547 lines
15 KiB
C
547 lines
15 KiB
C
|
/*
|
||
|
* vsp1_wpf.c -- R-Car VSP1 Write Pixel Formatter
|
||
|
*
|
||
|
* Copyright (C) 2013-2014 Renesas Electronics Corporation
|
||
|
*
|
||
|
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#include <linux/device.h>
|
||
|
|
||
|
#include <media/v4l2-subdev.h>
|
||
|
|
||
|
#include "vsp1.h"
|
||
|
#include "vsp1_dl.h"
|
||
|
#include "vsp1_pipe.h"
|
||
|
#include "vsp1_rwpf.h"
|
||
|
#include "vsp1_video.h"
|
||
|
|
||
|
#define WPF_GEN2_MAX_WIDTH 2048U
|
||
|
#define WPF_GEN2_MAX_HEIGHT 2048U
|
||
|
#define WPF_GEN3_MAX_WIDTH 8190U
|
||
|
#define WPF_GEN3_MAX_HEIGHT 8190U
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* Device Access
|
||
|
*/
|
||
|
|
||
|
static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf,
|
||
|
struct vsp1_dl_list *dl, u32 reg, u32 data)
|
||
|
{
|
||
|
vsp1_dl_list_write(dl, reg + wpf->entity.index * VI6_WPF_OFFSET, data);
|
||
|
}
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* Controls
|
||
|
*/
|
||
|
|
||
|
enum wpf_flip_ctrl {
|
||
|
WPF_CTRL_VFLIP = 0,
|
||
|
WPF_CTRL_HFLIP = 1,
|
||
|
};
|
||
|
|
||
|
static int vsp1_wpf_set_rotation(struct vsp1_rwpf *wpf, unsigned int rotation)
|
||
|
{
|
||
|
struct vsp1_video *video = wpf->video;
|
||
|
struct v4l2_mbus_framefmt *sink_format;
|
||
|
struct v4l2_mbus_framefmt *source_format;
|
||
|
bool rotate;
|
||
|
int ret = 0;
|
||
|
|
||
|
/*
|
||
|
* Only consider the 0°/180° from/to 90°/270° modifications, the rest
|
||
|
* is taken care of by the flipping configuration.
|
||
|
*/
|
||
|
rotate = rotation == 90 || rotation == 270;
|
||
|
if (rotate == wpf->flip.rotate)
|
||
|
return 0;
|
||
|
|
||
|
/* Changing rotation isn't allowed when buffers are allocated. */
|
||
|
mutex_lock(&video->lock);
|
||
|
|
||
|
if (vb2_is_busy(&video->queue)) {
|
||
|
ret = -EBUSY;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
sink_format = vsp1_entity_get_pad_format(&wpf->entity,
|
||
|
wpf->entity.config,
|
||
|
RWPF_PAD_SINK);
|
||
|
source_format = vsp1_entity_get_pad_format(&wpf->entity,
|
||
|
wpf->entity.config,
|
||
|
RWPF_PAD_SOURCE);
|
||
|
|
||
|
mutex_lock(&wpf->entity.lock);
|
||
|
|
||
|
if (rotate) {
|
||
|
source_format->width = sink_format->height;
|
||
|
source_format->height = sink_format->width;
|
||
|
} else {
|
||
|
source_format->width = sink_format->width;
|
||
|
source_format->height = sink_format->height;
|
||
|
}
|
||
|
|
||
|
wpf->flip.rotate = rotate;
|
||
|
|
||
|
mutex_unlock(&wpf->entity.lock);
|
||
|
|
||
|
done:
|
||
|
mutex_unlock(&video->lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int vsp1_wpf_s_ctrl(struct v4l2_ctrl *ctrl)
|
||
|
{
|
||
|
struct vsp1_rwpf *wpf =
|
||
|
container_of(ctrl->handler, struct vsp1_rwpf, ctrls);
|
||
|
unsigned int rotation;
|
||
|
u32 flip = 0;
|
||
|
int ret;
|
||
|
|
||
|
/* Update the rotation. */
|
||
|
rotation = wpf->flip.ctrls.rotate ? wpf->flip.ctrls.rotate->val : 0;
|
||
|
ret = vsp1_wpf_set_rotation(wpf, rotation);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* Compute the flip value resulting from all three controls, with
|
||
|
* rotation by 180° flipping the image in both directions. Store the
|
||
|
* result in the pending flip field for the next frame that will be
|
||
|
* processed.
