lineage_kernel_xcoverpro/drivers/media/platform/vsp1/vsp1_dl.c

797 lines
21 KiB
C
Raw Permalink Normal View History

2023-06-18 22:53:49 +00:00
/*
* vsp1_dl.h -- R-Car VSP1 Display List
*
* Copyright (C) 2015 Renesas Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "vsp1.h"
#include "vsp1_dl.h"
#define VSP1_DL_NUM_ENTRIES 256
#define VSP1_DLH_INT_ENABLE (1 << 1)
#define VSP1_DLH_AUTO_START (1 << 0)
struct vsp1_dl_header_list {
u32 num_bytes;
u32 addr;
} __attribute__((__packed__));
struct vsp1_dl_header {
u32 num_lists;
struct vsp1_dl_header_list lists[8];
u32 next_header;
u32 flags;
} __attribute__((__packed__));
struct vsp1_dl_entry {
u32 addr;
u32 data;
} __attribute__((__packed__));
/**
* struct vsp1_dl_body - Display list body
* @list: entry in the display list list of bodies
* @vsp1: the VSP1 device
* @entries: array of entries
* @dma: DMA address of the entries
* @size: size of the DMA memory in bytes
* @num_entries: number of stored entries
*/
struct vsp1_dl_body {
struct list_head list;
struct vsp1_device *vsp1;
struct vsp1_dl_entry *entries;
dma_addr_t dma;
size_t size;
unsigned int num_entries;
};
/**
* struct vsp1_dl_list - Display list
* @list: entry in the display list manager lists
* @dlm: the display list manager
* @header: display list header, NULL for headerless lists
* @dma: DMA address for the header
* @body0: first display list body
* @fragments: list of extra display list bodies
* @chain: entry in the display list partition chain
*/
struct vsp1_dl_list {
struct list_head list;
struct vsp1_dl_manager *dlm;
struct vsp1_dl_header *header;
dma_addr_t dma;
struct vsp1_dl_body body0;
struct list_head fragments;
bool has_chain;
struct list_head chain;
};
enum vsp1_dl_mode {
VSP1_DL_MODE_HEADER,
VSP1_DL_MODE_HEADERLESS,
};
/**
* struct vsp1_dl_manager - Display List manager
* @index: index of the related WPF
* @mode: display list operation mode (header or headerless)
* @singleshot: execute the display list in single-shot mode
* @vsp1: the VSP1 device
* @lock: protects the free, active, queued, pending and gc_fragments lists
* @free: array of all free display lists
* @active: list currently being processed (loaded) by hardware
* @queued: list queued to the hardware (written to the DL registers)
* @pending: list waiting to be queued to the hardware
* @gc_work: fragments garbage collector work struct
* @gc_fragments: array of display list fragments waiting to be freed
*/
struct vsp1_dl_manager {
unsigned int index;
enum vsp1_dl_mode mode;
bool singleshot;
struct vsp1_device *vsp1;
spinlock_t lock;
struct list_head free;
struct vsp1_dl_list *active;
struct vsp1_dl_list *queued;
struct vsp1_dl_list *pending;
struct work_struct gc_work;
struct list_head gc_fragments;
};
/* -----------------------------------------------------------------------------
* Display List Body Management
*/
/*
* Initialize a display list body object and allocate DMA memory for the body
* data. The display list body object is expected to have been initialized to
* 0 when allocated.
*/
static int vsp1_dl_body_init(struct vsp1_device *vsp1,
struct vsp1_dl_body *dlb, unsigned int num_entries,
size_t extra_size)
{
size_t size = num_entries * sizeof(*dlb->entries) + extra_size;
dlb->vsp1 = vsp1;
dlb->size = size;
dlb->entries = dma_alloc_wc(vsp1->bus_master, dlb->size, &dlb->dma,
GFP_KERNEL);
if (!dlb->entries)
return -ENOMEM;
return 0;
}
/*
* Cleanup a display list body and free allocated DMA memory allocated.
