL 0x0600
#define VID_MN_GEN BIT(6) /* Auto-generate M/N values */
#define EF_EN BIT(5) /* Enable Enhanced Framing */
#define VID_EN BIT(1) /* Video transmission enable */
#define DP_EN BIT(0) /* Enable DPTX function */
/* Clocks */
#define DP0_VIDMNGEN0 0x0610
#define DP0_VIDMNGEN1 0x0614
#define DP0_VMNGENSTATUS 0x0618
/* Main Channel */
#define DP0_SECSAMPLE 0x0640
#define DP0_VIDSYNCDELAY 0x0644
#define DP0_TOTALVAL 0x0648
#define DP0_STARTVAL 0x064c
#define DP0_ACTIVEVAL 0x0650
#define DP0_SYNCVAL 0x0654
#define SYNCVAL_HS_POL_ACTIVE_LOW (1 << 15)
#define SYNCVAL_VS_POL_ACTIVE_LOW (1 << 31)
#define DP0_MISC 0x0658
#define TU_SIZE_RECOMMENDED (63) /* LSCLK cycles per TU */
#define BPC_6 (0 << 5)
#define BPC_8 (1 << 5)
/* AUX channel */
#define DP0_AUXCFG0 0x0660
#define DP0_AUXCFG1 0x0664
#define AUX_RX_FILTER_EN BIT(16)
#define DP0_AUXADDR 0x0668
#define DP0_AUXWDATA(i) (0x066c + (i) * 4)
#define DP0_AUXRDATA(i) (0x067c + (i) * 4)
#define DP0_AUXSTATUS 0x068c
#define AUX_STATUS_MASK 0xf0
#define AUX_STATUS_SHIFT 4
#define AUX_TIMEOUT BIT(1)
#define AUX_BUSY BIT(0)
#define DP0_AUXI2CADR 0x0698
/* Link Training */
#define DP0_SRCCTRL 0x06a0
#define DP0_SRCCTRL_SCRMBLDIS BIT(13)
#define DP0_SRCCTRL_EN810B BIT(12)
#define DP0_SRCCTRL_NOTP (0 << 8)
#define DP0_SRCCTRL_TP1 (1 << 8)
#define DP0_SRCCTRL_TP2 (2 << 8)
#define DP0_SRCCTRL_LANESKEW BIT(7)
#define DP0_SRCCTRL_SSCG BIT(3)
#define DP0_SRCCTRL_LANES_1 (0 << 2)
#define DP0_SRCCTRL_LANES_2 (1 << 2)
#define DP0_SRCCTRL_BW27 (1 << 1)
#define DP0_SRCCTRL_BW162 (0 << 1)
#define DP0_SRCCTRL_AUTOCORRECT BIT(0)
#define DP0_LTSTAT 0x06d0
#define LT_LOOPDONE BIT(13)
#define LT_STATUS_MASK (0x1f << 8)
#define LT_CHANNEL1_EQ_BITS (DP_CHANNEL_EQ_BITS << 4)
#define LT_INTERLANE_ALIGN_DONE BIT(3)
#define LT_CHANNEL0_EQ_BITS (DP_CHANNEL_EQ_BITS)
#define DP0_SNKLTCHGREQ 0x06d4
#define DP0_LTLOOPCTRL 0x06d8
#define DP0_SNKLTCTRL 0x06e4
#define DP1_SRCCTRL 0x07a0
/* PHY */
#define DP_PHY_CTRL 0x0800
#define DP_PHY_RST BIT(28) /* DP PHY Global Soft Reset */
#define BGREN BIT(25) /* AUX PHY BGR Enable */
#define PWR_SW_EN BIT(24) /* PHY Power Switch Enable */
#define PHY_M1_RST BIT(12) /* Reset PHY1 Main Channel */
#define PHY_RDY BIT(16) /* PHY Main Channels Ready */
#define PHY_M0_RST BIT(8) /* Reset PHY0 Main Channel */
#define PHY_2LANE BIT(2) /* PHY Enable 2 lanes */
#define PHY_A0_EN BIT(1) /* PHY Aux Channel0 Enable */
#define PHY_M0_EN BIT(0) /* PHY Main Channel0 Enable */
/* PLL */
#define DP0_PLLCTRL 0x0900
#define DP1_PLLCTRL 0x0904 /* not defined in DS */
#define PXL_PLLCTRL 0x0908
#define PLLUPDATE BIT(2)
#define PLLBYP BIT(1)
#define PLLEN BIT(0)
#define PXL_PLLPARAM 0x0914
#define IN_SEL_REFCLK (0 << 14)
#define SYS_PLLPARAM 0x0918
#define REF_FREQ_38M4 (0 << 8) /* 38.4 MHz */
#define REF_FREQ_19M2 (1 << 8) /* 19.2 MHz */
#define REF_FREQ_26M (2 << 8) /* 26 MHz */
#define REF_FREQ_13M (3 << 8) /* 13 MHz */
#define SYSCLK_SEL_LSCLK (0 << 4)
#define LSCLK_DIV_1 (0 << 0)
#define LSCLK_DIV_2 (1 << 0)
/* Test & Debug */
#define TSTCTL 0x0a00
#define PLL_DBG 0x0a04
static bool tc_test_pattern;
module_param_named(test, tc_test_pattern, bool, 0644);
struct tc_edp_link {
struct drm_dp_link base;
u8 assr;
int scrambler_dis;
int spread;
int coding8b10b;
u8 swing;
u8 preemp;
};
struct tc_data {
struct device *dev;
struct regmap *regmap;
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct drm_connector connector;
struct drm_panel *panel;
/* link settings */
struct tc_edp_link link;
/* display edid */
struct edid *edid;
/* current mode */
struct drm_display_mode *mode;
u32 rev;
u8 assr;
struct gpio_desc *sd_gpio;
struct gpio_desc *reset_gpio;
struct clk *refclk;
};
static inline struct tc_data *aux_to_tc(struct drm_dp_aux *a)
{
return container_of(a, struct tc_data, aux);
}
static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
{
return container_of(b, struct tc_data, bridge);
}
static inline struct tc_data *connector_to_tc(struct drm_connector *c)
{
return container_of(c, struct tc_data, connector);
}
/* Simple macros to avoid repeated error checks */
#define tc_write(reg, var) \
do { \
ret = regmap_write(tc->regmap, reg, var); \
if (ret) \
goto err; \