|
||
|
*/
|
||
|
if (wpf->flip.ctrls.vflip->val)
|
||
|
flip |= BIT(WPF_CTRL_VFLIP);
|
||
|
|
||
|
if (wpf->flip.ctrls.hflip && wpf->flip.ctrls.hflip->val)
|
||
|
flip |= BIT(WPF_CTRL_HFLIP);
|
||
|
|
||
|
if (rotation == 180 || rotation == 270)
|
||
|
flip ^= BIT(WPF_CTRL_VFLIP) | BIT(WPF_CTRL_HFLIP);
|
||
|
|
||
|
spin_lock_irq(&wpf->flip.lock);
|
||
|
wpf->flip.pending = flip;
|
||
|
spin_unlock_irq(&wpf->flip.lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct v4l2_ctrl_ops vsp1_wpf_ctrl_ops = {
|
||
|
.s_ctrl = vsp1_wpf_s_ctrl,
|
||
|
};
|
||
|
|
||
|
static int wpf_init_controls(struct vsp1_rwpf *wpf)
|
||
|
{
|
||
|
struct vsp1_device *vsp1 = wpf->entity.vsp1;
|
||
|
unsigned int num_flip_ctrls;
|
||
|
|
||
|
spin_lock_init(&wpf->flip.lock);
|
||
|
|
||
|
if (wpf->entity.index != 0) {
|
||
|
/* Only WPF0 supports flipping. */
|
||
|
num_flip_ctrls = 0;
|
||
|
} else if (vsp1->info->features & VSP1_HAS_WPF_HFLIP) {
|
||
|
/*
|
||
|
* When horizontal flip is supported the WPF implements three
|
||
|
* controls (horizontal flip, vertical flip and rotation).
|
||
|
*/
|
||
|
num_flip_ctrls = 3;
|
||
|
} else if (vsp1->info->features & VSP1_HAS_WPF_VFLIP) {
|
||
|
/*
|
||
|
* When only vertical flip is supported the WPF implements a
|
||
|
* single control (vertical flip).
|
||
|
*/
|
||
|
num_flip_ctrls = 1;
|
||
|
} else {
|
||
|
/* Otherwise flipping is not supported. */
|
||
|
num_flip_ctrls = 0;
|
||
|
}
|
||
|
|
||
|
vsp1_rwpf_init_ctrls(wpf, num_flip_ctrls);
|
||
|
|
||
|
if (num_flip_ctrls >= 1) {
|
||
|
wpf->flip.ctrls.vflip =
|
||
|
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
|
||
|
V4L2_CID_VFLIP, 0, 1, 1, 0);
|
||
|
}
|
||
|
|
||
|
if (num_flip_ctrls == 3) {
|
||
|
wpf->flip.ctrls.hflip =
|
||
|
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
|
||
|
V4L2_CID_HFLIP, 0, 1, 1, 0);
|
||
|
wpf->flip.ctrls.rotate =
|
||
|
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
|
||
|
V4L2_CID_ROTATE, 0, 270, 90, 0);
|
||
|
v4l2_ctrl_cluster(3, &wpf->flip.ctrls.vflip);
|
||
|
}
|
||
|
|
||
|
if (wpf->ctrls.error) {
|
||
|
dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
|
||
|
wpf->entity.index);
|
||
|
return wpf->ctrls.error;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* V4L2 Subdevice Core Operations
|
||
|
*/
|
||
|
|
||
|
static int wpf_s_stream(struct v4l2_subdev *subdev, int enable)
|
||
|
{
|
||
|
struct vsp1_rwpf *wpf = to_rwpf(subdev);
|
||
|
struct vsp1_device *vsp1 = wpf->entity.vsp1;
|
||
|
|
||
|
if (enable)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Write to registers directly when stopping the stream as there will be
|
||
|
* no pipeline run to apply the display list.