*/
static void vsp1_dl_body_cleanup(struct vsp1_dl_body *dlb)
{
dma_free_wc(dlb->vsp1->bus_master, dlb->size, dlb->entries, dlb->dma);
}
/**
* vsp1_dl_fragment_alloc - Allocate a display list fragment
* @vsp1: The VSP1 device
* @num_entries: The maximum number of entries that the fragment can contain
*
* Allocate a display list fragment with enough memory to contain the requested
* number of entries.
*
* Return a pointer to a fragment on success or NULL if memory can't be
* allocated.
*/
struct vsp1_dl_body *vsp1_dl_fragment_alloc(struct vsp1_device *vsp1,
unsigned int num_entries)
{
struct vsp1_dl_body *dlb;
int ret;
dlb = kzalloc(sizeof(*dlb), GFP_KERNEL);
if (!dlb)
return NULL;
ret = vsp1_dl_body_init(vsp1, dlb, num_entries, 0);
if (ret < 0) {
kfree(dlb);
return NULL;
}
return dlb;
}
/**
* vsp1_dl_fragment_free - Free a display list fragment
* @dlb: The fragment
*
* Free the given display list fragment and the associated DMA memory.
*
* Fragments must only be freed explicitly if they are not added to a display
* list, as the display list will take ownership of them and free them
* otherwise. Manual free typically happens at cleanup time for fragments that
* have been allocated but not used.
*
* Passing a NULL pointer to this function is safe, in that case no operation
* will be performed.
*/
void vsp1_dl_fragment_free(struct vsp1_dl_body *dlb)
{
if (!dlb)
return;
vsp1_dl_body_cleanup(dlb);
kfree(dlb);
}
/**
* vsp1_dl_fragment_write - Write a register to a display list fragment
* @dlb: The fragment
* @reg: The register address
* @data: The register value
*
* Write the given register and value to the display list fragment. The maximum
* number of entries that can be written in a fragment is specified when the
* fragment is allocated by vsp1_dl_fragment_alloc().
*/
void vsp1_dl_fragment_write(struct vsp1_dl_body *dlb, u32 reg, u32 data)
{
dlb->entries[dlb->num_entries].addr = reg;
dlb->entries[dlb->num_entries].data = data;
dlb->num_entries++;
}
/* -----------------------------------------------------------------------------
* Display List Transaction Management
*/
static struct vsp1_dl_list *vsp1_dl_list_alloc(struct vsp1_dl_manager *dlm)
{
struct vsp1_dl_list *dl;
size_t header_size;
int ret;
dl = kzalloc(sizeof(*dl), GFP_KERNEL);
if (!dl)
return NULL;
INIT_LIST_HEAD(&dl->fragments);
dl->dlm = dlm;
/*
* Initialize the display list body and allocate DMA memory for the body
* and the optional header. Both are allocated together to avoid memory
* fragmentation, with the header located right after the body in
* memory.
*/
header_size = dlm->mode == VSP1_DL_MODE_HEADER
? ALIGN(sizeof(struct vsp1_dl_header), 8)
: 0;
ret = vsp1_dl_body_init(dlm->vsp1, &dl->body0, VSP1_DL_NUM_ENTRIES,
header_size);
if (ret < 0) {
kfree(dl);
return NULL;
}
if (dlm->mode == VSP1_DL_MODE_HEADER) {
size_t header_offset = VSP1_DL_NUM_ENTRIES
* sizeof(*dl->body0.entries);
dl->header = ((void *)dl->body0.entries) + header_offset;
dl->dma = dl->body0.dma + header_offset;
memset(dl->header, 0, sizeof(*dl->header));
dl->header->lists[0].addr = dl->body0.dma;
}
return dl;
}
static void vsp1_dl_list_free(struct vsp1_dl_list *dl)
{
vsp1_dl_body_cleanup(&dl->body0);
list_splice_init(&dl->fragments, &dl->dlm->gc_fragments);
kfree(dl);
}
/**
* vsp1_dl_list_get - Get a free display list
* @dlm: The display list manager
*
* Get a display list from the pool of free lists and return it.