} while (0)
#define tc_read(reg, var) \
do { \
ret = regmap_read(tc->regmap, reg, var); \
if (ret) \
goto err; \
} while (0)
static inline int tc_poll_timeout(struct regmap *map, unsigned int addr,
unsigned int cond_mask,
unsigned int cond_value,
unsigned long sleep_us, u64 timeout_us)
{
ktime_t timeout = ktime_add_us(ktime_get(), timeout_us);
unsigned int val;
int ret;
for (;;) {
ret = regmap_read(map, addr, &val);
if (ret)
break;
if ((val & cond_mask) == cond_value)
break;
if (timeout_us && ktime_compare(ktime_get(), timeout) > 0) {
ret = regmap_read(map, addr, &val);
break;
}
if (sleep_us)
usleep_range((sleep_us >> 2) + 1, sleep_us);
}
return ret ?: (((val & cond_mask) == cond_value) ? 0 : -ETIMEDOUT);
}
static int tc_aux_wait_busy(struct tc_data *tc, unsigned int timeout_ms)
{
return tc_poll_timeout(tc->regmap, DP0_AUXSTATUS, AUX_BUSY, 0,
1000, 1000 * timeout_ms);
}
static int tc_aux_get_status(struct tc_data *tc, u8 *reply)
{
int ret;
u32 value;
ret = regmap_read(tc->regmap, DP0_AUXSTATUS, &value);
if (ret < 0)
return ret;
if (value & AUX_BUSY) {
if (value & AUX_TIMEOUT) {
dev_err(tc->dev, "i2c access timeout!\n");
return -ETIMEDOUT;
}
return -EBUSY;
}
*reply = (value & AUX_STATUS_MASK) >> AUX_STATUS_SHIFT;
return 0;
}
static ssize_t tc_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct tc_data *tc = aux_to_tc(aux);
size_t size = min_t(size_t, 8, msg->size);
u8 request = msg->request & ~DP_AUX_I2C_MOT;
u8 *buf = msg->buffer;
u32 tmp = 0;
int i = 0;
int ret;
if (size == 0)
return 0;
ret = tc_aux_wait_busy(tc, 100);
if (ret)
goto err;
if (request == DP_AUX_I2C_WRITE || request == DP_AUX_NATIVE_WRITE) {
/* Store data */
while (i < size) {
if (request == DP_AUX_NATIVE_WRITE)
tmp = tmp | (buf[i] << (8 * (i & 0x3)));
else
tmp = (tmp << 8) | buf[i];
i++;
if (((i % 4) == 0) || (i == size)) {
tc_write(DP0_AUXWDATA((i - 1) >> 2), tmp);
tmp = 0;
}
}
} else if (request != DP_AUX_I2C_READ &&
request != DP_AUX_NATIVE_READ) {
return -EINVAL;
}
/* Store address */
tc_write(DP0_AUXADDR, msg->address);
/* Start transfer */
tc_write(DP0_AUXCFG0, ((size - 1) << 8) | request);
ret = tc_aux_wait_busy(tc, 100);
if (ret)
goto err;
ret = tc_aux_get_status(tc, &msg->reply);
if (ret)
goto err;
if (request == DP_AUX_I2C_READ || request == DP_AUX_NATIVE_READ) {
/* Read data */
while (i < size) {
if ((i % 4) == 0)
tc_read(DP0_AUXRDATA(i >> 2), &tmp);
buf[i] = tmp & 0xff;
tmp = tmp >> 8;
i++;
}
}
return size;
err:
return ret;
}
static const char * const training_pattern1_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Max voltage reached error",
"Loop counter expired error",
"res", "res", "res"
};
static const char * const training_pattern2_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Clock recovery failed error",
"Loop counter expired error",
"res", "res", "res"
};
static u32 tc_srcctrl(struct tc_data *tc)
{
/*
* No training pattern, skew lane 1 data by two LSCLK cycles with
* respect to lane 0 data, AutoCorrect Mode = 0
*/
u32 reg = DP0_SRCCTRL_NOTP | DP0_SRCCTRL_LANESKEW;
if (tc->link.scrambler_dis)
reg |= DP0_SRCCTRL_SCRMBLDIS; /* Scrambler Disabled */
if (tc->link.coding8b10b)
/* Enable 8/10B Encoder (TxData[19:16] not used) */
reg |= DP0_SRCCTRL_EN810B;
if (tc->link.spread)
reg |= DP0_SRCCTRL_SSCG; /* Spread Spectrum Enable */
if (tc->link.base.num_lanes == 2)
reg |= DP0_SRCCTRL_LANES_2; /* Two Main Channel Lanes */
if (tc->link.base.rate != 162000)
reg |= DP0_SRCCTRL_BW27; /* 2.7 Gbps link */
return reg;
}
static void tc_wait_pll_lock(struct tc_data *tc)
{
/* Wait for PLL to lock: up to 2.09 ms, depending on refclk */
usleep_range(3000, 6000);
}
static int tc_pxl_pll_en(struct tc_data *tc, u32 refclk, u32 pixelclock)
{
int ret;
int i_pre, best_pre = 1;
int i_post, best_post = 1;
int div, best_div = 1;
int mul, best_mul = 1;
int delta, best_delta;
int ext_div[] = {1, 2, 3, 5, 7};
int best_pixelclock = 0;
int vco_hi = 0;
dev_dbg(tc->dev, "PLL: requested %d pixelclock, ref %d\n", pixelclock,
refclk);
best_delta = pixelclock;
/* Loop over all possible ext_divs, skipping invalid configurations */
for (i_pre = 0; i_pre < ARRAY_SIZE(ext_div); i_pre++) {
/*
* refclk / ext_pre_div should be in the 1 to 200 MHz range.