|
||
|
*/
|
||
|
vsp1_write(vsp1, VI6_WPF_IRQ_ENB(wpf->entity.index), 0);
|
||
|
vsp1_write(vsp1, wpf->entity.index * VI6_WPF_OFFSET +
|
||
|
VI6_WPF_SRCRPF, 0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* V4L2 Subdevice Operations
|
||
|
*/
|
||
|
|
||
|
static const struct v4l2_subdev_video_ops wpf_video_ops = {
|
||
|
.s_stream = wpf_s_stream,
|
||
|
};
|
||
|
|
||
|
static const struct v4l2_subdev_ops wpf_ops = {
|
||
|
.video = &wpf_video_ops,
|
||
|
.pad = &vsp1_rwpf_pad_ops,
|
||
|
};
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* VSP1 Entity Operations
|
||
|
*/
|
||
|
|
||
|
static void vsp1_wpf_destroy(struct vsp1_entity *entity)
|
||
|
{
|
||
|
struct vsp1_rwpf *wpf = entity_to_rwpf(entity);
|
||
|
|
||
|
vsp1_dlm_destroy(wpf->dlm);
|
||
|
}
|
||
|
|
||
|
static void wpf_configure(struct vsp1_entity *entity,
|
||
|
struct vsp1_pipeline *pipe,
|
||
|
struct vsp1_dl_list *dl,
|
||
|
enum vsp1_entity_params params)
|
||
|
{
|
||
|
struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
|
||
|
struct vsp1_device *vsp1 = wpf->entity.vsp1;
|
||
|
const struct v4l2_mbus_framefmt *source_format;
|
||
|
const struct v4l2_mbus_framefmt *sink_format;
|
||
|
unsigned int i;
|
||
|
u32 outfmt = 0;
|
||
|
u32 srcrpf = 0;
|
||
|
|
||
|
if (params == VSP1_ENTITY_PARAMS_RUNTIME) {
|
||
|
const unsigned int mask = BIT(WPF_CTRL_VFLIP)
|
||
|
| BIT(WPF_CTRL_HFLIP);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&wpf->flip.lock, flags);
|
||
|
wpf->flip.active = (wpf->flip.active & ~mask)
|
||
|
| (wpf->flip.pending & mask);
|
||
|
spin_unlock_irqrestore(&wpf->flip.lock, flags);
|
||
|
|
||
|
outfmt = (wpf->alpha << VI6_WPF_OUTFMT_PDV_SHIFT) | wpf->outfmt;
|
||
|
|
||
|
if (wpf->flip.active & BIT(WPF_CTRL_VFLIP))
|
||
|
outfmt |= VI6_WPF_OUTFMT_FLP;
|
||
|
if (wpf->flip.active & BIT(WPF_CTRL_HFLIP))
|
||
|
outfmt |= VI6_WPF_OUTFMT_HFLP;
|
||
|
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_OUTFMT, outfmt);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
sink_format = vsp1_entity_get_pad_format(&wpf->entity,
|
||
|
wpf->entity.config,
|
||
|
RWPF_PAD_SINK);
|
||
|
source_format = vsp1_entity_get_pad_format(&wpf->entity,
|
||
|
wpf->entity.config,
|
||
|
RWPF_PAD_SOURCE);
|
||
|
|
||
|
if (params == VSP1_ENTITY_PARAMS_PARTITION) {
|
||
|
const struct v4l2_pix_format_mplane *format = &wpf->format;
|
||
|
const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
|
||
|
struct vsp1_rwpf_memory mem = wpf->mem;
|
||
|
unsigned int flip = wpf->flip.active;
|
||
|
unsigned int width = sink_format->width;
|
||
|
unsigned int height = sink_format->height;
|
||
|
unsigned int offset;
|
||
|
|
||
|
/*
|
||
|
* Cropping. The partition algorithm can split the image into
|
||
|
* multiple slices.
