1028 lines
31 KiB
C
1028 lines
31 KiB
C
|
/******************************************************************************
|
||
|
*
|
||
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
||
|
* redistributing this file, you may do so under either license.
|
||
|
*
|
||
|
* GPL LICENSE SUMMARY
|
||
|
*
|
||
|
* Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
|
||
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
||
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of version 2 of the GNU General Public License as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
||
|
* USA
|
||
|
*
|
||
|
* The full GNU General Public License is included in this distribution
|
||
|
* in the file called COPYING.
|
||
|
*
|
||
|
* Contact Information:
|
||
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
||
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
||
|
*
|
||
|
* BSD LICENSE
|
||
|
*
|
||
|
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
|
||
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
||
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* * Neither the name Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*****************************************************************************/
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/etherdevice.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/acpi.h>
|
||
|
#include "iwl-drv.h"
|
||
|
#include "iwl-modparams.h"
|
||
|
#include "iwl-nvm-parse.h"
|
||
|
#include "iwl-prph.h"
|
||
|
#include "iwl-io.h"
|
||
|
#include "iwl-csr.h"
|
||
|
|
||
|
/* NVM offsets (in words) definitions */
|
||
|
enum nvm_offsets {
|
||
|
/* NVM HW-Section offset (in words) definitions */
|
||
|
SUBSYSTEM_ID = 0x0A,
|
||
|
HW_ADDR = 0x15,
|
||
|
|
||
|
/* NVM SW-Section offset (in words) definitions */
|
||
|
NVM_SW_SECTION = 0x1C0,
|
||
|
NVM_VERSION = 0,
|
||
|
RADIO_CFG = 1,
|
||
|
SKU = 2,
|
||
|
N_HW_ADDRS = 3,
|
||
|
NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
|
||
|
|
||
|
/* NVM calibration section offset (in words) definitions */
|
||
|
NVM_CALIB_SECTION = 0x2B8,
|
||
|
XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
|
||
|
|
||
|
/* NVM REGULATORY -Section offset (in words) definitions */
|
||
|
NVM_CHANNELS_SDP = 0,
|
||
|
};
|
||
|
|
||
|
enum ext_nvm_offsets {
|
||
|
/* NVM HW-Section offset (in words) definitions */
|
||
|
MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
|
||
|
|
||
|
/* NVM SW-Section offset (in words) definitions */
|
||
|
NVM_VERSION_EXT_NVM = 0,
|
||
|
RADIO_CFG_FAMILY_EXT_NVM = 0,
|
||
|
SKU_FAMILY_8000 = 2,
|
||
|
N_HW_ADDRS_FAMILY_8000 = 3,
|
||
|
|
||
|
/* NVM REGULATORY -Section offset (in words) definitions */
|
||
|
NVM_CHANNELS_EXTENDED = 0,
|
||
|
NVM_LAR_OFFSET_OLD = 0x4C7,
|
||
|
NVM_LAR_OFFSET = 0x507,
|
||
|
NVM_LAR_ENABLED = 0x7,
|
||
|
};
|
||
|
|
||
|
/* SKU Capabilities (actual values from NVM definition) */
|
||
|
enum nvm_sku_bits {
|
||
|
NVM_SKU_CAP_BAND_24GHZ = BIT(0),
|
||
|
NVM_SKU_CAP_BAND_52GHZ = BIT(1),
|
||
|
NVM_SKU_CAP_11N_ENABLE = BIT(2),
|
||
|
NVM_SKU_CAP_11AC_ENABLE = BIT(3),
|
||
|
NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* These are the channel numbers in the order that they are stored in the NVM
|
||
|
*/
|
||
|
static const u8 iwl_nvm_channels[] = {
|
||
|
/* 2.4 GHz */
|
||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
||
|
/* 5 GHz */
|
||
|
36, 40, 44 , 48, 52, 56, 60, 64,
|
||
|
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
||
|
149, 153, 157, 161, 165
|
||
|
};
|
||
|
|
||
|
static const u8 iwl_ext_nvm_channels[] = {
|
||
|
/* 2.4 GHz */
|
||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
||
|
/* 5 GHz */
|
||
|
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
|
||
|
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
||
|
149, 153, 157, 161, 165, 169, 173, 177, 181
|
||
|
};
|
||
|
|
||
|
#define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
|
||
|
#define IWL_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
|
||
|
#define NUM_2GHZ_CHANNELS 14
|
||
|
#define NUM_2GHZ_CHANNELS_EXT 14
|
||
|
#define FIRST_2GHZ_HT_MINUS 5
|
||
|
#define LAST_2GHZ_HT_PLUS 9
|
||
|
#define LAST_5GHZ_HT 165
|
||
|
#define LAST_5GHZ_HT_FAMILY_8000 181
|
||
|
#define N_HW_ADDR_MASK 0xF
|
||
|
|
||
|
/* rate data (static) */
|
||
|
static struct ieee80211_rate iwl_cfg80211_rates[] = {
|
||
|
{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
|
||
|
{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
|
||
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
|
||
|
{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
|
||
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
|