* We don't allow any refclk > 200 MHz, only check lower bounds.
*/
if (refclk / ext_div[i_pre] < 1000000)
continue;
for (i_post = 0; i_post < ARRAY_SIZE(ext_div); i_post++) {
for (div = 1; div <= 16; div++) {
u32 clk;
u64 tmp;
tmp = pixelclock * ext_div[i_pre] *
ext_div[i_post] * div;
do_div(tmp, refclk);
mul = tmp;
/* Check limits */
if ((mul < 1) || (mul > 128))
continue;
clk = (refclk / ext_div[i_pre] / div) * mul;
/*
* refclk * mul / (ext_pre_div * pre_div)
* should be in the 150 to 650 MHz range
*/
if ((clk > 650000000) || (clk < 150000000))
continue;
clk = clk / ext_div[i_post];
delta = clk - pixelclock;
if (abs(delta) < abs(best_delta)) {
best_pre = i_pre;
best_post = i_post;
best_div = div;
best_mul = mul;
best_delta = delta;
best_pixelclock = clk;
}
}
}
}
if (best_pixelclock == 0) {
dev_err(tc->dev, "Failed to calc clock for %d pixelclock\n",
pixelclock);
return -EINVAL;
}
dev_dbg(tc->dev, "PLL: got %d, delta %d\n", best_pixelclock,
best_delta);
dev_dbg(tc->dev, "PLL: %d / %d / %d * %d / %d\n", refclk,
ext_div[best_pre], best_div, best_mul, ext_div[best_post]);
/* if VCO >= 300 MHz */
if (refclk / ext_div[best_pre] / best_div * best_mul >= 300000000)
vco_hi = 1;
/* see DS */
if (best_div == 16)
best_div = 0;
if (best_mul == 128)
best_mul = 0;
/* Power up PLL and switch to bypass */
tc_write(PXL_PLLCTRL, PLLBYP | PLLEN);
tc_write(PXL_PLLPARAM,
(vco_hi << 24) | /* For PLL VCO >= 300 MHz = 1 */
(ext_div[best_pre] << 20) | /* External Pre-divider */
(ext_div[best_post] << 16) | /* External Post-divider */
IN_SEL_REFCLK | /* Use RefClk as PLL input */
(best_div << 8) | /* Divider for PLL RefClk */
(best_mul << 0)); /* Multiplier for PLL */
/* Force PLL parameter update and disable bypass */
tc_write(PXL_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
return 0;
err:
return ret;
}
static int tc_pxl_pll_dis(struct tc_data *tc)
{
/* Enable PLL bypass, power down PLL */
return regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP);
}
static int tc_stream_clock_calc(struct tc_data *tc)
{
int ret;
/*
* If the Stream clock and Link Symbol clock are
* asynchronous with each other, the value of M changes over
* time. This way of generating link clock and stream
* clock is called Asynchronous Clock mode. The value M
* must change while the value N stays constant. The
* value of N in this Asynchronous Clock mode must be set
* to 2^15 or 32,768.
