lineage_kernel_xcoverpro/drivers/input/touchscreen/synaptics_dsx/rmi_f54.c

6326 lines
170 KiB
C
Raw Permalink Normal View History

2023-06-18 22:53:49 +00:00
/*
* Synaptics DSX touchscreen driver
*
* Copyright (C) 2012 Synaptics Incorporated
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/unaligned.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/ctype.h>
#include <linux/hrtimer.h>
#include <linux/firmware.h>
#include <linux/gpio.h>
#include "synaptics_i2c_rmi.h"
#define FACTORY_MODE
#define USE_ACTIVE_REPORT_RATE
#define CMD_GET_REPORT 1
#define TSP_RAWCAP_MAX 6000
#define TSP_RAWCAP_MIN 300
#define TSP_DELTA_MAX 10
#define TSP_DELTA_MIN -10
#define WATCHDOG_HRTIMER
#define WATCHDOG_TIMEOUT_S 2
#define FORCE_TIMEOUT_100MS 10
#define STATUS_WORK_INTERVAL 20 /* ms */
/*
#define RAW_HEX
#define HUMAN_READABLE
*/
#define STATUS_IDLE 0
#define STATUS_BUSY 1
#define STATUS_ERROR 2
#define DATA_REPORT_INDEX_OFFSET 1
#define DATA_REPORT_DATA_OFFSET 3
#define SENSOR_RX_MAPPING_OFFSET 1
#define SENSOR_TX_MAPPING_OFFSET 2
#define COMMAND_GET_REPORT 1
#define COMMAND_FORCE_CAL 2
#define COMMAND_FORCE_UPDATE 4
#define CONTROL_42_SIZE 2
#define CONTROL_43_54_SIZE 13
#define CONTROL_55_56_SIZE 2
#define CONTROL_58_SIZE 1
#define CONTROL_59_SIZE 2
#define CONTROL_60_62_SIZE 3
#define CONTROL_63_SIZE 1
#define CONTROL_64_67_SIZE 4
#define CONTROL_68_73_SIZE 8
#define CONTROL_74_SIZE 2
#define CONTROL_76_SIZE 1
#define CONTROL_77_78_SIZE 2
#define CONTROL_79_83_SIZE 5
#define CONTROL_84_85_SIZE 2
#define CONTROL_86_SIZE 1
#define CONTROL_87_SIZE 1
#define CONTROL_89_SIZE 1
#define CONTROL_90_SIZE 1
#define CONTROL_91_SIZE 1
#define CONTROL_92_SIZE 1
#define CONTROL_93_SIZE 1
#define HIGH_RESISTANCE_DATA_SIZE 6
#define FULL_RAW_CAP_MIN_MAX_DATA_SIZE 4
#define TREX_DATA_SIZE 7
#define NO_AUTO_CAL_MASK 0x01
#define concat(a, b) a##b
#define tostring(x) (#x)
#define GROUP(_attrs) {\
.attrs = _attrs,\
}
#define attrify(propname) (&dev_attr_##propname.attr)
#define show_prototype(propname)\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_show)(\
struct device *dev,\
struct device_attribute *attr,\
char *buf);\
\
struct device_attribute dev_attr_##propname =\
__ATTR(propname, S_IRUGO,\
concat(synaptics_rmi4_f54, _##propname##_show),\
synaptics_rmi4_store_error);
#define store_prototype(propname)\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_store)(\
struct device *dev,\
struct device_attribute *attr,\
const char *buf, size_t count);\
\
struct device_attribute dev_attr_##propname =\
__ATTR(propname, S_IWUSR | S_IWGRP,\
synaptics_rmi4_show_error,\
concat(synaptics_rmi4_f54, _##propname##_store));
#define show_store_prototype(propname)\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_show)(\
struct device *dev,\
struct device_attribute *attr,\
char *buf);\
\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_store)(\
struct device *dev,\
struct device_attribute *attr,\
const char *buf, size_t count);\
\
struct device_attribute dev_attr_##propname =\
__ATTR(propname, (S_IRUGO | S_IWUSR | S_IWGRP),\
concat(synaptics_rmi4_f54, _##propname##_show),\
concat(synaptics_rmi4_f54, _##propname##_store));
#define simple_show_func(rtype, propname, fmt)\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_show)(\
struct device *dev,\
struct device_attribute *attr,\
char *buf)\
{\
return snprintf(buf, PAGE_SIZE, fmt, f54->rtype.propname);\
} \
#define simple_show_func_unsigned(rtype, propname)\
simple_show_func(rtype, propname, "%u\n")
#define show_func(rtype, rgrp, propname, fmt)\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_show)(\
struct device *dev,\
struct device_attribute *attr,\
char *buf)\
{\
int retval;\
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;\
\
mutex_lock(&f54->rtype##_mutex);\
\
retval = f54->fn_ptr->read(rmi4_data,\
f54->rtype.rgrp->address,\
f54->rtype.rgrp->data,\
sizeof(f54->rtype.rgrp->data));\
mutex_unlock(&f54->rtype##_mutex);\
if (retval < 0) {\
tsp_debug_err(true, &rmi4_data->i2c_client->dev,\
"%s: Failed to read " #rtype\
" " #rgrp "\n",\
__func__);\
return retval;\
} \
\
return snprintf(buf, PAGE_SIZE, fmt,\
f54->rtype.rgrp->propname);\
} \
#define show_store_func(rtype, rgrp, propname, fmt)\
show_func(rtype, rgrp, propname, fmt)\
\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_store)(\
struct device *dev,\
struct device_attribute *attr,\
const char *buf, size_t count)\
{\
int retval;\
unsigned long setting;\
unsigned long o_setting;\
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;\
\
retval = kstrtoul(buf, 10, &setting);\
if (retval)\
return retval;\
\
mutex_lock(&f54->rtype##_mutex);\
retval = f54->fn_ptr->read(rmi4_data,\
f54->rtype.rgrp->address,\
f54->rtype.rgrp->data,\
sizeof(f54->rtype.rgrp->data));\
if (retval < 0) {\
mutex_unlock(&f54->rtype##_mutex);\
tsp_debug_err(true, &rmi4_data->i2c_client->dev,\
"%s: Failed to read " #rtype\
" " #rgrp "\n",\
__func__);\
return retval;\
} \
\
if (f54->rtype.rgrp->propname == setting) {\
mutex_unlock(&f54->rtype##_mutex);\
return count;\
} \
\
o_setting = f54->rtype.rgrp->propname;\
f54->rtype.rgrp->propname = setting;\
\
retval = f54->fn_ptr->write(rmi4_data,\
f54->rtype.rgrp->address,\
f54->rtype.rgrp->data,\
sizeof(f54->rtype.rgrp->data));\
if (retval < 0) {\
tsp_debug_err(true, &rmi4_data->i2c_client->dev,\
"%s: Failed to write " #rtype\
" " #rgrp "\n",\
__func__);\
f54->rtype.rgrp->propname = o_setting;\
mutex_unlock(&f54->rtype##_mutex);\
return retval;\
} \
\
mutex_unlock(&f54->rtype##_mutex);\
return count;\
} \
#define show_store_func_unsigned(rtype, rgrp, propname)\
show_store_func(rtype, rgrp, propname, "%u\n")
#define show_replicated_func(rtype, rgrp, propname, fmt)\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_show)(\
struct device *dev,\
struct device_attribute *attr,\
char *buf)\
{\
int retval;\
int size = 0;\
unsigned char ii;\
unsigned char length;\
unsigned char *temp;\
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;\
\
mutex_lock(&f54->rtype##_mutex);\
\
length = f54->rtype.rgrp->length;\
\
retval = f54->fn_ptr->read(rmi4_data,\
f54->rtype.rgrp->address,\
(unsigned char *)f54->rtype.rgrp->data,\
length);\
mutex_unlock(&f54->rtype##_mutex);\
if (retval < 0) {\
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev,\
"%s: Failed to read " #rtype\
" " #rgrp "\n",\
__func__);\
} \
\
temp = buf;\
\