||
|
{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
|
||
|
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
|
||
|
{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
|
||
|
{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
|
||
|
{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
|
||
|
{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
|
||
|
{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
|
||
|
{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
|
||
|
{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
|
||
|
{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
|
||
|
};
|
||
|
#define RATES_24_OFFS 0
|
||
|
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
|
||
|
#define RATES_52_OFFS 4
|
||
|
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
|
||
|
|
||
|
/**
|
||
|
* enum iwl_nvm_channel_flags - channel flags in NVM
|
||
|
* @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
|
||
|
* @NVM_CHANNEL_IBSS: usable as an IBSS channel
|
||
|
* @NVM_CHANNEL_ACTIVE: active scanning allowed
|
||
|
* @NVM_CHANNEL_RADAR: radar detection required
|
||
|
* @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
|
||
|
* @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
|
||
|
* on same channel on 2.4 or same UNII band on 5.2
|
||
|
* @NVM_CHANNEL_UNIFORM: uniform spreading required
|
||
|
* @NVM_CHANNEL_20MHZ: 20 MHz channel okay
|
||
|
* @NVM_CHANNEL_40MHZ: 40 MHz channel okay
|
||
|
* @NVM_CHANNEL_80MHZ: 80 MHz channel okay
|
||
|
* @NVM_CHANNEL_160MHZ: 160 MHz channel okay
|
||
|
* @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
|
||
|
*/
|
||
|
enum iwl_nvm_channel_flags {
|
||
|
NVM_CHANNEL_VALID = BIT(0),
|
||
|
NVM_CHANNEL_IBSS = BIT(1),
|
||
|
NVM_CHANNEL_ACTIVE = BIT(3),
|
||
|
NVM_CHANNEL_RADAR = BIT(4),
|
||
|
NVM_CHANNEL_INDOOR_ONLY = BIT(5),
|
||
|
NVM_CHANNEL_GO_CONCURRENT = BIT(6),
|
||
|
NVM_CHANNEL_UNIFORM = BIT(7),
|
||
|
NVM_CHANNEL_20MHZ = BIT(8),
|
||
|
NVM_CHANNEL_40MHZ = BIT(9),
|
||
|
NVM_CHANNEL_80MHZ = BIT(10),
|
||
|
NVM_CHANNEL_160MHZ = BIT(11),
|
||
|
NVM_CHANNEL_DC_HIGH = BIT(12),
|
||
|
};
|
||
|
|
||
|
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
|
||
|
int chan, u16 flags)
|
||
|
{
|
||
|
#define CHECK_AND_PRINT_I(x) \
|
||
|
((flags & NVM_CHANNEL_##x) ? " " #x : "")
|
||
|
|
||
|
if (!(flags & NVM_CHANNEL_VALID)) {
|
||
|
IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
|
||
|
chan, flags);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Note: already can print up to 101 characters, 110 is the limit! */
|
||
|
IWL_DEBUG_DEV(dev, level,
|
||
|
"Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
|
||
|
chan, flags,
|
||
|
CHECK_AND_PRINT_I(VALID),
|
||
|
CHECK_AND_PRINT_I(IBSS),
|
||
|
CHECK_AND_PRINT_I(ACTIVE),
|
||
|
CHECK_AND_PRINT_I(RADAR),
|
||
|
CHECK_AND_PRINT_I(INDOOR_ONLY),
|
||
|
CHECK_AND_PRINT_I(GO_CONCURRENT),
|
||
|
CHECK_AND_PRINT_I(UNIFORM),
|
||
|
CHECK_AND_PRINT_I(20MHZ),
|
||
|
CHECK_AND_PRINT_I(40MHZ),
|
||
|
CHECK_AND_PRINT_I(80MHZ),
|
||
|
CHECK_AND_PRINT_I(160MHZ),
|
||
|
CHECK_AND_PRINT_I(DC_HIGH));
|
||
|
#undef CHECK_AND_PRINT_I
|
||
|
}
|
||
|
|
||
|
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
|
||
|
u16 nvm_flags, const struct iwl_cfg *cfg)
|
||
|
{
|
||
|
u32 flags = IEEE80211_CHAN_NO_HT40;
|
||
|
u32 last_5ghz_ht = LAST_5GHZ_HT;
|
||
|
|
||
|
if (cfg->nvm_type == IWL_NVM_EXT)
|
||
|
last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
|
||
|
|
||
|
if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
|
||
|
if (ch_num <= LAST_2GHZ_HT_PLUS)
|
||
|
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
|
||
|
if (ch_num >= FIRST_2GHZ_HT_MINUS)
|
||
|
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
|
||
|
} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
|
||
|
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
|
||
|
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
|
||
|
else
|
||
|
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
|
||
|
}
|
||
|
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
|
||
|
flags |= IEEE80211_CHAN_NO_80MHZ;
|
||
|
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
|
||
|
flags |= IEEE80211_CHAN_NO_160MHZ;
|
||
|
|
||
|
if (!(nvm_flags & NVM_CHANNEL_IBSS))
|
||
|
flags |= IEEE80211_CHAN_NO_IR;
|
||
|
|
||
|
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
|
||
|
flags |= IEEE80211_CHAN_NO_IR;
|
||
|
|
||
|
if (nvm_flags & NVM_CHANNEL_RADAR)
|
||
|
flags |= IEEE80211_CHAN_RADAR;
|
||
|
|
||
|
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
|
||
|
flags |= IEEE80211_CHAN_INDOOR_ONLY;
|
||
|
|
||
|
/* Set the GO concurrent flag only in case that NO_IR is set.