|
||
|
*/
|
||
|
if (pipe->partitions > 1)
|
||
|
width = pipe->partition->wpf.width;
|
||
|
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_HSZCLIP, VI6_WPF_SZCLIP_EN |
|
||
|
(0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
|
||
|
(width << VI6_WPF_SZCLIP_SIZE_SHIFT));
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_VSZCLIP, VI6_WPF_SZCLIP_EN |
|
||
|
(0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
|
||
|
(height << VI6_WPF_SZCLIP_SIZE_SHIFT));
|
||
|
|
||
|
if (pipe->lif)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Update the memory offsets based on flipping configuration.
|
||
|
* The destination addresses point to the locations where the
|
||
|
* VSP starts writing to memory, which can be any corner of the
|
||
|
* image depending on the combination of flipping and rotation.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* First take the partition left coordinate into account.
|
||
|
* Compute the offset to order the partitions correctly on the
|
||
|
* output based on whether flipping is enabled. Consider
|
||
|
* horizontal flipping when rotation is disabled but vertical
|
||
|
* flipping when rotation is enabled, as rotating the image
|
||
|
* switches the horizontal and vertical directions. The offset
|
||
|
* is applied horizontally or vertically accordingly.
|
||
|
*/
|
||
|
if (flip & BIT(WPF_CTRL_HFLIP) && !wpf->flip.rotate)
|
||
|
offset = format->width - pipe->partition->wpf.left
|
||
|
- pipe->partition->wpf.width;
|
||
|
else if (flip & BIT(WPF_CTRL_VFLIP) && wpf->flip.rotate)
|
||
|
offset = format->height - pipe->partition->wpf.left
|
||
|
- pipe->partition->wpf.width;
|
||
|
else
|
||
|
offset = pipe->partition->wpf.left;
|
||
|
|
||
|
for (i = 0; i < format->num_planes; ++i) {
|
||
|
unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
|
||
|
unsigned int vsub = i > 0 ? fmtinfo->vsub : 1;
|
||
|
|
||
|
if (wpf->flip.rotate)
|
||
|
mem.addr[i] += offset / vsub
|
||
|
* format->plane_fmt[i].bytesperline;
|
||
|
else
|
||
|
mem.addr[i] += offset / hsub
|
||
|
* fmtinfo->bpp[i] / 8;
|
||
|
}
|
||
|
|
||
|
if (flip & BIT(WPF_CTRL_VFLIP)) {
|
||
|
/*
|
||
|
* When rotating the output (after rotation) image
|
||
|
* height is equal to the partition width (before
|
||
|
* rotation). Otherwise it is equal to the output
|
||
|
* image height.
|
||
|
*/
|
||
|
if (wpf->flip.rotate)
|
||
|
height = pipe->partition->wpf.width;
|
||
|
else
|
||
|
height = format->height;
|
||
|
|
||
|
mem.addr[0] += (height - 1)
|
||
|
* format->plane_fmt[0].bytesperline;
|
||
|
|
||
|
if (format->num_planes > 1) {
|
||
|
offset = (height / fmtinfo->vsub - 1)
|
||
|
* format->plane_fmt[1].bytesperline;
|
||
|
mem.addr[1] += offset;
|
||
|
mem.addr[2] += offset;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (wpf->flip.rotate && !(flip & BIT(WPF_CTRL_HFLIP))) {
|
||
|
unsigned int hoffset = max(0, (int)format->width - 16);
|
||
|
|
||
|
/*
|
||
|
* Compute the output coordinate. The partition
|
||
|
* horizontal (left) offset becomes a vertical offset.