*
* This function must be called without the display list manager lock held.
*/
struct vsp1_dl_list *vsp1_dl_list_get(struct vsp1_dl_manager *dlm)
{
struct vsp1_dl_list *dl = NULL;
unsigned long flags;
spin_lock_irqsave(&dlm->lock, flags);
if (!list_empty(&dlm->free)) {
dl = list_first_entry(&dlm->free, struct vsp1_dl_list, list);
list_del(&dl->list);
/*
* The display list chain must be initialised to ensure every
* display list can assert list_empty() if it is not in a chain.
*/
INIT_LIST_HEAD(&dl->chain);
}
spin_unlock_irqrestore(&dlm->lock, flags);
return dl;
}
/* This function must be called with the display list manager lock held.*/
static void __vsp1_dl_list_put(struct vsp1_dl_list *dl)
{
struct vsp1_dl_list *dl_child;
if (!dl)
return;
/*
* Release any linked display-lists which were chained for a single
* hardware operation.
*/
if (dl->has_chain) {
list_for_each_entry(dl_child, &dl->chain, chain)
__vsp1_dl_list_put(dl_child);
}
dl->has_chain = false;
/*
* We can't free fragments here as DMA memory can only be freed in
* interruptible context. Move all fragments to the display list
* manager's list of fragments to be freed, they will be
* garbage-collected by the work queue.
*/
if (!list_empty(&dl->fragments)) {
list_splice_init(&dl->fragments, &dl->dlm->gc_fragments);
schedule_work(&dl->dlm->gc_work);
}
dl->body0.num_entries = 0;
list_add_tail(&dl->list, &dl->dlm->free);
}
/**
* vsp1_dl_list_put - Release a display list
* @dl: The display list
*
* Release the display list and return it to the pool of free lists.
*
* Passing a NULL pointer to this function is safe, in that case no operation
* will be performed.
*/
void vsp1_dl_list_put(struct vsp1_dl_list *dl)
{
unsigned long flags;
if (!dl)
return;
spin_lock_irqsave(&dl->dlm->lock, flags);
__vsp1_dl_list_put(dl);
spin_unlock_irqrestore(&dl->dlm->lock, flags);
}
/**
* vsp1_dl_list_write - Write a register to the display list
* @dl: The display list
* @reg: The register address
* @data: The register value
*
* Write the given register and value to the display list. Up to 256 registers
* can be written per display list.
*/
void vsp1_dl_list_write(struct vsp1_dl_list *dl, u32 reg, u32 data)
{
vsp1_dl_fragment_write(&dl->body0, reg, data);
}
/**
* vsp1_dl_list_add_fragment - Add a fragment to the display list
* @dl: The display list
* @dlb: The fragment
*
* Add a display list body as a fragment to a display list. Registers contained
* in fragments are processed after registers contained in the main display
* list, in the order in which fragments are added.
*
* Adding a fragment to a display list passes ownership of the fragment to the
* list. The caller must not touch the fragment after this call, and must not
* free it explicitly with vsp1_dl_fragment_free().
*
* Fragments are only usable for display lists in header mode. Attempt to
* add a fragment to a header-less display list will return an error.
*/
int vsp1_dl_list_add_fragment(struct vsp1_dl_list *dl,
struct vsp1_dl_body *dlb)
{
/* Multi-body lists are only available in header mode. */
if (dl->dlm->mode != VSP1_DL_MODE_HEADER)
return -EINVAL;
list_add_tail(&dlb->list, &dl->fragments);
return 0;
}
/**
* vsp1_dl_list_add_chain - Add a display list to a chain
* @head: The head display list
* @dl: The new display list
*
* Add a display list to an existing display list chain. The chained lists
* will be automatically processed by the hardware without intervention from
* the CPU. A display list end interrupt will only complete after the last
* display list in the chain has completed processing.