for (ii = 0; ii < length; ii++) {\
retval = snprintf(temp, PAGE_SIZE - size, fmt " ",\
f54->rtype.rgrp->data[ii].propname);\
if (retval < 0) {\
tsp_debug_err(true, &rmi4_data->i2c_client->dev,\
"%s: Faild to write output\n",\
__func__);\
return retval;\
} \
size += retval;\
temp += retval;\
} \
\
retval = snprintf(temp, PAGE_SIZE - size, "\n");\
if (retval < 0) {\
tsp_debug_err(true, &rmi4_data->i2c_client->dev,\
"%s: Faild to write null terminator\n",\
__func__);\
return retval;\
} \
\
return size + retval;\
} \
#define show_replicated_func_unsigned(rtype, rgrp, propname)\
show_replicated_func(rtype, rgrp, propname, "%u")
#define show_store_replicated_func(rtype, rgrp, propname, fmt)\
show_replicated_func(rtype, rgrp, propname, fmt)\
\
static ssize_t concat(synaptics_rmi4_f54, _##propname##_store)(\
struct device *dev,\
struct device_attribute *attr,\
const char *buf, size_t count)\
{\
int retval;\
unsigned int setting;\
unsigned char ii;\
unsigned char length;\
const unsigned char *temp;\
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;\
\
mutex_lock(&f54->rtype##_mutex);\
\
length = f54->rtype.rgrp->length;\
\
retval = f54->fn_ptr->read(rmi4_data,\
f54->rtype.rgrp->address,\
(unsigned char *)f54->rtype.rgrp->data,\
length);\
if (retval < 0) {\
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev,\
"%s: Failed to read " #rtype\
" " #rgrp "\n",\
__func__);\
} \
\
temp = buf;\
\
for (ii = 0; ii < length; ii++) {\
if (sscanf(temp, fmt, &setting) == 1) {\
f54->rtype.rgrp->data[ii].propname = setting;\
} else {\
retval = f54->fn_ptr->read(rmi4_data,\
f54->rtype.rgrp->address,\
(unsigned char *)f54->rtype.rgrp->data,\
length);\
mutex_unlock(&f54->rtype##_mutex);\
return -EINVAL;\
} \
\
while (*temp != 0) {\
temp++;\
if (isspace(*(temp - 1)) && !isspace(*temp))\
break;\
} \
} \
\
retval = f54->fn_ptr->write(rmi4_data,\
f54->rtype.rgrp->address,\
(unsigned char *)f54->rtype.rgrp->data,\
length);\
mutex_unlock(&f54->rtype##_mutex);\
if (retval < 0) {\
tsp_debug_err(true, &rmi4_data->i2c_client->dev,\
"%s: Failed to write " #rtype\
" " #rgrp "\n",\
__func__);\
return retval;\
} \
\
return count;\
} \
#define show_store_replicated_func_unsigned(rtype, rgrp, propname)\
show_store_replicated_func(rtype, rgrp, propname, "%u")
enum f54_report_types {
F54_8BIT_IMAGE = 1,
F54_16BIT_IMAGE = 2,
F54_RAW_16BIT_IMAGE = 3,
F54_HIGH_RESISTANCE = 4,
F54_TX_TO_TX_SHORT = 5,
F54_RX_TO_RX1 = 7,
F54_TRUE_BASELINE = 9,
F54_FULL_RAW_CAP_MIN_MAX = 13,
F54_RX_OPENS1 = 14,
F54_TX_OPEN = 15,
F54_TX_TO_GROUND = 16,
F54_RX_TO_RX2 = 17,
F54_RX_OPENS2 = 18,
F54_FULL_RAW_CAP = 19,
F54_FULL_RAW_CAP_RX_COUPLING_COMP = 20,
F54_SENSOR_SPEED = 22,
F54_ADC_RANGE = 23,
F54_TREX_OPENS = 24,
F54_TREX_TO_GND = 25,
F54_TREX_SHORTS = 26,
F54_ABS_CAP = 38,
F54_ABS_DELTA = 40,
F54_ABS_ADC = 42,
INVALID_REPORT_TYPE = -1,
};
struct f54_query {
union {
struct {
/* query 0 */
unsigned char num_of_rx_electrodes;
/* query 1 */
unsigned char num_of_tx_electrodes;
/* query 2 */
unsigned char f54_query2_b0__1:2;
unsigned char has_baseline:1;
unsigned char has_image8:1;
unsigned char f54_query2_b4__5:2;
unsigned char has_image16:1;
unsigned char f54_query2_b7:1;
/* queries 3.0 and 3.1 */
unsigned short clock_rate;
/* query 4 */
unsigned char touch_controller_family;
/* query 5 */
unsigned char has_pixel_touch_threshold_adjustment:1;
unsigned char f54_query5_b1__7:7;
/* query 6 */
unsigned char has_sensor_assignment:1;
unsigned char has_interference_metric:1;
unsigned char has_sense_frequency_control:1;
unsigned char has_firmware_noise_mitigation:1;
unsigned char has_ctrl11:1;
unsigned char has_two_byte_report_rate:1;
unsigned char has_one_byte_report_rate:1;
unsigned char has_relaxation_control:1;
/* query 7 */
unsigned char curve_compensation_mode:2;
unsigned char f54_query7_b2__7:6;
/* query 8 */
unsigned char f54_query8_b0:1;
unsigned char has_iir_filter:1;
unsigned char has_cmn_removal:1;
unsigned char has_cmn_maximum:1;
unsigned char has_touch_hysteresis:1;
unsigned char has_edge_compensation:1;
unsigned char has_per_frequency_noise_control:1;
unsigned char has_enhanced_stretch:1;
/* query 9 */
unsigned char has_force_fast_relaxation:1;
unsigned char has_multi_metric_state_machine:1;
unsigned char has_signal_clarity:1;
unsigned char has_variance_metric:1;
unsigned char has_0d_relaxation_control:1;
unsigned char has_0d_acquisition_control:1;
unsigned char has_status:1;
unsigned char has_slew_metric:1;
/* query 10 */
unsigned char has_h_blank:1;
unsigned char has_v_blank:1;
unsigned char has_long_h_blank:1;
unsigned char has_startup_fast_relaxation:1;
unsigned char has_esd_control:1;
unsigned char has_noise_mitigation2:1;
unsigned char has_noise_state:1;
unsigned char has_energy_ratio_relaxation:1;
/* query 11 */
unsigned char has_excessive_noise_reporting:1;
unsigned char has_slew_option:1;
unsigned char has_two_overhead_bursts:1;
unsigned char has_query13:1;
unsigned char has_one_overhead_burst:1;
unsigned char f54_query11_b5:1;
unsigned char has_ctrl88:1;
unsigned char has_query15:1;
/* query 12 */
unsigned char number_of_sensing_frequencies:4;
unsigned char f54_query12_b4__7:4;
} __packed;
unsigned char data[14];
};
};
struct f54_query_13 {
union {
struct {
/* query 13 */
unsigned char has_ctrl86:1;
unsigned char has_ctrl87:1;
unsigned char has_ctrl87_sub0:1;
unsigned char has_ctrl87_sub1:1;
unsigned char has_ctrl87_sub2:1;
unsigned char has_cidim:1;
unsigned char has_noise_mitigation_enhancement:1;
unsigned char has_rail_im:1;
} __packed;
unsigned char data[1];
};
};
struct f54_query_15 {
union {
struct {
unsigned char has_ctrl90:1;
unsigned char has_transmit_strength:1;
unsigned char has_ctrl87_sub3:1;
unsigned char has_query16:1;
unsigned char has_query20:1;
unsigned char has_query21:1;
unsigned char has_query22:1;
unsigned char has_query25:1;
} __packed;
unsigned char data[1];
};
};
struct f54_query_16 {
union {
struct {
unsigned char has_query17:1;
unsigned char has_data17:1;
unsigned char has_ctrl92:1;
unsigned char has_ctrl93:1;
unsigned char has_ctrl94_query18:1;
unsigned char has_ctrl95_query19:1;
unsigned char has_ctrl99:1;
unsigned char has_ctrl100:1;
} __packed;
unsigned char data[1];
};
};
struct f54_query_21 {
union {
struct {
unsigned char has_abs_rx:1;
unsigned char has_abs_tx:1;
unsigned char has_ctrl91:1;
unsigned char has_ctrl96:1;
unsigned char has_ctrl97:1;
unsigned char has_ctrl98:1;