|
||
|
* Otherwise it is meaningless
|
||
|
*/
|
||
|
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
|
||
|
(flags & IEEE80211_CHAN_NO_IR))
|
||
|
flags |= IEEE80211_CHAN_IR_CONCURRENT;
|
||
|
|
||
|
return flags;
|
||
|
}
|
||
|
|
||
|
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
|
||
|
struct iwl_nvm_data *data,
|
||
|
const __le16 * const nvm_ch_flags,
|
||
|
bool lar_supported, bool no_wide_in_5ghz)
|
||
|
{
|
||
|
int ch_idx;
|
||
|
int n_channels = 0;
|
||
|
struct ieee80211_channel *channel;
|
||
|
u16 ch_flags;
|
||
|
int num_of_ch, num_2ghz_channels;
|
||
|
const u8 *nvm_chan;
|
||
|
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT) {
|
||
|
num_of_ch = IWL_NUM_CHANNELS;
|
||
|
nvm_chan = &iwl_nvm_channels[0];
|
||
|
num_2ghz_channels = NUM_2GHZ_CHANNELS;
|
||
|
} else {
|
||
|
num_of_ch = IWL_NUM_CHANNELS_EXT;
|
||
|
nvm_chan = &iwl_ext_nvm_channels[0];
|
||
|
num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
|
||
|
}
|
||
|
|
||
|
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
|
||
|
bool is_5ghz = (ch_idx >= num_2ghz_channels);
|
||
|
|
||
|
ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
|
||
|
|
||
|
if (is_5ghz && !data->sku_cap_band_52GHz_enable)
|
||
|
continue;
|
||
|
|
||
|
/* workaround to disable wide channels in 5GHz */
|
||
|
if (no_wide_in_5ghz && is_5ghz) {
|
||
|
ch_flags &= ~(NVM_CHANNEL_40MHZ |
|
||
|
NVM_CHANNEL_80MHZ |
|
||
|
NVM_CHANNEL_160MHZ);
|
||
|
}
|
||
|
|
||
|
if (ch_flags & NVM_CHANNEL_160MHZ)
|
||
|
data->vht160_supported = true;
|
||
|
|
||
|
if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
|
||
|
/*
|
||
|
* Channels might become valid later if lar is
|
||
|
* supported, hence we still want to add them to
|
||
|
* the list of supported channels to cfg80211.
|
||
|
*/
|
||
|
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
|
||
|
nvm_chan[ch_idx], ch_flags);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
channel = &data->channels[n_channels];
|
||
|
n_channels++;
|
||
|
|
||
|
channel->hw_value = nvm_chan[ch_idx];
|
||
|
channel->band = is_5ghz ?