*
* Adding a display list to a chain passes ownership of the display list to
* the head display list item. The chain is released when the head dl item is
* put back with __vsp1_dl_list_put().
*
* Chained display lists are only usable in header mode. Attempts to add a
* display list to a chain in header-less mode will return an error.
*/
int vsp1_dl_list_add_chain(struct vsp1_dl_list *head,
struct vsp1_dl_list *dl)
{
/* Chained lists are only available in header mode. */
if (head->dlm->mode != VSP1_DL_MODE_HEADER)
return -EINVAL;
head->has_chain = true;
list_add_tail(&dl->chain, &head->chain);
return 0;
}
static void vsp1_dl_list_fill_header(struct vsp1_dl_list *dl, bool is_last)
{
struct vsp1_dl_manager *dlm = dl->dlm;
struct vsp1_dl_header_list *hdr = dl->header->lists;
struct vsp1_dl_body *dlb;
unsigned int num_lists = 0;
/*
* Fill the header with the display list bodies addresses and sizes. The
* address of the first body has already been filled when the display
* list was allocated.
*/
hdr->num_bytes = dl->body0.num_entries
* sizeof(*dl->header->lists);
list_for_each_entry(dlb, &dl->fragments, list) {
num_lists++;
hdr++;
hdr->addr = dlb->dma;
hdr->num_bytes = dlb->num_entries
* sizeof(*dl->header->lists);
}
dl->header->num_lists = num_lists;
if (!list_empty(&dl->chain) && !is_last) {
/*
* If this display list's chain is not empty, we are on a list,
* and the next item is the display list that we must queue for
* automatic processing by the hardware.
*/
struct vsp1_dl_list *next = list_next_entry(dl, chain);
dl->header->next_header = next->dma;
dl->header->flags = VSP1_DLH_AUTO_START;
} else if (!dlm->singleshot) {
/*
* if the display list manager works in continuous mode, the VSP
* should loop over the display list continuously until
* instructed to do otherwise.
*/
dl->header->next_header = dl->dma;
dl->header->flags = VSP1_DLH_INT_ENABLE | VSP1_DLH_AUTO_START;
} else {
/*
* Otherwise, in mem-to-mem mode, we work in single-shot mode
* and the next display list must not be started automatically.
*/
dl->header->flags = VSP1_DLH_INT_ENABLE;
}
}
static bool vsp1_dl_list_hw_update_pending(struct vsp1_dl_manager *dlm)
{
struct vsp1_device *vsp1 = dlm->vsp1;
if (!dlm->queued)
return false;
/*
* Check whether the VSP1 has taken the update. In headerless mode the
* hardware indicates this by clearing the UPD bit in the DL_BODY_SIZE
* register, and in header mode by clearing the UPDHDR bit in the CMD
* register.
*/
if (dlm->mode == VSP1_DL_MODE_HEADERLESS)
return !!(vsp1_read(vsp1, VI6_DL_BODY_SIZE)
& VI6_DL_BODY_SIZE_UPD);
else
return !!(vsp1_read(vsp1, VI6_CMD(dlm->index))
& VI6_CMD_UPDHDR);
}
static void vsp1_dl_list_hw_enqueue(struct vsp1_dl_list *dl)
{
struct vsp1_dl_manager *dlm = dl->dlm;
struct vsp1_device *vsp1 = dlm->vsp1;
if (dlm->mode == VSP1_DL_MODE_HEADERLESS) {
/*
* In headerless mode, program the hardware directly with the
* display list body address and size and set the UPD bit. The
* bit will be cleared by the hardware when the display list
* processing starts.
*/
vsp1_write(vsp1, VI6_DL_HDR_ADDR(0), dl->body0.dma);
vsp1_write(vsp1, VI6_DL_BODY_SIZE, VI6_DL_BODY_SIZE_UPD |
(dl->body0.num_entries * sizeof(*dl->header->lists)));
} else {
/*
* In header mode, program the display list header address. If
* the hardware is idle (single-shot mode or first frame in
* continuous mode) it will then be started independently. If
* the hardware is operating, the VI6_DL_HDR_REF_ADDR register
* will be updated with the display list address.