*
* LSCLK = 1/10 of high speed link clock
*
* f_STRMCLK = M/N * f_LSCLK
* M/N = f_STRMCLK / f_LSCLK
*
*/
tc_write(DP0_VIDMNGEN1, 32768);
return 0;
err:
return ret;
}
static int tc_aux_link_setup(struct tc_data *tc)
{
unsigned long rate;
u32 value;
int ret;
u32 dp_phy_ctrl;
rate = clk_get_rate(tc->refclk);
switch (rate) {
case 38400000:
value = REF_FREQ_38M4;
break;
case 26000000:
value = REF_FREQ_26M;
break;
case 19200000:
value = REF_FREQ_19M2;
break;
case 13000000:
value = REF_FREQ_13M;
break;
default:
dev_err(tc->dev, "Invalid refclk rate: %lu Hz\n", rate);
return -EINVAL;
}
/* Setup DP-PHY / PLL */
value |= SYSCLK_SEL_LSCLK | LSCLK_DIV_2;
tc_write(SYS_PLLPARAM, value);
dp_phy_ctrl = BGREN | PWR_SW_EN | PHY_A0_EN;
if (tc->link.base.num_lanes == 2)
dp_phy_ctrl |= PHY_2LANE;
tc_write(DP_PHY_CTRL, dp_phy_ctrl);
/*
* Initially PLLs are in bypass. Force PLL parameter update,
* disable PLL bypass, enable PLL
*/
tc_write(DP0_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
tc_write(DP1_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
ret = tc_poll_timeout(tc->regmap, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 1,
1000);
if (ret == -ETIMEDOUT) {
dev_err(tc->dev, "Timeout waiting for PHY to become ready");
return ret;
} else if (ret)
goto err;
/* Setup AUX link */
tc_write(DP0_AUXCFG1, AUX_RX_FILTER_EN |
(0x06 << 8) | /* Aux Bit Period Calculator Threshold */
(0x3f << 0)); /* Aux Response Timeout Timer */
return 0;
err:
dev_err(tc->dev, "tc_aux_link_setup failed: %d\n", ret);
return ret;
}
static int tc_get_display_props(struct tc_data *tc)
{
int ret;
/* temp buffer */
u8 tmp[8];
/* Read DP Rx Link Capability */
ret = drm_dp_link_probe(&tc->aux, &tc->link.base);
if (ret < 0)
goto err_dpcd_read;
if (tc->link.base.rate != 162000 && tc->link.base.rate != 270000) {
dev_dbg(tc->dev, "Falling to 2.7 Gbps rate\n");
tc->link.base.rate = 270000;
}
if (tc->link.base.num_lanes > 2) {
dev_dbg(tc->dev, "Falling to 2 lanes\n");
tc->link.base.num_lanes = 2;
}
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAX_DOWNSPREAD, tmp);
if (ret < 0)
goto err_dpcd_read;
tc->link.spread = tmp[0] & BIT(0); /* 0.5% down spread */
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAIN_LINK_CHANNEL_CODING, tmp);
if (ret < 0)
goto err_dpcd_read;
tc->link.coding8b10b = tmp[0] & BIT(0);
tc->link.scrambler_dis = 0;
/* read assr */
ret = drm_dp_dpcd_readb(&tc->aux, DP_EDP_CONFIGURATION_SET, tmp);
if (ret < 0)
goto err_dpcd_read;
tc->link.assr = tmp[0] & DP_ALTERNATE_SCRAMBLER_RESET_ENABLE;
dev_dbg(tc->dev, "DPCD rev: %d.%d, rate: %s, lanes: %d, framing: %s\n",
tc->link.base.revision >> 4, tc->link.base.revision & 0x0f,
(tc->link.base.rate == 162000) ? "1.62Gbps" : "2.7Gbps",
tc->link.base.num_lanes,
(tc->link.base.capabilities & DP_LINK_CAP_ENHANCED_FRAMING) ?
"enhanced" : "non-enhanced");
dev_dbg(tc->dev, "ANSI 8B/10B: %d\n", tc->link.coding8b10b);
dev_dbg(tc->dev, "Display ASSR: %d, TC358767 ASSR: %d\n",
tc->link.assr, tc->assr);
return 0;
err_dpcd_read:
dev_err(tc->dev, "failed to read DPCD: %d\n", ret);
return ret;
}
static int tc_set_video_mode(struct tc_data *tc, struct drm_display_mode *mode)
{
int ret;
int vid_sync_dly;
int max_tu_symbol;
int left_margin = mode->htotal - mode->hsync_end;
int right_margin = mode->hsync_start - mode->hdisplay;
int hsync_len = mode->hsync_end - mode->hsync_start;
int upper_margin = mode->vtotal - mode->vsync_end;
int lower_margin = mode->vsync_start - mode->vdisplay;
int vsync_len = mode->vsync_end - mode->vsync_start;
/*
* Recommended maximum number of symbols transferred in a transfer unit:
* DIV_ROUND_UP((input active video bandwidth in bytes) * tu_size,
* (output active video bandwidth in bytes))
* Must be less than tu_size.