|
||
|
NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
|
||
|
channel->center_freq =
|
||
|
ieee80211_channel_to_frequency(
|
||
|
channel->hw_value, channel->band);
|
||
|
|
||
|
/* Initialize regulatory-based run-time data */
|
||
|
|
||
|
/*
|
||
|
* Default value - highest tx power value. max_power
|
||
|
* is not used in mvm, and is used for backwards compatibility
|
||
|
*/
|
||
|
channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
|
||
|
|
||
|
/* don't put limitations in case we're using LAR */
|
||
|
if (!lar_supported)
|
||
|
channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
|
||
|
ch_idx, is_5ghz,
|
||
|
ch_flags, cfg);
|
||
|
else
|
||
|
channel->flags = 0;
|
||
|
|
||
|
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
|
||
|
channel->hw_value, ch_flags);
|
||
|
IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
|
||
|
channel->hw_value, channel->max_power);
|
||
|
}
|
||
|
|
||
|
return n_channels;
|
||
|
}
|
||
|
|
||
|
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
|
||
|
struct iwl_nvm_data *data,
|
||
|
struct ieee80211_sta_vht_cap *vht_cap,
|
||
|
u8 tx_chains, u8 rx_chains)
|
||
|
{
|
||
|
int num_rx_ants = num_of_ant(rx_chains);
|
||
|
int num_tx_ants = num_of_ant(tx_chains);
|
||
|
unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
|
||
|
IEEE80211_VHT_MAX_AMPDU_1024K);
|
||
|
|
||
|
vht_cap->vht_supported = true;
|
||
|
|
||
|
vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
|
||
|
IEEE80211_VHT_CAP_RXSTBC_1 |
|
||
|
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
|
||
|
3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
|
||
|
max_ampdu_exponent <<
|
||
|
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
|
||
|
|
||
|
if (data->vht160_supported)
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
|
||
|
IEEE80211_VHT_CAP_SHORT_GI_160;
|
||
|
|
||
|
if (cfg->vht_mu_mimo_supported)
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
|
||
|
|
||
|
if (cfg->ht_params->ldpc)
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
|
||
|
|
||
|
if (data->sku_cap_mimo_disabled) {
|
||
|
num_rx_ants = 1;
|
||
|
num_tx_ants = 1;
|
||
|
}
|
||
|
|
||
|
if (num_tx_ants > 1)
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
|
||
|
else
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
|
||
|
|
||
|
switch (iwlwifi_mod_params.amsdu_size) {
|
||
|
case IWL_AMSDU_DEF:
|
||
|
if (cfg->mq_rx_supported)
|
||
|
vht_cap->cap |=
|
||
|
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
|
||
|
else
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
|
||
|
break;
|
||
|
case IWL_AMSDU_4K:
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
|
||
|
break;
|
||
|
case IWL_AMSDU_8K:
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
|
||
|
break;
|
||
|
case IWL_AMSDU_12K:
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
vht_cap->vht_mcs.rx_mcs_map =
|
||
|
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
|
||
|
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
|
||
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
|
||
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
|
||
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
|
||
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
|
||
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
|
||
|
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
|
||
|
|
||
|
if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
|
||
|
vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
|
||
|
/* this works because NOT_SUPPORTED == 3 */
|
||
|
vht_cap->vht_mcs.rx_mcs_map |=
|
||
|
cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
|
||
|
}
|
||
|
|
||
|
vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
|
||
|
}
|
||
|
|
||
|
void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
|
||
|
struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
|
||
|
u8 tx_chains, u8 rx_chains, bool lar_supported,
|
||
|
bool no_wide_in_5ghz)
|
||
|
{
|
||
|
int n_channels;
|
||
|
int n_used = 0;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
|
||
|
n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
|
||
|
lar_supported, no_wide_in_5ghz);
|
||
|
sband = &data->bands[NL80211_BAND_2GHZ];
|
||
|
sband->band = NL80211_BAND_2GHZ;
|
||
|
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
|
||
|
sband->n_bitrates = N_RATES_24;
|
||
|
n_used += iwl_init_sband_channels(data, sband, n_channels,
|
||
|
NL80211_BAND_2GHZ);
|
||
|
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
|
||
|
tx_chains, rx_chains);
|
||
|
|
||
|
sband = &data->bands[NL80211_BAND_5GHZ];
|
||
|
sband->band = NL80211_BAND_5GHZ;
|