*/
vsp1_write(vsp1, VI6_DL_HDR_ADDR(dlm->index), dl->dma);
}
}
static void vsp1_dl_list_commit_continuous(struct vsp1_dl_list *dl)
{
struct vsp1_dl_manager *dlm = dl->dlm;
/*
* If a previous display list has been queued to the hardware but not
* processed yet, the VSP can start processing it at any time. In that
* case we can't replace the queued list by the new one, as we could
* race with the hardware. We thus mark the update as pending, it will
* be queued up to the hardware by the frame end interrupt handler.
*/
if (vsp1_dl_list_hw_update_pending(dlm)) {
__vsp1_dl_list_put(dlm->pending);
dlm->pending = dl;
return;
}
/*
* Pass the new display list to the hardware and mark it as queued. It
* will become active when the hardware starts processing it.
*/
vsp1_dl_list_hw_enqueue(dl);
__vsp1_dl_list_put(dlm->queued);
dlm->queued = dl;
}
static void vsp1_dl_list_commit_singleshot(struct vsp1_dl_list *dl)
{
struct vsp1_dl_manager *dlm = dl->dlm;
/*
* When working in single-shot mode, the caller guarantees that the
* hardware is idle at this point. Just commit the head display list
* to hardware. Chained lists will be started automatically.
*/
vsp1_dl_list_hw_enqueue(dl);
dlm->active = dl;
}
void vsp1_dl_list_commit(struct vsp1_dl_list *dl)
{
struct vsp1_dl_manager *dlm = dl->dlm;
struct vsp1_dl_list *dl_child;
unsigned long flags;
if (dlm->mode == VSP1_DL_MODE_HEADER) {
/* Fill the header for the head and chained display lists. */
vsp1_dl_list_fill_header(dl, list_empty(&dl->chain));
list_for_each_entry(dl_child, &dl->chain, chain) {
bool last = list_is_last(&dl_child->chain, &dl->chain);
vsp1_dl_list_fill_header(dl_child, last);
}
}
spin_lock_irqsave(&dlm->lock, flags);
if (dlm->singleshot)
vsp1_dl_list_commit_singleshot(dl);
else
vsp1_dl_list_commit_continuous(dl);
spin_unlock_irqrestore(&dlm->lock, flags);
}
/* -----------------------------------------------------------------------------
* Display List Manager
*/
/**
* vsp1_dlm_irq_frame_end - Display list handler for the frame end interrupt
* @dlm: the display list manager
*
* Return true if the previous display list has completed at frame end, or false
* if it has been delayed by one frame because the display list commit raced
* with the frame end interrupt. The function always returns true in header mode
* as display list processing is then not continuous and races never occur.
*/
bool vsp1_dlm_irq_frame_end(struct vsp1_dl_manager *dlm)
{
bool completed = false;
spin_lock(&dlm->lock);
/*
* The mem-to-mem pipelines work in single-shot mode. No new display
* list can be queued, we don't have to do anything.
*/
if (dlm->singleshot) {
__vsp1_dl_list_put(dlm->active);
dlm->active = NULL;
completed = true;
goto done;
}
/*
* If the commit operation raced with the interrupt and occurred after
* the frame end event but before interrupt processing, the hardware
* hasn't taken the update into account yet. We have to skip one frame
* and retry.
*/
if (vsp1_dl_list_hw_update_pending(dlm))
goto done;
/*
* The device starts processing the queued display list right after the
* frame end interrupt. The display list thus becomes active.
*/
if (dlm->queued) {
__vsp1_dl_list_put(dlm->active);
dlm->active = dlm->queued;
dlm->queued = NULL;
completed = true;
}
/*
* Now that the VSP has started processing the queued display list, we
* can queue the pending display list to the hardware if one has been
* prepared.