*/
max_tu_symbol = TU_SIZE_RECOMMENDED - 1;
dev_dbg(tc->dev, "set mode %dx%d\n",
mode->hdisplay, mode->vdisplay);
dev_dbg(tc->dev, "H margin %d,%d sync %d\n",
left_margin, right_margin, hsync_len);
dev_dbg(tc->dev, "V margin %d,%d sync %d\n",
upper_margin, lower_margin, vsync_len);
dev_dbg(tc->dev, "total: %dx%d\n", mode->htotal, mode->vtotal);
/*
* LCD Ctl Frame Size
* datasheet is not clear of vsdelay in case of DPI
* assume we do not need any delay when DPI is a source of
* sync signals
*/
tc_write(VPCTRL0, (0 << 20) /* VSDELAY */ |
OPXLFMT_RGB888 | FRMSYNC_DISABLED | MSF_DISABLED);
tc_write(HTIM01, (ALIGN(left_margin, 2) << 16) | /* H back porch */
(ALIGN(hsync_len, 2) << 0)); /* Hsync */
tc_write(HTIM02, (ALIGN(right_margin, 2) << 16) | /* H front porch */
(ALIGN(mode->hdisplay, 2) << 0)); /* width */
tc_write(VTIM01, (upper_margin << 16) | /* V back porch */
(vsync_len << 0)); /* Vsync */
tc_write(VTIM02, (lower_margin << 16) | /* V front porch */
(mode->vdisplay << 0)); /* height */
tc_write(VFUEN0, VFUEN); /* update settings */
/* Test pattern settings */
tc_write(TSTCTL,
(120 << 24) | /* Red Color component value */
(20 << 16) | /* Green Color component value */
(99 << 8) | /* Blue Color component value */
(1 << 4) | /* Enable I2C Filter */
(2 << 0) | /* Color bar Mode */
0);
/* DP Main Stream Attributes */
vid_sync_dly = hsync_len + left_margin + mode->hdisplay;
tc_write(DP0_VIDSYNCDELAY,
(max_tu_symbol << 16) | /* thresh_dly */
(vid_sync_dly << 0));
tc_write(DP0_TOTALVAL, (mode->vtotal << 16) | (mode->htotal));
tc_write(DP0_STARTVAL,
((upper_margin + vsync_len) << 16) |
((left_margin + hsync_len) << 0));
tc_write(DP0_ACTIVEVAL, (mode->vdisplay << 16) | (mode->hdisplay));
tc_write(DP0_SYNCVAL, (vsync_len << 16) | (hsync_len << 0) |
((mode->flags & DRM_MODE_FLAG_NHSYNC) ? SYNCVAL_HS_POL_ACTIVE_LOW : 0) |
((mode->flags & DRM_MODE_FLAG_NVSYNC) ? SYNCVAL_VS_POL_ACTIVE_LOW : 0));
tc_write(DPIPXLFMT, VS_POL_ACTIVE_LOW | HS_POL_ACTIVE_LOW |
DE_POL_ACTIVE_HIGH | SUB_CFG_TYPE_CONFIG1 | DPI_BPP_RGB888);
tc_write(DP0_MISC, (max_tu_symbol << 23) | (TU_SIZE_RECOMMENDED << 16) |
BPC_8);
return 0;
err:
return ret;
}
static int tc_link_training(struct tc_data *tc, int pattern)
{
const char * const *errors;
u32 srcctrl = tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
DP0_SRCCTRL_AUTOCORRECT;
int timeout;
int retry;
u32 value;
int ret;
if (pattern == DP_TRAINING_PATTERN_1) {
srcctrl |= DP0_SRCCTRL_TP1;
errors = training_pattern1_errors;
} else {
srcctrl |= DP0_SRCCTRL_TP2;
errors = training_pattern2_errors;
}
/* Set DPCD 0x102 for Training Part 1 or 2 */
tc_write(DP0_SNKLTCTRL, DP_LINK_SCRAMBLING_DISABLE | pattern);
tc_write(DP0_LTLOOPCTRL,
(0x0f << 28) | /* Defer Iteration Count */
(0x0f << 24) | /* Loop Iteration Count */
(0x0d << 0)); /* Loop Timer Delay */
retry = 5;
do {
/* Set DP0 Training Pattern */
tc_write(DP0_SRCCTRL, srcctrl);
/* Enable DP0 to start Link Training */
tc_write(DP0CTL, DP_EN);
/* wait */
timeout = 1000;
do {
tc_read(DP0_LTSTAT, &value);
udelay(1);
} while ((!(value & LT_LOOPDONE)) && (--timeout));
if (timeout == 0) {
dev_err(tc->dev, "Link training timeout!\n");
} else {
int pattern = (value >> 11) & 0x3;
int error = (value >> 8) & 0x7;
dev_dbg(tc->dev,
"Link training phase %d done after %d uS: %s\n",
pattern, 1000 - timeout, errors[error]);
if (pattern == DP_TRAINING_PATTERN_1 && error == 0)
break;
if (pattern == DP_TRAINING_PATTERN_2) {
value &= LT_CHANNEL1_EQ_BITS |
LT_INTERLANE_ALIGN_DONE |
LT_CHANNEL0_EQ_BITS;
/* in case of two lanes */
if ((tc->link.base.num_lanes == 2) &&
(value == (LT_CHANNEL1_EQ_BITS |
LT_INTERLANE_ALIGN_DONE |
LT_CHANNEL0_EQ_BITS)))
break;
/* in case of one line */
if ((tc->link.base.num_lanes == 1) &&
(value == (LT_INTERLANE_ALIGN_DONE |
LT_CHANNEL0_EQ_BITS)))
break;
}
}
/* restart */
tc_write(DP0CTL, 0);
usleep_range(10, 20);
} while (--retry);
if (retry == 0) {
dev_err(tc->dev, "Failed to finish training phase %d\n",
pattern);
}
return 0;
err:
return ret;
}
static int tc_main_link_setup(struct tc_data *tc)
{
struct drm_dp_aux *aux = &tc->aux;
struct device *dev = tc->dev;
unsigned int rate;
u32 dp_phy_ctrl;
int timeout;
u32 value;
int ret;
u8 tmp[8];
/* display mode should be set at this point */
if (!tc->mode)
return -EINVAL;
tc_write(DP0_SRCCTRL, tc_srcctrl(tc));
/* SSCG and BW27 on DP1 must be set to the same as on DP0 */
tc_write(DP1_SRCCTRL,
(tc->link.spread ? DP0_SRCCTRL_SSCG : 0) |
((tc->link.base.rate != 162000) ? DP0_SRCCTRL_BW27 : 0));
rate = clk_get_rate(tc->refclk);
switch (rate) {
case 38400000:
value = REF_FREQ_38M4;