||
|
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
|
||
|
sband->n_bitrates = N_RATES_52;
|
||
|
n_used += iwl_init_sband_channels(data, sband, n_channels,
|
||
|
NL80211_BAND_5GHZ);
|
||
|
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
|
||
|
tx_chains, rx_chains);
|
||
|
if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
|
||
|
iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
|
||
|
tx_chains, rx_chains);
|
||
|
|
||
|
if (n_channels != n_used)
|
||
|
IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
|
||
|
n_used, n_channels);
|
||
|
}
|
||
|
IWL_EXPORT_SYMBOL(iwl_init_sbands);
|
||
|
|
||
|
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
|
||
|
const __le16 *phy_sku)
|
||
|
{
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
||
|
return le16_to_cpup(nvm_sw + SKU);
|
||
|
|
||
|
return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
|
||
|
}
|
||
|
|
||
|
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
|
||
|
{
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
||
|
return le16_to_cpup(nvm_sw + NVM_VERSION);
|
||
|
else
|
||
|
return le32_to_cpup((__le32 *)(nvm_sw +
|
||
|
NVM_VERSION_EXT_NVM));
|
||
|
}
|
||
|
|
||
|
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
|
||
|
const __le16 *phy_sku)
|
||
|
{
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
||
|
return le16_to_cpup(nvm_sw + RADIO_CFG);
|
||
|
|
||
|
return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
|
||
|
|
||
|
}
|
||
|
|
||
|
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
|
||
|
{
|
||
|
int n_hw_addr;
|
||
|
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
||
|
return le16_to_cpup(nvm_sw + N_HW_ADDRS);
|
||
|
|
||
|
n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
|
||
|
|
||
|
return n_hw_addr & N_HW_ADDR_MASK;
|
||
|
}
|
||
|
|
||
|
static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
|
||
|
struct iwl_nvm_data *data,
|
||
|
u32 radio_cfg)
|
||
|
{
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT) {
|
||
|
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
|
||
|
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
|
||
|
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
|
||
|
data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* set the radio configuration for family 8000 */
|
||
|
data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
|
||
|
data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
|
||
|
data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
|
||
|
data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
|
||
|
data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
|
||
|
data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
|
||
|
}
|
||
|
|
||
|
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
|
||
|
{
|
||
|
const u8 *hw_addr;
|
||
|
|
||
|
hw_addr = (const u8 *)&mac_addr0;
|
||
|
dest[0] = hw_addr[3];
|
||
|
dest[1] = hw_addr[2];
|
||
|
dest[2] = hw_addr[1];
|
||
|
dest[3] = hw_addr[0];
|
||
|
|
||
|
hw_addr = (const u8 *)&mac_addr1;
|
||
|
dest[4] = hw_addr[1];
|
||
|
dest[5] = hw_addr[0];
|
||
|
}
|
||
|
|
||
|
void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
|
||
|
struct iwl_nvm_data *data)
|
||
|
{
|
||
|
__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
|
||
|
__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
|
||
|
|
||
|
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
|
||
|
/*
|
||
|
* If the OEM fused a valid address, use it instead of the one in the
|
||
|
* OTP
|
||
|
*/
|
||
|
if (is_valid_ether_addr(data->hw_addr))
|
||
|
return;
|
||
|
|
||
|
mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
|
||
|
mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
|
||
|
|
||
|
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
|
||
|
}
|
||
|
IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
|
||
|
|
||
|
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
|
||
|
const struct iwl_cfg *cfg,
|
||
|
struct iwl_nvm_data *data,
|
||
|
const __le16 *mac_override,
|
||
|
const __be16 *nvm_hw)
|
||
|
{
|
||
|
const u8 *hw_addr;
|
||
|
|
||
|
if (mac_override) {
|
||
|
static const u8 reserved_mac[] = {
|
||
|
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
|
||
|
};
|
||
|
|
||
|
hw_addr = (const u8 *)(mac_override +
|
||
|
MAC_ADDRESS_OVERRIDE_EXT_NVM);
|
||
|
|
||
|
/*
|
||
|
* Store the MAC address from MAO section.
|
||
|
* No byte swapping is required in MAO section
|
||
|
*/
|
||
|
memcpy(data->hw_addr, hw_addr, ETH_ALEN);
|
||
|
|
||
|
/*
|
||
|
* Force the use of the OTP MAC address in case of reserved MAC
|
||
|
* address in the NVM, or if address is given but invalid.