*/
if (dlm->pending) {
vsp1_dl_list_hw_enqueue(dlm->pending);
dlm->queued = dlm->pending;
dlm->pending = NULL;
}
done:
spin_unlock(&dlm->lock);
return completed;
}
/* Hardware Setup */
void vsp1_dlm_setup(struct vsp1_device *vsp1)
{
u32 ctrl = (256 << VI6_DL_CTRL_AR_WAIT_SHIFT)
| VI6_DL_CTRL_DC2 | VI6_DL_CTRL_DC1 | VI6_DL_CTRL_DC0
| VI6_DL_CTRL_DLE;
/*
* The DRM pipeline operates with display lists in Continuous Frame
* Mode, all other pipelines use manual start.
*/
if (vsp1->drm)
ctrl |= VI6_DL_CTRL_CFM0 | VI6_DL_CTRL_NH0;
vsp1_write(vsp1, VI6_DL_CTRL, ctrl);
vsp1_write(vsp1, VI6_DL_SWAP, VI6_DL_SWAP_LWS);
}
void vsp1_dlm_reset(struct vsp1_dl_manager *dlm)
{
unsigned long flags;
spin_lock_irqsave(&dlm->lock, flags);
__vsp1_dl_list_put(dlm->active);
__vsp1_dl_list_put(dlm->queued);
__vsp1_dl_list_put(dlm->pending);
spin_unlock_irqrestore(&dlm->lock, flags);
dlm->active = NULL;
dlm->queued = NULL;
dlm->pending = NULL;
}
/*
* Free all fragments awaiting to be garbage-collected.
*
* This function must be called without the display list manager lock held.
*/
static void vsp1_dlm_fragments_free(struct vsp1_dl_manager *dlm)
{
unsigned long flags;
spin_lock_irqsave(&dlm->lock, flags);
while (!list_empty(&dlm->gc_fragments)) {
struct vsp1_dl_body *dlb;
dlb = list_first_entry(&dlm->gc_fragments, struct vsp1_dl_body,
list);
list_del(&dlb->list);
spin_unlock_irqrestore(&dlm->lock, flags);
vsp1_dl_fragment_free(dlb);
spin_lock_irqsave(&dlm->lock, flags);
}
spin_unlock_irqrestore(&dlm->lock, flags);
}
static void vsp1_dlm_garbage_collect(struct work_struct *work)
{
struct vsp1_dl_manager *dlm =
container_of(work, struct vsp1_dl_manager, gc_work);
vsp1_dlm_fragments_free(dlm);
}
struct vsp1_dl_manager *vsp1_dlm_create(struct vsp1_device *vsp1,
unsigned int index,
unsigned int prealloc)
{
struct vsp1_dl_manager *dlm;
unsigned int i;
dlm = devm_kzalloc(vsp1->dev, sizeof(*dlm), GFP_KERNEL);
if (!dlm)
return NULL;
dlm->index = index;
dlm->mode = index == 0 && !vsp1->info->uapi
? VSP1_DL_MODE_HEADERLESS : VSP1_DL_MODE_HEADER;
dlm->singleshot = vsp1->info->uapi;
dlm->vsp1 = vsp1;
spin_lock_init(&dlm->lock);
INIT_LIST_HEAD(&dlm->free);
INIT_LIST_HEAD(&dlm->gc_fragments);
INIT_WORK(&dlm->gc_work, vsp1_dlm_garbage_collect);
for (i = 0; i < prealloc; ++i) {
struct vsp1_dl_list *dl;
dl = vsp1_dl_list_alloc(dlm);
if (!dl)
return NULL;
list_add_tail(&dl->list, &dlm->free);
}
return dlm;
}
void vsp1_dlm_destroy(struct vsp1_dl_manager *dlm)
{
struct vsp1_dl_list *dl, *next;
if (!dlm)
return;
cancel_work_sync(&dlm->gc_work);
list_for_each_entry_safe(dl, next, &dlm->free, list) {
list_del(&dl->list);
vsp1_dl_list_free(dl);
}
vsp1_dlm_fragments_free(dlm);
}