|
||
|
*/
|
||
|
for (i = 0; i < format->num_planes; ++i) {
|
||
|
unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
|
||
|
|
||
|
mem.addr[i] += hoffset / hsub
|
||
|
* fmtinfo->bpp[i] / 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* On Gen3 hardware the SPUVS bit has no effect on 3-planar
|
||
|
* formats. Swap the U and V planes manually in that case.
|
||
|
*/
|
||
|
if (vsp1->info->gen == 3 && format->num_planes == 3 &&
|
||
|
fmtinfo->swap_uv)
|
||
|
swap(mem.addr[1], mem.addr[2]);
|
||
|
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_Y, mem.addr[0]);
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C0, mem.addr[1]);
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C1, mem.addr[2]);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Format */
|
||
|
if (!pipe->lif) {
|
||
|
const struct v4l2_pix_format_mplane *format = &wpf->format;
|
||
|
const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
|
||
|
|
||
|
outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT;
|
||
|
|
||
|
if (wpf->flip.rotate)
|
||
|
outfmt |= VI6_WPF_OUTFMT_ROT;
|
||
|
|
||
|
if (fmtinfo->alpha)
|
||
|
outfmt |= VI6_WPF_OUTFMT_PXA;
|
||
|
if (fmtinfo->swap_yc)
|
||
|
outfmt |= VI6_WPF_OUTFMT_SPYCS;
|
||
|
if (fmtinfo->swap_uv)
|
||
|
outfmt |= VI6_WPF_OUTFMT_SPUVS;
|
||
|
|
||
|
/* Destination stride and byte swapping. */
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_Y,
|
||
|
format->plane_fmt[0].bytesperline);
|
||
|
if (format->num_planes > 1)
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_C,
|
||
|
format->plane_fmt[1].bytesperline);
|
||
|
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_DSWAP, fmtinfo->swap);
|
||
|
|
||
|
if (vsp1->info->features & VSP1_HAS_WPF_HFLIP &&
|
||
|
wpf->entity.index == 0)
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_ROT_CTRL,
|
||
|
VI6_WPF_ROT_CTRL_LN16 |
|
||
|
(256 << VI6_WPF_ROT_CTRL_LMEM_WD_SHIFT));
|
||
|
}
|
||
|
|
||
|
if (sink_format->code != source_format->code)
|
||
|
outfmt |= VI6_WPF_OUTFMT_CSC;
|
||
|
|
||
|
wpf->outfmt = outfmt;
|
||
|
|
||
|
vsp1_dl_list_write(dl, VI6_DPR_WPF_FPORCH(wpf->entity.index),
|
||
|
VI6_DPR_WPF_FPORCH_FP_WPFN);
|
||
|
|
||
|
vsp1_dl_list_write(dl, VI6_WPF_WRBCK_CTRL, 0);
|
||
|
|
||
|
/*
|
||
|
* Sources. If the pipeline has a single input and BRU is not used,
|
||
|
* configure it as the master layer. Otherwise configure all
|
||
|
* inputs as sub-layers and select the virtual RPF as the master
|
||
|
* layer.