unsigned char has_data19:1;
unsigned char has_query24_data18:1;
} __packed;
unsigned char data[1];
};
};
struct f54_control_0 {
union {
struct {
unsigned char no_relax:1;
unsigned char no_scan:1;
unsigned char force_fast_relaxation:1;
unsigned char startup_fast_relaxation:1;
unsigned char gesture_cancels_sfr:1;
unsigned char enable_energy_ratio_relaxation:1;
unsigned char excessive_noise_attn_enable:1;
unsigned char f54_control0_b7:1;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_1 {
union {
struct {
unsigned char bursts_per_cluster:4;
unsigned char f54_ctrl1_b4__7:4;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_2 {
union {
struct {
unsigned short saturation_cap;
} __packed;
struct {
unsigned char data[2];
unsigned short address;
} __packed;
};
};
struct f54_control_3 {
union {
struct {
unsigned char pixel_touch_threshold;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_4__6 {
union {
struct {
/* control 4 */
unsigned char rx_feedback_cap:2;
unsigned char bias_current:2;
unsigned char f54_ctrl4_b4__7:4;
/* control 5 */
unsigned char low_ref_cap:2;
unsigned char low_ref_feedback_cap:2;
unsigned char low_ref_polarity:1;
unsigned char f54_ctrl5_b5__7:3;
/* control 6 */
unsigned char high_ref_cap:2;
unsigned char high_ref_feedback_cap:2;
unsigned char high_ref_polarity:1;
unsigned char f54_ctrl6_b5__7:3;
} __packed;
struct {
unsigned char data[3];
unsigned short address;
} __packed;
};
};
struct f54_control_7 {
union {
struct {
unsigned char cbc_cap:3;
unsigned char cbc_polarity:1;
unsigned char cbc_tx_carrier_selection:1;
unsigned char f54_ctrl7_b5__7:3;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_8__9 {
union {
struct {
/* control 8 */
unsigned short integration_duration:10;
unsigned short f54_ctrl8_b10__15:6;
/* control 9 */
unsigned char reset_duration;
} __packed;
struct {
unsigned char data[3];
unsigned short address;
} __packed;
};
};
struct f54_control_10 {
union {
struct {
unsigned char noise_sensing_bursts_per_image:4;
unsigned char f54_ctrl10_b4__7:4;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_11 {
union {
struct {
unsigned short f54_ctrl11;
} __packed;
struct {
unsigned char data[2];
unsigned short address;
} __packed;
};
};
struct f54_control_12__13 {
union {
struct {
/* control 12 */
unsigned char slow_relaxation_rate;
/* control 13 */
unsigned char fast_relaxation_rate;
} __packed;
struct {
unsigned char data[2];
unsigned short address;
} __packed;
};
};
struct f54_control_14 {
union {
struct {
unsigned char rxs_on_xaxis:1;
unsigned char curve_comp_on_txs:1;
unsigned char f54_ctrl14_b2__7:6;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_15n {
unsigned char sensor_rx_assignment;
};
struct f54_control_15 {
struct f54_control_15n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_16n {
unsigned char sensor_tx_assignment;
};
struct f54_control_16 {
struct f54_control_16n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_17n {
unsigned char burst_count_b8__10:3;
unsigned char disable:1;
unsigned char f54_ctrl17_b4:1;
unsigned char filter_bandwidth:3;
};
struct f54_control_17 {
struct f54_control_17n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_18n {
unsigned char burst_count_b0__7;
};
struct f54_control_18 {
struct f54_control_18n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_19n {
unsigned char stretch_duration;
};
struct f54_control_19 {
struct f54_control_19n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_20 {
union {
struct {
unsigned char disable_noise_mitigation:1;
unsigned char f54_ctrl20_b1__7:7;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_21 {
union {
struct {
unsigned short freq_shift_noise_threshold;
} __packed;
struct {
unsigned char data[2];
unsigned short address;
} __packed;
};
};
struct f54_control_22__26 {
union {
struct {
/* control 22 */
unsigned char f54_ctrl22;
/* control 23 */
unsigned short medium_noise_threshold;
/* control 24 */
unsigned short high_noise_threshold;
/* control 25 */
unsigned char noise_density;
/* control 26 */
unsigned char frame_count;
} __packed;
struct {
unsigned char data[7];
unsigned short address;
} __packed;
};
};
struct f54_control_27 {
union {
struct {
unsigned char iir_filter_coef;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_28 {
union {
struct {
unsigned short quiet_threshold;
} __packed;
struct {
unsigned char data[2];
unsigned short address;
} __packed;
};
};
struct f54_control_29 {
union {
struct {
/* control 29 */
unsigned char f54_ctrl29_b0__6:7;
unsigned char cmn_filter_disable:1;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_30 {
union {
struct {
unsigned char cmn_filter_max;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_31 {
union {
struct {
unsigned char touch_hysteresis;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_32__35 {
union {
struct {
/* control 32 */
unsigned short rx_low_edge_comp;
/* control 33 */
unsigned short rx_high_edge_comp;
/* control 34 */
unsigned short tx_low_edge_comp;
/* control 35 */
unsigned short tx_high_edge_comp;
} __packed;
struct {
unsigned char data[8];
unsigned short address;
} __packed;
};
};
struct f54_control_36n {
unsigned char axis1_comp;
};
struct f54_control_36 {
struct f54_control_36n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_37n {
unsigned char axis2_comp;
};
struct f54_control_37 {
struct f54_control_37n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_38n {
unsigned char noise_control_1;
};
struct f54_control_38 {
struct f54_control_38n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_39n {
unsigned char noise_control_2;
};
struct f54_control_39 {
struct f54_control_39n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_40n {
unsigned char noise_control_3;
};
struct f54_control_40 {
struct f54_control_40n *data;
unsigned short address;
unsigned char length;
};
struct f54_control_41 {
union {
struct {
unsigned char no_signal_clarity:1;
unsigned char f54_ctrl41_b1__7:7;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_57 {
union {
struct {
unsigned char cbc_cap_0d:3;
unsigned char cbc_polarity_0d:1;
unsigned char cbc_tx_carrier_selection_0d:1;
unsigned char f54_ctrl57_b5__7:3;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_88 {
union {
struct {
unsigned char tx_low_reference_polarity:1;
unsigned char tx_high_reference_polarity:1;
unsigned char abs_low_reference_polarity:1;
unsigned char abs_polarity:1;