break;
case 26000000:
value = REF_FREQ_26M;
break;
case 19200000:
value = REF_FREQ_19M2;
break;
case 13000000:
value = REF_FREQ_13M;
break;
default:
return -EINVAL;
}
value |= SYSCLK_SEL_LSCLK | LSCLK_DIV_2;
tc_write(SYS_PLLPARAM, value);
/* Setup Main Link */
dp_phy_ctrl = BGREN | PWR_SW_EN | PHY_A0_EN | PHY_M0_EN;
if (tc->link.base.num_lanes == 2)
dp_phy_ctrl |= PHY_2LANE;
tc_write(DP_PHY_CTRL, dp_phy_ctrl);
msleep(100);
/* PLL setup */
tc_write(DP0_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
tc_write(DP1_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
/* PXL PLL setup */
if (tc_test_pattern) {
ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk),
1000 * tc->mode->clock);
if (ret)
goto err;
}
/* Reset/Enable Main Links */
dp_phy_ctrl |= DP_PHY_RST | PHY_M1_RST | PHY_M0_RST;
tc_write(DP_PHY_CTRL, dp_phy_ctrl);
usleep_range(100, 200);
dp_phy_ctrl &= ~(DP_PHY_RST | PHY_M1_RST | PHY_M0_RST);
tc_write(DP_PHY_CTRL, dp_phy_ctrl);
timeout = 1000;
do {
tc_read(DP_PHY_CTRL, &value);
udelay(1);
} while ((!(value & PHY_RDY)) && (--timeout));
if (timeout == 0) {
dev_err(dev, "timeout waiting for phy become ready");
return -ETIMEDOUT;
}
/* Set misc: 8 bits per color */
ret = regmap_update_bits(tc->regmap, DP0_MISC, BPC_8, BPC_8);
if (ret)
goto err;
/*
* ASSR mode
* on TC358767 side ASSR configured through strap pin
* seems there is no way to change this setting from SW
*
* check is tc configured for same mode
*/
if (tc->assr != tc->link.assr) {
dev_dbg(dev, "Trying to set display to ASSR: %d\n",
tc->assr);
/* try to set ASSR on display side */
tmp[0] = tc->assr;
ret = drm_dp_dpcd_writeb(aux, DP_EDP_CONFIGURATION_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_read;
/* read back */
ret = drm_dp_dpcd_readb(aux, DP_EDP_CONFIGURATION_SET, tmp);
if (ret < 0)
goto err_dpcd_read;
if (tmp[0] != tc->assr) {
dev_dbg(dev, "Failed to switch display ASSR to %d, falling back to unscrambled mode\n",
tc->assr);
/* trying with disabled scrambler */
tc->link.scrambler_dis = 1;
}
}
/* Setup Link & DPRx Config for Training */
ret = drm_dp_link_configure(aux, &tc->link.base);
if (ret < 0)
goto err_dpcd_write;
/* DOWNSPREAD_CTRL */
tmp[0] = tc->link.spread ? DP_SPREAD_AMP_0_5 : 0x00;
/* MAIN_LINK_CHANNEL_CODING_SET */
tmp[1] = tc->link.coding8b10b ? DP_SET_ANSI_8B10B : 0x00;
ret = drm_dp_dpcd_write(aux, DP_DOWNSPREAD_CTRL, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
ret = tc_link_training(tc, DP_TRAINING_PATTERN_1);
if (ret)
goto err;
ret = tc_link_training(tc, DP_TRAINING_PATTERN_2);
if (ret)
goto err;
/* Clear DPCD 0x102 */
/* Note: Can Not use DP0_SNKLTCTRL (0x06E4) short cut */
tmp[0] = tc->link.scrambler_dis ? DP_LINK_SCRAMBLING_DISABLE : 0x00;
ret = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_write;
/* Clear Training Pattern, set AutoCorrect Mode = 1 */
tc_write(DP0_SRCCTRL, tc_srcctrl(tc) | DP0_SRCCTRL_AUTOCORRECT);
/* Wait */
timeout = 100;
do {
udelay(1);
/* Read DPCD 0x202-0x207 */
ret = drm_dp_dpcd_read_link_status(aux, tmp + 2);
if (ret < 0)
goto err_dpcd_read;
} while ((--timeout) &&
!(drm_dp_channel_eq_ok(tmp + 2, tc->link.base.num_lanes)));
if (timeout == 0) {
/* Read DPCD 0x200-0x201 */
ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT, tmp, 2);
if (ret < 0)
goto err_dpcd_read;
dev_err(dev, "channel(s) EQ not ok\n");
dev_info(dev, "0x0200 SINK_COUNT: 0x%02x\n", tmp[0]);
dev_info(dev, "0x0201 DEVICE_SERVICE_IRQ_VECTOR: 0x%02x\n",
tmp[1]);
dev_info(dev, "0x0202 LANE0_1_STATUS: 0x%02x\n", tmp[2]);
dev_info(dev, "0x0204 LANE_ALIGN_STATUS_UPDATED: 0x%02x\n",
tmp[4]);
dev_info(dev, "0x0205 SINK_STATUS: 0x%02x\n", tmp[5]);
dev_info(dev, "0x0206 ADJUST_REQUEST_LANE0_1: 0x%02x\n",
tmp[6]);
return -EAGAIN;
}
ret = tc_set_video_mode(tc, tc->mode);
if (ret)
goto err;
/* Set M/N */
ret = tc_stream_clock_calc(tc);
if (ret)
goto err;
return 0;
err_dpcd_read:
dev_err(tc->dev, "Failed to read DPCD: %d\n", ret);
return ret;
err_dpcd_write:
dev_err(tc->dev, "Failed to write DPCD: %d\n", ret);
err:
return ret;
}
static int tc_main_link_stream(struct tc_data *tc, int state)
{
int ret;
u32 value;
dev_dbg(tc->dev, "stream: %d\n", state);
if (state) {
value = VID_MN_GEN | DP_EN;
if (tc->link.base.capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
value |= EF_EN;
tc_write(DP0CTL, value);
/*
* VID_EN assertion should be delayed by at least N * LSCLK
* cycles from the time VID_MN_GEN is enabled in order to
* generate stable values for VID_M. LSCLK is 270 MHz or
* 162 MHz, VID_N is set to 32768 in tc_stream_clock_calc(),
* so a delay of at least 203 us should suffice.