|
||
|
*/
|
||
|
if (is_valid_ether_addr(data->hw_addr) &&
|
||
|
memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
|
||
|
return;
|
||
|
|
||
|
IWL_ERR(trans,
|
||
|
"mac address from nvm override section is not valid\n");
|
||
|
}
|
||
|
|
||
|
if (nvm_hw) {
|
||
|
/* read the mac address from WFMP registers */
|
||
|
__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
|
||
|
WFMP_MAC_ADDR_0));
|
||
|
__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
|
||
|
WFMP_MAC_ADDR_1));
|
||
|
|
||
|
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
IWL_ERR(trans, "mac address is not found\n");
|
||
|
}
|
||
|
|
||
|
static int iwl_set_hw_address(struct iwl_trans *trans,
|
||
|
const struct iwl_cfg *cfg,
|
||
|
struct iwl_nvm_data *data, const __be16 *nvm_hw,
|
||
|
const __le16 *mac_override)
|
||
|
{
|
||
|
if (cfg->mac_addr_from_csr) {
|
||
|
iwl_set_hw_address_from_csr(trans, data);
|
||
|
} else if (cfg->nvm_type != IWL_NVM_EXT) {
|
||
|
const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
|
||
|
|
||
|
/* The byte order is little endian 16 bit, meaning 214365 */
|
||
|
data->hw_addr[0] = hw_addr[1];
|
||
|
data->hw_addr[1] = hw_addr[0];
|
||
|
data->hw_addr[2] = hw_addr[3];
|
||
|
data->hw_addr[3] = hw_addr[2];
|
||
|
data->hw_addr[4] = hw_addr[5];
|
||
|
data->hw_addr[5] = hw_addr[4];
|
||
|
} else {
|
||
|
iwl_set_hw_address_family_8000(trans, cfg, data,
|
||
|
mac_override, nvm_hw);
|
||
|
}
|
||
|
|
||
|
if (!is_valid_ether_addr(data->hw_addr)) {
|
||
|
IWL_ERR(trans, "no valid mac address was found\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
|
||
|
const __be16 *nvm_hw)
|
||
|
{
|
||
|
/*
|
||
|
* Workaround a bug in Indonesia SKUs where the regulatory in
|
||
|
* some 7000-family OTPs erroneously allow wide channels in
|
||
|
* 5GHz. To check for Indonesia, we take the SKU value from
|
||
|
* bits 1-4 in the subsystem ID and check if it is either 5 or
|
||
|
* 9. In those cases, we need to force-disable wide channels
|
||
|
* in 5GHz otherwise the FW will throw a sysassert when we try
|
||
|
* to use them.
|
||
|
*/
|
||
|
if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
|
||
|
/*
|
||
|
* Unlike the other sections in the NVM, the hw
|
||
|
* section uses big-endian.
|
||
|
*/
|
||
|
u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
|
||
|
u8 sku = (subsystem_id & 0x1e) >> 1;
|
||
|
|
||
|
if (sku == 5 || sku == 9) {
|
||
|
IWL_DEBUG_EEPROM(dev,
|
||
|
"disabling wide channels in 5GHz (0x%0x %d)\n",
|
||
|
subsystem_id, sku);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
struct iwl_nvm_data *
|
||
|
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
|
||
|
const __be16 *nvm_hw, const __le16 *nvm_sw,
|
||
|
const __le16 *nvm_calib, const __le16 *regulatory,
|
||
|
const __le16 *mac_override, const __le16 *phy_sku,
|
||
|
u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
|
||
|
{
|
||
|
struct device *dev = trans->dev;
|
||
|
struct iwl_nvm_data *data;
|
||
|
bool lar_enabled;
|
||
|
bool no_wide_in_5ghz = iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw);
|
||
|
u32 sku, radio_cfg;
|
||
|
u16 lar_config;
|
||
|
const __le16 *ch_section;
|
||
|
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT)
|
||
|
data = kzalloc(sizeof(*data) +
|
||
|
sizeof(struct ieee80211_channel) *
|
||
|
IWL_NUM_CHANNELS,
|
||
|
GFP_KERNEL);
|
||
|
else
|
||
|
data = kzalloc(sizeof(*data) +
|
||
|
sizeof(struct ieee80211_channel) *
|
||
|
IWL_NUM_CHANNELS_EXT,
|
||
|
GFP_KERNEL);
|
||
|
if (!data)
|
||
|
return NULL;
|
||
|
|
||
|
data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
|
||
|
|
||
|
radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
|
||
|
iwl_set_radio_cfg(cfg, data, radio_cfg);
|
||
|
if (data->valid_tx_ant)
|
||
|
tx_chains &= data->valid_tx_ant;
|
||
|
if (data->valid_rx_ant)
|
||
|
rx_chains &= data->valid_rx_ant;
|
||
|
|
||
|
sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
|
||
|
data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
|
||
|
data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
|
||
|
data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
|
||
|
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
|
||
|
data->sku_cap_11n_enable = false;
|
||
|
data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
|
||
|
(sku & NVM_SKU_CAP_11AC_ENABLE);
|
||
|
data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
|
||
|
|
||
|
data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
|
||
|
|
||
|
if (cfg->nvm_type != IWL_NVM_EXT) {
|
||
|
/* Checking for required sections */
|
||
|
if (!nvm_calib) {
|
||
|
IWL_ERR(trans,
|
||
|
"Can't parse empty Calib NVM sections\n");
|
||
|
kfree(data);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
ch_section = cfg->nvm_type == IWL_NVM_SDP ?
|
||
|
®ulatory[NVM_CHANNELS_SDP] :
|
||
|
&nvm_sw[NVM_CHANNELS];
|
||
|
|
||
|
/* in family 8000 Xtal calibration values moved to OTP */
|
||
|
data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
|
||
|
data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
|
||
|
lar_enabled = true;
|
||
|
} else {
|
||
|
u16 lar_offset = data->nvm_version < 0xE39 ?