unsigned char cbc_polarity:1;
unsigned char cbc_tx_carrier_selection:1;
unsigned char charge_pump_enable:1;
unsigned char cbc_abs_auto_servo:1;
} __packed;
struct {
unsigned char data[1];
unsigned short address;
} __packed;
};
};
struct f54_control_94 {
union {
struct {
unsigned char abs_rx_bursts_per_cluster;
unsigned char abs_tx_bursts_per_cluster;
unsigned char trans_cap_bursts_per_cluster;
unsigned char noise_bursts_per_cluster;
} __packed;
struct {
unsigned char data[4];
unsigned short address;
} __packed;
};
};
struct f54_control {
struct f54_control_0 *reg_0;
struct f54_control_1 *reg_1;
struct f54_control_2 *reg_2;
struct f54_control_3 *reg_3;
struct f54_control_4__6 *reg_4__6;
struct f54_control_7 *reg_7;
struct f54_control_8__9 *reg_8__9;
struct f54_control_10 *reg_10;
struct f54_control_11 *reg_11;
struct f54_control_12__13 *reg_12__13;
struct f54_control_14 *reg_14;
struct f54_control_15 *reg_15;
struct f54_control_16 *reg_16;
struct f54_control_17 *reg_17;
struct f54_control_18 *reg_18;
struct f54_control_19 *reg_19;
struct f54_control_20 *reg_20;
struct f54_control_21 *reg_21;
struct f54_control_22__26 *reg_22__26;
struct f54_control_27 *reg_27;
struct f54_control_28 *reg_28;
struct f54_control_29 *reg_29;
struct f54_control_30 *reg_30;
struct f54_control_31 *reg_31;
struct f54_control_32__35 *reg_32__35;
struct f54_control_36 *reg_36;
struct f54_control_37 *reg_37;
struct f54_control_38 *reg_38;
struct f54_control_39 *reg_39;
struct f54_control_40 *reg_40;
struct f54_control_41 *reg_41;
struct f54_control_57 *reg_57;
struct f54_control_88 *reg_88;
struct f54_control_94 *reg_94;
};
#ifdef FACTORY_MODE
#include <linux/uaccess.h>
#define CMD_STR_LEN 32
#define CMD_PARAM_NUM 8
#define CMD_RESULT_STR_LEN 768
#define RPT_DATA_STRNCAT_LENGTH 9
#define DEBUG_RESULT_STR_LEN 1024
#define MAX_VAL_OFFSET_AND_LENGTH 10
#define DEBUG_STR_LEN (CMD_STR_LEN * 2)
#define DEBUG_PRNT_SCREEN(_dest, _temp, _length, fmt, ...) \
({ \
snprintf(_temp, _length, fmt, ## __VA_ARGS__); \
strcat(_dest, _temp); \
})
#define FT_CMD(name, func) .cmd_name = name, .cmd_func = func
enum CMD_STATUS {
CMD_STATUS_WAITING = 0,
CMD_STATUS_RUNNING,
CMD_STATUS_OK,
CMD_STATUS_FAIL,
CMD_STATUS_NOT_APPLICABLE,
};
struct ft_cmd {
const char *cmd_name;
void (*cmd_func)(void);
struct list_head list;
};
struct factory_data {
struct device *fac_dev_ts;
short *rawcap_data;
short *delta_data;
int *abscap_data;
int *absdelta_data;
char *trx_short;
bool cmd_is_running;
unsigned char cmd_state;
char cmd[CMD_STR_LEN];
int cmd_param[CMD_PARAM_NUM];
char cmd_buff[CMD_RESULT_STR_LEN];
char cmd_result[CMD_RESULT_STR_LEN];
struct mutex cmd_lock;
struct list_head cmd_list_head;
};
static int synaptics_rmi4_f54_get_report_type(int type);
static ssize_t cmd_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
static ssize_t cmd_status_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t cmd_result_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t cmd_list_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t debug_address_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t debug_register_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t debug_register_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
#ifdef USE_GUEST_THREAD
static ssize_t guest_pkt_dbg_level_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t guest_pkt_dbg_level_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
#endif
static DEVICE_ATTR(cmd, S_IWUSR | S_IWGRP, NULL, cmd_store);
static DEVICE_ATTR(cmd_status, S_IRUGO, cmd_status_show, NULL);
static DEVICE_ATTR(cmd_result, S_IRUGO, cmd_result_show, NULL);
static DEVICE_ATTR(cmd_list, S_IRUGO, cmd_list_show, NULL);
static DEVICE_ATTR(debug_address, S_IRUGO, debug_address_show, NULL);
static DEVICE_ATTR(debug_register, S_IRUGO | S_IWUSR, debug_register_show, debug_register_store);
#ifdef USE_GUEST_THREAD
static DEVICE_ATTR(guest_pkt_dbg_level, S_IRUGO | S_IWUSR, guest_pkt_dbg_level_show, guest_pkt_dbg_level_store);
#endif
static struct attribute *cmd_attributes[] = {
&dev_attr_cmd.attr,
&dev_attr_cmd_status.attr,
&dev_attr_cmd_result.attr,
&dev_attr_cmd_list.attr,
&dev_attr_debug_address.attr,
&dev_attr_debug_register.attr,
#ifdef USE_GUEST_THREAD
&dev_attr_guest_pkt_dbg_level.attr,
#endif
NULL,
};
static struct attribute_group cmd_attr_group = {
.attrs = cmd_attributes,
};
/*
* Factory CMD for Synaptics IC.
*
* fw_update : 0 (Update with internal firmware).
* 1 (Update with external firmware).
* 2 (Update with Internal factory firmware).
* get_fw_ver_bin : Display firmware version in binary.
* get_fw_ver_ic : Display firmware version in IC.
* get_config_ver : Display configuration version.
* get_threshold : Display threshold of mutual.
* module_off/on_master/slave : Control ot touch IC's power.
* get_chip_vendor : Display vendor name.
* get_chip_name : Display chip name.
* get_x/y_num : Return RX/TX line of IC.
* get_rawcap : Return the rawcap(mutual) about selected.
* run_rawcap_read : Get the rawcap(mutual value about entire screen.
* get_delta : Return the delta(mutual jitter) about selected.
* run_delta_read : Get the delta value about entire screen.
* run_abscap_read : Get the abscap(self) value about entire screen.
* run_absdelta_read : Get the absdelta(self jitter) value about entire screen.
* run_trx_short_test : Test for open/short state each node.
* (each node return the valu -> 0: ok 1: not ok).
* hover_enable : To control the hover functionality dinamically.
* ( 0: disalbe, 1: enable)
* hover_no_sleep_enable : To keep the no sleep state before enter the hover test.
* This command was requested by Display team /HW.
* hover_set_edge_rx : To change grip edge exclustion RX value during hover factory test.
* glove_mode : Set glove mode on/off
* clear_cover_mode : Set the touch sensitivity mode. we are supporting various mode
in sensitivity such as (glove, flip cover, clear cover mode) and they are controled
by this sysfs.
* get_glove_sensitivity : Display glove's sensitivity.
* fast_glove_mode : Set the fast glove mode such as incomming screen.
* secure_mode : Set the secure mode.
* boost_level : Control touch booster level.
* handgrip_enable : Enable reporting the grip infomation based on hover shape.
* set_tsp_test_result : Write the result of tsp test in config area.
* get_tsp_test_result : Read the result of tsp test in config area.