*/
usleep_range(500, 1000);
value |= VID_EN;
tc_write(DP0CTL, value);
/* Set input interface */
value = DP0_AUDSRC_NO_INPUT;
if (tc_test_pattern)
value |= DP0_VIDSRC_COLOR_BAR;
else
value |= DP0_VIDSRC_DPI_RX;
tc_write(SYSCTRL, value);
} else {
tc_write(DP0CTL, 0);
}
return 0;
err:
return ret;
}
static void tc_bridge_pre_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
drm_panel_prepare(tc->panel);
}
static void tc_bridge_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_main_link_setup(tc);
if (ret < 0) {
dev_err(tc->dev, "main link setup error: %d\n", ret);
return;
}
ret = tc_main_link_stream(tc, 1);
if (ret < 0) {
dev_err(tc->dev, "main link stream start error: %d\n", ret);
return;
}
drm_panel_enable(tc->panel);
}
static void tc_bridge_disable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
drm_panel_disable(tc->panel);
ret = tc_main_link_stream(tc, 0);
if (ret < 0)
dev_err(tc->dev, "main link stream stop error: %d\n", ret);
}
static void tc_bridge_post_disable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
drm_panel_unprepare(tc->panel);
}
static bool tc_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adj)
{
/* Fixup sync polarities, both hsync and vsync are active low */
adj->flags = mode->flags;
adj->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adj->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
return true;
}
static int tc_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct tc_data *tc = connector_to_tc(connector);
u32 req, avail;
u32 bits_per_pixel = 24;
/* DPI interface clock limitation: upto 154 MHz */
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
req = mode->clock * bits_per_pixel / 8;
avail = tc->link.base.num_lanes * tc->link.base.rate;
if (req > avail)
return MODE_BAD;
return MODE_OK;
}
static void tc_bridge_mode_set(struct drm_bridge *bridge,
struct drm_display_mode *mode,
struct drm_display_mode *adj)
{
struct tc_data *tc = bridge_to_tc(bridge);
tc->mode = mode;
}
static int tc_connector_get_modes(struct drm_connector *connector)
{
struct tc_data *tc = connector_to_tc(connector);
struct edid *edid;
unsigned int count;
if (tc->panel && tc->panel->funcs && tc->panel->funcs->get_modes) {
count = tc->panel->funcs->get_modes(tc->panel);
if (count > 0)
return count;
}
edid = drm_get_edid(connector, &tc->aux.ddc);
kfree(tc->edid);
tc->edid = edid;
if (!edid)
return 0;
drm_mode_connector_update_edid_property(connector, edid);
count = drm_add_edid_modes(connector, edid);
return count;
}
static void tc_connector_set_polling(struct tc_data *tc,
struct drm_connector *connector)
{
/* TODO: add support for HPD */
connector->polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
static struct drm_encoder *
tc_connector_best_encoder(struct drm_connector *connector)
{
struct tc_data *tc = connector_to_tc(connector);
return tc->bridge.encoder;
}
static const struct drm_connector_helper_funcs tc_connector_helper_funcs = {
.get_modes = tc_connector_get_modes,
.mode_valid = tc_connector_mode_valid,
.best_encoder = tc_connector_best_encoder,
};
static const struct drm_connector_funcs tc_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int tc_bridge_attach(struct drm_bridge *bridge)
{
u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
struct tc_data *tc = bridge_to_tc(bridge);
struct drm_device *drm = bridge->dev;
int ret;
/* Create eDP connector */
drm_connector_helper_add(&tc->connector, &tc_connector_helper_funcs);
ret = drm_connector_init(drm, &tc->connector, &tc_connector_funcs,
DRM_MODE_CONNECTOR_eDP);
if (ret)
return ret;
if (tc->panel)
drm_panel_attach(tc->panel, &tc->connector);
drm_display_info_set_bus_formats(&tc->connector.display_info,
&bus_format, 1);
drm_mode_connector_attach_encoder(&tc->connector, tc->bridge.encoder);
return 0;
}
static const struct drm_bridge_funcs tc_bridge_funcs = {
.attach = tc_bridge_attach,
.mode_set = tc_bridge_mode_set,
.pre_enable = tc_bridge_pre_enable,
.enable = tc_bridge_enable,
.disable = tc_bridge_disable,