|
||
|
NVM_LAR_OFFSET_OLD :
|
||
|
NVM_LAR_OFFSET;
|
||
|
|
||
|
lar_config = le16_to_cpup(regulatory + lar_offset);
|
||
|
data->lar_enabled = !!(lar_config &
|
||
|
NVM_LAR_ENABLED);
|
||
|
lar_enabled = data->lar_enabled;
|
||
|
ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
|
||
|
}
|
||
|
|
||
|
/* If no valid mac address was found - bail out */
|
||
|
if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
|
||
|
kfree(data);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
|
||
|
lar_fw_supported && lar_enabled, no_wide_in_5ghz);
|
||
|
data->calib_version = 255;
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
|
||
|
|
||
|
static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
|
||
|
int ch_idx, u16 nvm_flags,
|
||
|
const struct iwl_cfg *cfg)
|
||
|
{
|
||
|
u32 flags = NL80211_RRF_NO_HT40;
|
||
|
u32 last_5ghz_ht = LAST_5GHZ_HT;
|
||
|
|
||
|
if (cfg->nvm_type == IWL_NVM_EXT)
|
||
|
last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
|
||
|
|
||
|
if (ch_idx < NUM_2GHZ_CHANNELS &&
|
||
|
(nvm_flags & NVM_CHANNEL_40MHZ)) {
|
||
|
if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
|
||
|
flags &= ~NL80211_RRF_NO_HT40PLUS;
|
||
|
if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
|
||
|
flags &= ~NL80211_RRF_NO_HT40MINUS;
|
||
|
} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
|
||
|
(nvm_flags & NVM_CHANNEL_40MHZ)) {
|
||
|
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
|
||
|
flags &= ~NL80211_RRF_NO_HT40PLUS;
|
||
|
else
|
||
|
flags &= ~NL80211_RRF_NO_HT40MINUS;
|
||
|
}
|
||
|
|
||
|
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
|
||
|
flags |= NL80211_RRF_NO_80MHZ;
|
||
|
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
|
||
|
flags |= NL80211_RRF_NO_160MHZ;
|
||
|
|
||
|
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
|
||
|
flags |= NL80211_RRF_NO_IR;
|
||
|
|
||
|
if (nvm_flags & NVM_CHANNEL_RADAR)
|
||
|
flags |= NL80211_RRF_DFS;
|
||
|
|
||
|
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
|
||
|
flags |= NL80211_RRF_NO_OUTDOOR;
|
||
|
|
||
|
/* Set the GO concurrent flag only in case that NO_IR is set.
|
||
|
* Otherwise it is meaningless
|
||
|
*/
|
||
|
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
|
||
|
(flags & NL80211_RRF_NO_IR))
|
||
|
flags |= NL80211_RRF_GO_CONCURRENT;
|
||
|
|
||
|
return flags;
|
||
|
}
|
||
|
|
||
|
struct ieee80211_regdomain *
|
||
|
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
|
||
|
int num_of_ch, __le32 *channels, u16 fw_mcc)
|
||
|
{
|
||
|
int ch_idx;
|
||
|
u16 ch_flags;
|
||
|
u32 reg_rule_flags, prev_reg_rule_flags = 0;
|
||
|
const u8 *nvm_chan = cfg->nvm_type == IWL_NVM_EXT ?
|
||
|
iwl_ext_nvm_channels : iwl_nvm_channels;
|
||
|
struct ieee80211_regdomain *regd;
|
||
|
int size_of_regd;
|
||
|
struct ieee80211_reg_rule *rule;
|
||
|
enum nl80211_band band;
|
||
|
int center_freq, prev_center_freq = 0;
|
||
|
int valid_rules = 0;
|
||
|
bool new_rule;
|
||
|
int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ?
|
||
|
IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
|
||
|
|
||
|
if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
|
||
|
return ERR_PTR(-EINVAL);
|
||
|
|
||
|
if (WARN_ON(num_of_ch > max_num_ch))
|
||
|
num_of_ch = max_num_ch;
|
||
|
|
||
|
IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
|
||
|
num_of_ch);
|
||
|
|
||
|
/* build a regdomain rule for every valid channel */
|
||
|
size_of_regd =
|
||
|
sizeof(struct ieee80211_regdomain) +
|
||
|
num_of_ch * sizeof(struct ieee80211_reg_rule);
|
||
|
|
||
|
regd = kzalloc(size_of_regd, GFP_KERNEL);
|
||
|
if (!regd)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
|
||
|
ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
|
||
|
band = (ch_idx < NUM_2GHZ_CHANNELS) ?