*/
static void fw_update(void);
static void get_fw_ver_bin(void);
static void get_fw_ver_ic(void);
static void get_config_ver(void);
static void get_threshold(void);
static void module_off_master(void);
static void module_on_master(void);
static void get_chip_vendor(void);
static void get_chip_name(void);
static void get_x_num(void);
static void get_y_num(void);
static void get_rawcap(void);
static void run_rawcap_read(void);
static void get_delta(void);
static void run_delta_read(void);
static void run_abscap_read(void);
static void run_absdelta_read(void);
static void run_trx_short_test(void);
#ifdef PROXIMITY_MODE
static void hover_enable(void);
static void hover_no_sleep_enable(void);
static void hover_set_edge_rx(void);
#endif
static void set_jitter_level(void);
#ifdef GLOVE_MODE
static void glove_mode(void);
static void clear_cover_mode(void);
static void fast_glove_mode(void);
#endif
#ifdef TSP_BOOSTER
static void boost_level(void);
#endif
#ifdef SIDE_TOUCH
static void sidekey_enable(void);
static void set_sidekey_only_enable(void);
static void get_sidekey_threshold(void);
static void run_sidekey_delta_read(void);
static void run_sidekey_abscap_read(void);
static void set_deepsleep_mode(void);
static void lozemode_enable(void);
#endif
static void set_tsp_test_result(void);
static void get_tsp_test_result(void);
#ifdef USE_ACTIVE_REPORT_RATE
static void report_rate(void);
#endif
#ifdef USE_STYLUS
static void stylus_enable(void);
#endif
static void not_support_cmd(void);
struct ft_cmd ft_cmds[] = {
{FT_CMD("fw_update", fw_update),},
{FT_CMD("get_fw_ver_bin", get_fw_ver_bin),},
{FT_CMD("get_fw_ver_ic", get_fw_ver_ic),},
{FT_CMD("get_config_ver", get_config_ver),},
{FT_CMD("get_threshold", get_threshold),},
{FT_CMD("module_off_master", module_off_master),},
{FT_CMD("module_on_master", module_on_master),},
{FT_CMD("module_off_slave", not_support_cmd),},
{FT_CMD("module_on_slave", not_support_cmd),},
{FT_CMD("get_chip_vendor", get_chip_vendor),},
{FT_CMD("get_chip_name", get_chip_name),},
{FT_CMD("get_x_num", get_x_num),},
{FT_CMD("get_y_num", get_y_num),},
{FT_CMD("get_rawcap", get_rawcap),},
{FT_CMD("run_rawcap_read", run_rawcap_read),},
{FT_CMD("get_delta", get_delta),},
{FT_CMD("run_delta_read", run_delta_read),},
{FT_CMD("run_abscap_read", run_abscap_read),},
{FT_CMD("run_absdelta_read", run_absdelta_read),},
{FT_CMD("run_trx_short_test", run_trx_short_test),},
#ifdef PROXIMITY_MODE
{FT_CMD("hover_enable", hover_enable),},
{FT_CMD("hover_no_sleep_enable", hover_no_sleep_enable),},
{FT_CMD("hover_set_edge_rx", hover_set_edge_rx),},
#endif
{FT_CMD("set_jitter_level", set_jitter_level),},
{FT_CMD("handgrip_enable", not_support_cmd),},
#ifdef GLOVE_MODE
{FT_CMD("glove_mode", glove_mode),},
{FT_CMD("clear_cover_mode", clear_cover_mode),},
{FT_CMD("fast_glove_mode", fast_glove_mode),},
{FT_CMD("get_glove_sensitivity", not_support_cmd),},
#endif
#ifdef TSP_BOOSTER
{FT_CMD("boost_level", boost_level),},
#endif
#ifdef SIDE_TOUCH
{FT_CMD("sidekey_enable", sidekey_enable),},
{FT_CMD("set_sidekey_only_enable", set_sidekey_only_enable),},
{FT_CMD("get_sidekey_threshold", get_sidekey_threshold),},
{FT_CMD("run_sidekey_delta_read", run_sidekey_delta_read),},
{FT_CMD("run_sidekey_abscap_read", run_sidekey_abscap_read),},
{FT_CMD("set_deepsleep_mode", set_deepsleep_mode),},
{FT_CMD("lozemode_enable", lozemode_enable),},
#endif
{FT_CMD("set_tsp_test_result", set_tsp_test_result),},
{FT_CMD("get_tsp_test_result", get_tsp_test_result),},
#ifdef USE_ACTIVE_REPORT_RATE
{FT_CMD("report_rate", report_rate),},
#endif
#ifdef USE_STYLUS
{FT_CMD("stylus_enable", stylus_enable),},
#endif
{FT_CMD("not_support_cmd", not_support_cmd),},
};
#endif
struct synaptics_rmi4_f54_handle {
bool no_auto_cal;
unsigned char status;
unsigned char intr_mask;
unsigned char intr_reg_num;
unsigned char rx_assigned;
unsigned char tx_assigned;
unsigned char *report_data;
unsigned short query_base_addr;
unsigned short control_base_addr;
unsigned short data_base_addr;
unsigned short command_base_addr;
unsigned short fifoindex;
unsigned int report_size;
unsigned int data_buffer_size;
enum f54_report_types report_type;
struct mutex status_mutex;
struct mutex data_mutex;
struct mutex control_mutex;
struct f54_query query;
struct f54_query_13 query_13;
struct f54_query_15 query_15;
struct f54_query_16 query_16;
struct f54_query_21 query_21;
struct f54_control control;
#ifdef FACTORY_MODE
struct factory_data *factory_data;
#endif
struct kobject *attr_dir;
struct hrtimer watchdog;
struct work_struct timeout_work;
struct delayed_work status_work;
struct workqueue_struct *status_workqueue;
struct synaptics_rmi4_exp_fn_ptr *fn_ptr;
struct synaptics_rmi4_data *rmi4_data;
};
show_prototype(status)
show_prototype(report_size)
show_store_prototype(no_auto_cal)
show_store_prototype(report_type)
show_store_prototype(fifoindex)
store_prototype(do_preparation)
store_prototype(get_report)
store_prototype(force_cal)
show_prototype(num_of_mapped_rx)
show_prototype(num_of_mapped_tx)
show_prototype(num_of_rx_electrodes)
show_prototype(num_of_tx_electrodes)
show_prototype(has_image16)
show_prototype(has_image8)
show_prototype(has_baseline)
show_prototype(clock_rate)
show_prototype(touch_controller_family)
show_prototype(has_pixel_touch_threshold_adjustment)
show_prototype(has_sensor_assignment)
show_prototype(has_interference_metric)
show_prototype(has_sense_frequency_control)
show_prototype(has_firmware_noise_mitigation)
show_prototype(has_two_byte_report_rate)
show_prototype(has_one_byte_report_rate)
show_prototype(has_relaxation_control)
show_prototype(curve_compensation_mode)
show_prototype(has_iir_filter)
show_prototype(has_cmn_removal)
show_prototype(has_cmn_maximum)
show_prototype(has_touch_hysteresis)
show_prototype(has_edge_compensation)
show_prototype(has_per_frequency_noise_control)
show_prototype(has_signal_clarity)
show_prototype(number_of_sensing_frequencies)
show_store_prototype(no_relax)
show_store_prototype(no_scan)
show_store_prototype(bursts_per_cluster)
show_store_prototype(saturation_cap)
show_store_prototype(pixel_touch_threshold)
show_store_prototype(rx_feedback_cap)
show_store_prototype(low_ref_cap)
show_store_prototype(low_ref_feedback_cap)
show_store_prototype(low_ref_polarity)
show_store_prototype(high_ref_cap)