.post_disable = tc_bridge_post_disable,
.mode_fixup = tc_bridge_mode_fixup,
};
static bool tc_readable_reg(struct device *dev, unsigned int reg)
{
return reg != SYSCTRL;
}
static const struct regmap_range tc_volatile_ranges[] = {
regmap_reg_range(DP0_AUXWDATA(0), DP0_AUXSTATUS),
regmap_reg_range(DP0_LTSTAT, DP0_SNKLTCHGREQ),
regmap_reg_range(DP_PHY_CTRL, DP_PHY_CTRL),
regmap_reg_range(DP0_PLLCTRL, PXL_PLLCTRL),
regmap_reg_range(VFUEN0, VFUEN0),
};
static const struct regmap_access_table tc_volatile_table = {
.yes_ranges = tc_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(tc_volatile_ranges),
};
static bool tc_writeable_reg(struct device *dev, unsigned int reg)
{
return (reg != TC_IDREG) &&
(reg != DP0_LTSTAT) &&
(reg != DP0_SNKLTCHGREQ);
}
static const struct regmap_config tc_regmap_config = {
.name = "tc358767",
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = PLL_DBG,
.cache_type = REGCACHE_RBTREE,
.readable_reg = tc_readable_reg,
.volatile_table = &tc_volatile_table,
.writeable_reg = tc_writeable_reg,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static int tc_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct tc_data *tc;
int ret;
tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL);
if (!tc)
return -ENOMEM;
tc->dev = dev;
/* port@2 is the output port */
ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &tc->panel, NULL);
if (ret && ret != -ENODEV)
return ret;
/* Shut down GPIO is optional */
tc->sd_gpio = devm_gpiod_get_optional(dev, "shutdown", GPIOD_OUT_HIGH);
if (IS_ERR(tc->sd_gpio))
return PTR_ERR(tc->sd_gpio);
if (tc->sd_gpio) {
gpiod_set_value_cansleep(tc->sd_gpio, 0);
usleep_range(5000, 10000);
}
/* Reset GPIO is optional */
tc->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(tc->reset_gpio))
return PTR_ERR(tc->reset_gpio);
if (tc->reset_gpio) {
gpiod_set_value_cansleep(tc->reset_gpio, 1);
usleep_range(5000, 10000);
}
tc->refclk = devm_clk_get(dev, "ref");
if (IS_ERR(tc->refclk)) {
ret = PTR_ERR(tc->refclk);
dev_err(dev, "Failed to get refclk: %d\n", ret);
return ret;
}
tc->regmap = devm_regmap_init_i2c(client, &tc_regmap_config);
if (IS_ERR(tc->regmap)) {
ret = PTR_ERR(tc->regmap);
dev_err(dev, "Failed to initialize regmap: %d\n", ret);
return ret;
}
ret = regmap_read(tc->regmap, TC_IDREG, &tc->rev);
if (ret) {
dev_err(tc->dev, "can not read device ID: %d\n", ret);
return ret;
}
if ((tc->rev != 0x6601) && (tc->rev != 0x6603)) {
dev_err(tc->dev, "invalid device ID: 0x%08x\n", tc->rev);
return -EINVAL;
}
tc->assr = (tc->rev == 0x6601); /* Enable ASSR for eDP panels */
ret = tc_aux_link_setup(tc);
if (ret)
return ret;
/* Register DP AUX channel */
tc->aux.name = "TC358767 AUX i2c adapter";
tc->aux.dev = tc->dev;
tc->aux.transfer = tc_aux_transfer;
ret = drm_dp_aux_register(&tc->aux);
if (ret)
return ret;
ret = tc_get_display_props(tc);
if (ret)
goto err_unregister_aux;
tc_connector_set_polling(tc, &tc->connector);
tc->bridge.funcs = &tc_bridge_funcs;
tc->bridge.of_node = dev->of_node;
drm_bridge_add(&tc->bridge);
i2c_set_clientdata(client, tc);
return 0;
err_unregister_aux:
drm_dp_aux_unregister(&tc->aux);
return ret;
}
static int tc_remove(struct i2c_client *client)
{
struct tc_data *tc = i2c_get_clientdata(client);
drm_bridge_remove(&tc->bridge);
drm_dp_aux_unregister(&tc->aux);
tc_pxl_pll_dis(tc);
return 0;
}
static const struct i2c_device_id tc358767_i2c_ids[] = {
{ "tc358767", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358767_i2c_ids);
static const struct of_device_id tc358767_of_ids[] = {
{ .compatible = "toshiba,tc358767", },
{ }
};
MODULE_DEVICE_TABLE(of, tc358767_of_ids);
static struct i2c_driver tc358767_driver = {
.driver = {
.name = "tc358767",
.of_match_table = tc358767_of_ids,
},
.id_table = tc358767_i2c_ids,
.probe = tc_probe,
.remove = tc_remove,
};
module_i2c_driver(tc358767_driver);
MODULE_AUTHOR("Andrey Gusakov <andrey.gusakov@cogentembedded.com>");
MODULE_DESCRIPTION("tc358767 eDP encoder driver");
MODULE_LICENSE("GPL");