|
||
|
NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
|
||
|
center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
|
||
|
band);
|
||
|
new_rule = false;
|
||
|
|
||
|
if (!(ch_flags & NVM_CHANNEL_VALID)) {
|
||
|
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
|
||
|
nvm_chan[ch_idx], ch_flags);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
|
||
|
ch_flags, cfg);
|
||
|
|
||
|
/* we can't continue the same rule */
|
||
|
if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
|
||
|
center_freq - prev_center_freq > 20) {
|
||
|
valid_rules++;
|
||
|
new_rule = true;
|
||
|
}
|
||
|
|
||
|
rule = ®d->reg_rules[valid_rules - 1];
|
||
|
|
||
|
if (new_rule)
|
||
|
rule->freq_range.start_freq_khz =
|
||
|
MHZ_TO_KHZ(center_freq - 10);
|
||
|
|
||
|
rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
|
||
|
|
||
|
/* this doesn't matter - not used by FW */
|
||
|
rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
|
||
|
rule->power_rule.max_eirp =
|
||
|
DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
|
||
|
|
||
|
rule->flags = reg_rule_flags;
|
||
|
|
||
|
/* rely on auto-calculation to merge BW of contiguous chans */
|
||
|
rule->flags |= NL80211_RRF_AUTO_BW;
|
||
|
rule->freq_range.max_bandwidth_khz = 0;
|
||
|
|
||
|
prev_center_freq = center_freq;
|
||
|
prev_reg_rule_flags = reg_rule_flags;
|
||
|
|
||
|
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
|
||
|
nvm_chan[ch_idx], ch_flags);
|
||
|
}
|
||
|
|
||
|
regd->n_reg_rules = valid_rules;
|
||
|
|
||
|
/* set alpha2 from FW. */
|
||
|
regd->alpha2[0] = fw_mcc >> 8;
|
||
|
regd->alpha2[1] = fw_mcc & 0xff;
|
||
|
|
||
|
return regd;
|
||
|
}
|
||
|
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
|
||
|
|
||
|
#ifdef CONFIG_ACPI
|
||
|
#define WRDD_METHOD "WRDD"
|
||
|
#define WRDD_WIFI (0x07)
|
||
|
#define WRDD_WIGIG (0x10)
|
||
|
|
||
|
static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
|
||
|
{
|
||
|
union acpi_object *mcc_pkg, *domain_type, *mcc_value;
|
||
|
u32 i;
|
||
|
|
||
|
if (wrdd->type != ACPI_TYPE_PACKAGE ||
|
||
|
wrdd->package.count < 2 ||
|
||
|
wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
|
||
|
wrdd->package.elements[0].integer.value != 0) {
|
||
|
IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
for (i = 1 ; i < wrdd->package.count ; ++i) {
|
||
|
mcc_pkg = &wrdd->package.elements[i];
|
||
|
|
||
|
if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
|
||
|
mcc_pkg->package.count < 2 ||
|
||
|
mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
|
||
|
mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
|
||
|
mcc_pkg = NULL;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
domain_type = &mcc_pkg->package.elements[0];
|
||
|
if (domain_type->integer.value == WRDD_WIFI)
|
||
|
break;
|
||
|
|
||
|
mcc_pkg = NULL;
|
||
|
}
|
||
|
|
||
|
if (mcc_pkg) {
|
||
|
mcc_value = &mcc_pkg->package.elements[1];
|
||
|
return mcc_value->integer.value;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int iwl_get_bios_mcc(struct device *dev, char *mcc)
|
||
|
{
|
||
|
acpi_handle root_handle;
|
||
|
acpi_handle handle;
|
||
|
struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
|
||
|
acpi_status status;
|
||
|
u32 mcc_val;
|
||
|
|
||
|
root_handle = ACPI_HANDLE(dev);
|
||
|
if (!root_handle) {
|
||
|
IWL_DEBUG_EEPROM(dev,
|
||
|
"Could not retrieve root port ACPI handle\n");
|
||
|
return -ENOENT;
|
||
|
}
|
||
|
|
||
|
/* Get the method's handle */
|
||
|
status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
|
||
|
&handle);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
|
||
|
return -ENOENT;
|
||
|
}
|
||
|
|
||
|
/* Call WRDD with no arguments */
|
||
|
status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
|
||
|
status);
|
||
|
return -ENOENT;
|
||
|
}
|
||
|
|
||
|
mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
|
||
|
kfree(wrdd.pointer);
|
||
|
if (!mcc_val)
|
||
|
return -ENOENT;
|
||
|
|
||
|
mcc[0] = (mcc_val >> 8) & 0xff;
|
||
|
mcc[1] = mcc_val & 0xff;
|
||
|
mcc[2] = '\0';
|
||
|
return 0;
|
||
|
}
|
||
|
IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
|
||
|
#endif
|