show_store_prototype(high_ref_feedback_cap)
show_store_prototype(high_ref_polarity)
show_store_prototype(cbc_cap)
show_store_prototype(cbc_polarity)
show_store_prototype(cbc_tx_carrier_selection)
show_store_prototype(integration_duration)
show_store_prototype(reset_duration)
show_store_prototype(noise_sensing_bursts_per_image)
show_store_prototype(slow_relaxation_rate)
show_store_prototype(fast_relaxation_rate)
show_store_prototype(rxs_on_xaxis)
show_store_prototype(curve_comp_on_txs)
show_prototype(sensor_rx_assignment)
show_prototype(sensor_tx_assignment)
show_prototype(burst_count)
show_prototype(disable)
show_prototype(filter_bandwidth)
show_prototype(stretch_duration)
show_store_prototype(disable_noise_mitigation)
show_store_prototype(freq_shift_noise_threshold)
show_store_prototype(medium_noise_threshold)
show_store_prototype(high_noise_threshold)
show_store_prototype(noise_density)
show_store_prototype(frame_count)
show_store_prototype(iir_filter_coef)
show_store_prototype(quiet_threshold)
show_store_prototype(cmn_filter_disable)
show_store_prototype(cmn_filter_max)
show_store_prototype(touch_hysteresis)
show_store_prototype(rx_low_edge_comp)
show_store_prototype(rx_high_edge_comp)
show_store_prototype(tx_low_edge_comp)
show_store_prototype(tx_high_edge_comp)
show_store_prototype(axis1_comp)
show_store_prototype(axis2_comp)
show_prototype(noise_control_1)
show_prototype(noise_control_2)
show_prototype(noise_control_3)
show_store_prototype(no_signal_clarity)
show_store_prototype(cbc_cap_0d)
show_store_prototype(cbc_polarity_0d)
show_store_prototype(cbc_tx_carrier_selection_0d)
static ssize_t synaptics_rmi4_f54_data_read(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count);
static struct attribute *attrs[] = {
attrify(status),
attrify(report_size),
attrify(no_auto_cal),
attrify(report_type),
attrify(fifoindex),
attrify(do_preparation),
attrify(get_report),
attrify(force_cal),
attrify(num_of_mapped_rx),
attrify(num_of_mapped_tx),
attrify(num_of_rx_electrodes),
attrify(num_of_tx_electrodes),
attrify(has_image16),
attrify(has_image8),
attrify(has_baseline),
attrify(clock_rate),
attrify(touch_controller_family),
attrify(has_pixel_touch_threshold_adjustment),
attrify(has_sensor_assignment),
attrify(has_interference_metric),
attrify(has_sense_frequency_control),
attrify(has_firmware_noise_mitigation),
attrify(has_two_byte_report_rate),
attrify(has_one_byte_report_rate),
attrify(has_relaxation_control),
attrify(curve_compensation_mode),
attrify(has_iir_filter),
attrify(has_cmn_removal),
attrify(has_cmn_maximum),
attrify(has_touch_hysteresis),
attrify(has_edge_compensation),
attrify(has_per_frequency_noise_control),
attrify(has_signal_clarity),
attrify(number_of_sensing_frequencies),
NULL,
};
static struct attribute_group attr_group = GROUP(attrs);
static struct attribute *attrs_reg_0[] = {
attrify(no_relax),
attrify(no_scan),
NULL,
};
static struct attribute *attrs_reg_1[] = {
attrify(bursts_per_cluster),
NULL,
};
static struct attribute *attrs_reg_2[] = {
attrify(saturation_cap),
NULL,
};
static struct attribute *attrs_reg_3[] = {
attrify(pixel_touch_threshold),
NULL,
};
static struct attribute *attrs_reg_4__6[] = {
attrify(rx_feedback_cap),
attrify(low_ref_cap),
attrify(low_ref_feedback_cap),
attrify(low_ref_polarity),
attrify(high_ref_cap),
attrify(high_ref_feedback_cap),
attrify(high_ref_polarity),
NULL,
};
static struct attribute *attrs_reg_7[] = {
attrify(cbc_cap),
attrify(cbc_polarity),
attrify(cbc_tx_carrier_selection),
NULL,
};
static struct attribute *attrs_reg_8__9[] = {
attrify(integration_duration),
attrify(reset_duration),
NULL,
};
static struct attribute *attrs_reg_10[] = {
attrify(noise_sensing_bursts_per_image),
NULL,
};
static struct attribute *attrs_reg_11[] = {
NULL,
};
static struct attribute *attrs_reg_12__13[] = {
attrify(slow_relaxation_rate),
attrify(fast_relaxation_rate),
NULL,
};
static struct attribute *attrs_reg_14__16[] = {
attrify(rxs_on_xaxis),
attrify(curve_comp_on_txs),
attrify(sensor_rx_assignment),
attrify(sensor_tx_assignment),
NULL,
};
static struct attribute *attrs_reg_17__19[] = {
attrify(burst_count),
attrify(disable),
attrify(filter_bandwidth),
attrify(stretch_duration),
NULL,
};
static struct attribute *attrs_reg_20[] = {
attrify(disable_noise_mitigation),
NULL,
};
static struct attribute *attrs_reg_21[] = {
attrify(freq_shift_noise_threshold),
NULL,
};
static struct attribute *attrs_reg_22__26[] = {
attrify(medium_noise_threshold),
attrify(high_noise_threshold),
attrify(noise_density),
attrify(frame_count),
NULL,
};
static struct attribute *attrs_reg_27[] = {
attrify(iir_filter_coef),
NULL,
};
static struct attribute *attrs_reg_28[] = {
attrify(quiet_threshold),
NULL,
};
static struct attribute *attrs_reg_29[] = {
attrify(cmn_filter_disable),
NULL,
};
static struct attribute *attrs_reg_30[] = {
attrify(cmn_filter_max),
NULL,
};
static struct attribute *attrs_reg_31[] = {
attrify(touch_hysteresis),
NULL,
};
static struct attribute *attrs_reg_32__35[] = {
attrify(rx_low_edge_comp),
attrify(rx_high_edge_comp),
attrify(tx_low_edge_comp),
attrify(tx_high_edge_comp),
NULL,
};
static struct attribute *attrs_reg_36[] = {
attrify(axis1_comp),
NULL,
};
static struct attribute *attrs_reg_37[] = {
attrify(axis2_comp),
NULL,
};
static struct attribute *attrs_reg_38__40[] = {
attrify(noise_control_1),
attrify(noise_control_2),
attrify(noise_control_3),
NULL,
};
static struct attribute *attrs_reg_41[] = {
attrify(no_signal_clarity),
NULL,
};
static struct attribute *attrs_reg_57[] = {
attrify(cbc_cap_0d),
attrify(cbc_polarity_0d),
attrify(cbc_tx_carrier_selection_0d),
NULL,
};
static struct attribute_group attrs_ctrl_regs[] = {
GROUP(attrs_reg_0),
GROUP(attrs_reg_1),
GROUP(attrs_reg_2),
GROUP(attrs_reg_3),
GROUP(attrs_reg_4__6),
GROUP(attrs_reg_7),
GROUP(attrs_reg_8__9),
GROUP(attrs_reg_10),
GROUP(attrs_reg_11),
GROUP(attrs_reg_12__13),
GROUP(attrs_reg_14__16),
GROUP(attrs_reg_17__19),
GROUP(attrs_reg_20),
GROUP(attrs_reg_21),
GROUP(attrs_reg_22__26),
GROUP(attrs_reg_27),
GROUP(attrs_reg_28),
GROUP(attrs_reg_29),
GROUP(attrs_reg_30),
GROUP(attrs_reg_31),
GROUP(attrs_reg_32__35),
GROUP(attrs_reg_36),
GROUP(attrs_reg_37),
GROUP(attrs_reg_38__40),
GROUP(attrs_reg_41),
GROUP(attrs_reg_57),
};
static bool attrs_ctrl_regs_exist[ARRAY_SIZE(attrs_ctrl_regs)];
static struct bin_attribute dev_report_data = {