|
||
|
*/
|
||
|
for (i = 0; i < vsp1->info->rpf_count; ++i) {
|
||
|
struct vsp1_rwpf *input = pipe->inputs[i];
|
||
|
|
||
|
if (!input)
|
||
|
continue;
|
||
|
|
||
|
srcrpf |= (!pipe->bru && pipe->num_inputs == 1)
|
||
|
? VI6_WPF_SRCRPF_RPF_ACT_MST(input->entity.index)
|
||
|
: VI6_WPF_SRCRPF_RPF_ACT_SUB(input->entity.index);
|
||
|
}
|
||
|
|
||
|
if (pipe->bru)
|
||
|
srcrpf |= pipe->bru->type == VSP1_ENTITY_BRU
|
||
|
? VI6_WPF_SRCRPF_VIRACT_MST
|
||
|
: VI6_WPF_SRCRPF_VIRACT2_MST;
|
||
|
|
||
|
vsp1_wpf_write(wpf, dl, VI6_WPF_SRCRPF, srcrpf);
|
||
|
|
||
|
/* Enable interrupts */
|
||
|
vsp1_dl_list_write(dl, VI6_WPF_IRQ_STA(wpf->entity.index), 0);
|
||
|
vsp1_dl_list_write(dl, VI6_WPF_IRQ_ENB(wpf->entity.index),
|
||
|
VI6_WFP_IRQ_ENB_DFEE);
|
||
|
}
|
||
|
|
||
|
static unsigned int wpf_max_width(struct vsp1_entity *entity,
|
||
|
struct vsp1_pipeline *pipe)
|
||
|
{
|
||
|
struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
|
||
|
|
||
|
return wpf->flip.rotate ? 256 : wpf->max_width;
|
||
|
}
|
||
|
|
||
|
static void wpf_partition(struct vsp1_entity *entity,
|
||
|
struct vsp1_pipeline *pipe,
|
||
|
struct vsp1_partition *partition,
|
||
|
unsigned int partition_idx,
|
||
|
struct vsp1_partition_window *window)
|
||
|
{
|
||
|
partition->wpf = *window;
|
||
|
}
|
||
|
|
||
|
static const struct vsp1_entity_operations wpf_entity_ops = {
|
||
|
.destroy = vsp1_wpf_destroy,
|
||
|
.configure = wpf_configure,
|
||
|
.max_width = wpf_max_width,
|
||
|
.partition = wpf_partition,
|
||
|
};
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* Initialization and Cleanup
|
||
|
*/
|
||
|
|
||
|
struct vsp1_rwpf *vsp1_wpf_create(struct vsp1_device *vsp1, unsigned int index)
|
||
|
{
|
||
|
struct vsp1_rwpf *wpf;
|
||
|
char name[6];
|
||
|
int ret;
|
||
|
|
||
|
wpf = devm_kzalloc(vsp1->dev, sizeof(*wpf), GFP_KERNEL);
|
||
|
if (wpf == NULL)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
if (vsp1->info->gen == 2) {
|
||
|
wpf->max_width = WPF_GEN2_MAX_WIDTH;
|
||
|
wpf->max_height = WPF_GEN2_MAX_HEIGHT;
|
||
|
} else {
|
||
|
wpf->max_width = WPF_GEN3_MAX_WIDTH;
|
||
|
wpf->max_height = WPF_GEN3_MAX_HEIGHT;
|
||
|
}
|
||
|
|
||
|
wpf->entity.ops = &wpf_entity_ops;
|
||
|
wpf->entity.type = VSP1_ENTITY_WPF;
|
||
|
wpf->entity.index = index;
|
||
|
|
||
|
sprintf(name, "wpf.%u", index);
|
||
|
ret = vsp1_entity_init(vsp1, &wpf->entity, name, 2, &wpf_ops,
|
||
|
MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
|
||
|
if (ret < 0)
|
||
|
return ERR_PTR(ret);
|
||
|
|
||
|
/* Initialize the display list manager. */
|
||
|
wpf->dlm = vsp1_dlm_create(vsp1, index, 64);
|
||
|
if (!wpf->dlm) {
|
||
|
ret = -ENOMEM;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* Initialize the control handler. */
|
||
|
ret = wpf_init_controls(wpf);
|
||
|
if (ret < 0) {
|
||
|
dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
|
||
|
index);
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
v4l2_ctrl_handler_setup(&wpf->ctrls);
|
||
|
|
||
|
return wpf;
|
||
|
|
||
|
error:
|
||
|
vsp1_entity_destroy(&wpf->entity);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|