.attr = {
.name = "report_data",
.mode = S_IRUGO,
},
.size = 0,
.read = synaptics_rmi4_f54_data_read,
};
static struct synaptics_rmi4_f54_handle *f54;
static bool is_report_type_valid(enum f54_report_types report_type)
{
switch (report_type) {
case F54_8BIT_IMAGE:
case F54_16BIT_IMAGE:
case F54_RAW_16BIT_IMAGE:
case F54_HIGH_RESISTANCE:
case F54_TX_TO_TX_SHORT:
case F54_RX_TO_RX1:
case F54_TRUE_BASELINE:
case F54_FULL_RAW_CAP_MIN_MAX:
case F54_RX_OPENS1:
case F54_TX_OPEN:
case F54_TX_TO_GROUND:
case F54_RX_TO_RX2:
case F54_RX_OPENS2:
case F54_FULL_RAW_CAP:
case F54_FULL_RAW_CAP_RX_COUPLING_COMP:
case F54_SENSOR_SPEED:
case F54_ADC_RANGE:
case F54_TREX_OPENS:
case F54_TREX_TO_GND:
case F54_TREX_SHORTS:
case F54_ABS_CAP:
case F54_ABS_DELTA:
case F54_ABS_ADC:
return true;
break;
default:
f54->report_type = INVALID_REPORT_TYPE;
f54->report_size = 0;
return false;
}
}
static void set_report_size(void)
{
int retval;
unsigned char rx = f54->rx_assigned;
unsigned char tx = f54->tx_assigned;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
switch (f54->report_type) {
case F54_8BIT_IMAGE:
f54->report_size = rx * tx;
break;
case F54_16BIT_IMAGE:
case F54_RAW_16BIT_IMAGE:
case F54_TRUE_BASELINE:
case F54_FULL_RAW_CAP:
case F54_FULL_RAW_CAP_RX_COUPLING_COMP:
case F54_SENSOR_SPEED:
f54->report_size = 2 * rx * tx;
break;
case F54_HIGH_RESISTANCE:
f54->report_size = HIGH_RESISTANCE_DATA_SIZE;
break;
case F54_TX_TO_TX_SHORT:
case F54_TX_OPEN:
case F54_TX_TO_GROUND:
f54->report_size = (tx + 7) / 8;
break;
case F54_RX_TO_RX1:
case F54_RX_OPENS1:
if (rx < tx)
f54->report_size = 2 * rx * rx;
else
f54->report_size = 2 * rx * tx;
break;
case F54_FULL_RAW_CAP_MIN_MAX:
f54->report_size = FULL_RAW_CAP_MIN_MAX_DATA_SIZE;
break;
case F54_RX_TO_RX2:
case F54_RX_OPENS2:
if (rx <= tx)
f54->report_size = 0;
else
f54->report_size = 2 * rx * (rx - tx);
break;
case F54_ADC_RANGE:
if (f54->query.has_signal_clarity) {
mutex_lock(&f54->control_mutex);
retval = f54->fn_ptr->read(rmi4_data,
f54->control.reg_41->address,
f54->control.reg_41->data,
sizeof(f54->control.reg_41->data));
mutex_unlock(&f54->control_mutex);
if (retval < 0) {
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev,
"%s: Failed to read control reg_41\n",
__func__);
f54->report_size = 0;
break;
}
if (!f54->control.reg_41->no_signal_clarity) {
if (tx % 4)
tx += 4 - (tx % 4);
}
}
f54->report_size = 2 * rx * tx;
break;
case F54_TREX_OPENS:
case F54_TREX_TO_GND:
case F54_TREX_SHORTS:
f54->report_size = TREX_DATA_SIZE;
break;
case F54_ABS_CAP:
case F54_ABS_DELTA:
#ifdef SIDE_TOUCH
f54->report_size = 4 * (rx + tx + NUM_OF_ACTIVE_SIDE_BUTTONS);
#else
f54->report_size = 4 * (rx + tx);
#endif
break;
case F54_ABS_ADC:
f54->report_size = 2 * (rx + tx);
break;
default:
f54->report_size = 0;
}
return;
}
static int set_interrupt(bool set)
{
int retval;
unsigned char ii;
unsigned char zero = 0x00;
unsigned char *intr_mask;
unsigned short f01_ctrl_reg;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
intr_mask = rmi4_data->intr_mask;
f01_ctrl_reg = rmi4_data->f01_ctrl_base_addr + 1 + f54->intr_reg_num;
if (!set) {
retval = f54->fn_ptr->write(rmi4_data,
f01_ctrl_reg,
&zero,
sizeof(zero));
if (retval < 0)
return retval;
}
for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) {
if (intr_mask[ii] != 0x00) {
f01_ctrl_reg = rmi4_data->f01_ctrl_base_addr + 1 + ii;
if (set) {
retval = f54->fn_ptr->write(rmi4_data,
f01_ctrl_reg,
&zero,
sizeof(zero));
if (retval < 0)
return retval;
} else {
retval = f54->fn_ptr->write(rmi4_data,
f01_ctrl_reg,
&(intr_mask[ii]),
sizeof(intr_mask[ii]));
if (retval < 0)
return retval;
}
}
}
f01_ctrl_reg = rmi4_data->f01_ctrl_base_addr + 1 + f54->intr_reg_num;
if (set) {
retval = f54->fn_ptr->write(rmi4_data,
f01_ctrl_reg,
&f54->intr_mask,
1);
if (retval < 0)
return retval;
}
return 0;
}
static int do_preparation(void)
{
int retval;
unsigned char value;
unsigned char command;
unsigned char timeout_count;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
mutex_lock(&f54->control_mutex);
if (f54->query.touch_controller_family == 1) {
value = 0;
retval = f54->fn_ptr->write(rmi4_data,
f54->control.reg_7->address,
&value,
sizeof(f54->control.reg_7->data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to disable CBC\n",
__func__);
mutex_unlock(&f54->control_mutex);
return retval;
}
} else if (f54->query.has_ctrl88 == 1) {
retval = f54->fn_ptr->read(rmi4_data,
f54->control.reg_88->address,
f54->control.reg_88->data,
sizeof(f54->control.reg_88->data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to disable CBC (read ctrl88)\n",
__func__);
mutex_unlock(&f54->control_mutex);
return retval;
}
f54->control.reg_88->cbc_polarity = 0;
f54->control.reg_88->cbc_tx_carrier_selection = 0;
retval = f54->fn_ptr->write(rmi4_data,
f54->control.reg_88->address,
f54->control.reg_88->data,
sizeof(f54->control.reg_88->data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to disable CBC (write ctrl88)\n",
__func__);
mutex_unlock(&f54->control_mutex);
return retval;
}
}
/* check this code to using S5000 and S5050 */
if (f54->query.has_0d_acquisition_control) {
value = 0;
retval = f54->fn_ptr->write(rmi4_data,
f54->control.reg_57->address,
&value,
sizeof(f54->control.reg_57->data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to disable 0D CBC\n",
__func__);
mutex_unlock(&f54->control_mutex);
return retval;
}
}
if (f54->query.has_signal_clarity) {
value = 1;
retval = f54->fn_ptr->write(rmi4_data,
f54->control.reg_41->address,
&value,
sizeof(f54->control.reg_41->data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to disable signal clarity\n",
__func__);
mutex_unlock(&f54->control_mutex);
return retval;
}
}
mutex_unlock(&f54->control_mutex);
command = (unsigned char)COMMAND_FORCE_UPDATE;
retval = f54->fn_ptr->write(rmi4_data,
f54->command_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write force update command\n",
__func__);
return retval;
}
timeout_count = 0;
do {
retval = f54->fn_ptr->read(rmi4_data,
f54->command_base_addr,
&value,
sizeof(value));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to read command register\n",
__func__);
return retval;
}
if (value == 0x00)
break;
msleep(100);
timeout_count++;
} while (timeout_count < FORCE_TIMEOUT_100MS);
if (timeout_count == FORCE_TIMEOUT_100MS) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Timed out waiting for force update\n",
__func__);
return -ETIMEDOUT;
}
command = (unsigned char)COMMAND_FORCE_CAL;
retval = f54->fn_ptr->write(rmi4_data,
f54->command_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write force cal command\n",
__func__);
return retval;
}
timeout_count = 0;
do {
retval = f54->fn_ptr->read(rmi4_data,
f54->command_base_addr,
&value,
sizeof(value));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to read command register\n",
__func__);
return retval;
}
if (value == 0x00)
break;
msleep(100);
timeout_count++;
} while (timeout_count < FORCE_TIMEOUT_100MS);
if (timeout_count == FORCE_TIMEOUT_100MS) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Timed out waiting for force cal\n",
__func__);
return -ETIMEDOUT;
}
return 0;
}
#ifdef WATCHDOG_HRTIMER
static void timeout_set_status(struct work_struct *work)
{
int retval;
unsigned char command;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
mutex_lock(&f54->status_mutex);
if (f54->status == STATUS_BUSY) {
retval = f54->fn_ptr->read(rmi4_data,
f54->command_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to read command register\n",
__func__);
f54->status = STATUS_ERROR;
} else if (command & COMMAND_GET_REPORT) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Report type not supported by FW\n",
__func__);
f54->status = STATUS_ERROR;
} else {
queue_delayed_work(f54->status_workqueue,
&f54->status_work,
0);
mutex_unlock(&f54->status_mutex);
return;
}
f54->report_type = INVALID_REPORT_TYPE;
f54->report_size = 0;
}
mutex_unlock(&f54->status_mutex);
/* read fail : need ic reset */
if (f54->status == STATUS_ERROR) {
if (rmi4_data->touch_stopped) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is stopped\n",
__func__);
f54->status = STATUS_IDLE;
return;
}
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: reset device\n",
__func__);
retval = rmi4_data->reset_device(rmi4_data);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
}
mutex_lock(&f54->status_mutex);
f54->status = STATUS_IDLE;
mutex_unlock(&f54->status_mutex);
}
return;
}
static enum hrtimer_restart get_report_timeout(struct hrtimer *timer)
{
schedule_work(&(f54->timeout_work));
return HRTIMER_NORESTART;
}
#endif
#ifdef RAW_HEX
static void print_raw_hex_report(void)
{
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned int ii;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Report data (raw hex)\n", __func__);
switch (f54->report_type) {
case F54_16BIT_IMAGE:
case F54_RAW_16BIT_IMAGE:
case F54_HIGH_RESISTANCE:
case F54_TRUE_BASELINE:
case F54_FULL_RAW_CAP_MIN_MAX:
case F54_FULL_RAW_CAP:
case F54_FULL_RAW_CAP_RX_COUPLING_COMP:
case F54_SENSOR_SPEED:
case F54_ADC_RANGE:
case F54_ABS_ADC:
for (ii = 0; ii < f54->report_size; ii += 2) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%03d: 0x%02x%02x\n",
ii / 2,
f54->report_data[ii + 1],
f54->report_data[ii]);
}
break;
case F54_ABS_CAP:
case F54_ABS_DELTA:
for (ii = 0; ii < f54->report_size; ii += 4) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%03d: 0x%02x%02x%02x%02x\n",
ii / 4,
f54->report_data[ii + 3],
f54->report_data[ii + 2],
f54->report_data[ii + 1],
f54->report_data[ii]);
}
break;
default:
for (ii = 0; ii < f54->report_size; ii++)
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%03d: 0x%02x\n", ii, f54->report_data[ii]);
break;
}
return;
}
#endif
#ifdef HUMAN_READABLE
static void print_image_report(void)
{
unsigned int ii;
unsigned int jj;
short *report_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
switch (f54->report_type) {
case F54_16BIT_IMAGE:
case F54_RAW_16BIT_IMAGE:
case F54_TRUE_BASELINE:
case F54_FULL_RAW_CAP:
case F54_FULL_RAW_CAP_RX_COUPLING_COMP:
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Report data (image)\n", __func__);
report_data = (short *)f54->report_data;
for (ii = 0; ii < f54->tx_assigned; ii++) {
for (jj = 0; jj < f54->rx_assigned; jj++) {
if (*report_data < -64)
pr_cont(".");
else if (*report_data < 0)
pr_cont("-");
else if (*report_data > 64)
pr_cont("*");
else if (*report_data > 0)
pr_cont("+");
else
pr_cont("0");
report_data++;
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "");
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: End of report\n", __func__);
break;
default:
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Image not supported for report type %d\n",
__func__, f54->report_type);
}
return;
}
#endif
static void free_control_mem(void)
{
struct f54_control control = f54->control;
kfree(control.reg_0);
kfree(control.reg_1);
kfree(control.reg_2);
kfree(control.reg_3);
kfree(control.reg_4__6);
kfree(control.reg_7);
kfree(control.reg_8__9);
kfree(control.reg_10);
kfree(control.reg_11);
kfree(control.reg_12__13);
kfree(control.reg_14);
if (control.reg_15)
kfree(control.reg_15->data);
kfree(control.reg_15);
if (control.reg_16)
kfree(control.reg_16->data);
kfree(control.reg_16);
if (control.reg_17)
kfree(control.reg_17->data);
kfree(control.reg_17);
if (control.reg_18)
kfree(control.reg_18->data);
kfree(control.reg_18);
if (control.reg_19)
kfree(control.reg_19->data);
kfree(control.reg_19);
kfree(control.reg_20);
kfree(control.reg_21);
kfree(control.reg_22__26);
kfree(control.reg_27);
kfree(control.reg_28);
kfree(control.reg_29);
kfree(control.reg_30);
kfree(control.reg_31);
kfree(control.reg_32__35);
if (control.reg_36)
kfree(control.reg_36->data);
kfree(control.reg_36);
if (control.reg_37)
kfree(control.reg_37->data);
kfree(control.reg_37);
if (control.reg_38)
kfree(control.reg_38->data);
kfree(control.reg_38);
if (control.reg_39)
kfree(control.reg_39->data);
kfree(control.reg_39);
if (control.reg_40)
kfree(control.reg_40->data);
kfree(control.reg_40);
kfree(control.reg_41);
kfree(control.reg_57);
kfree(control.reg_88);
kfree(control.reg_94);
return;
}
static void remove_sysfs(void)
{
int reg_num;
sysfs_remove_bin_file(f54->attr_dir, &dev_report_data);
sysfs_remove_group(f54->attr_dir, &attr_group);
for (reg_num = 0; reg_num < ARRAY_SIZE(attrs_ctrl_regs); reg_num++)
sysfs_remove_group(f54->attr_dir, &attrs_ctrl_regs[reg_num]);
kobject_put(f54->attr_dir);
return;
}
#ifdef FACTORY_MODE
static void set_default_result(struct factory_data *data)
{
char delim = ':';
memset(data->cmd_buff, 0x00, sizeof(data->cmd_buff));
memset(data->cmd_result, 0x00, sizeof(data->cmd_result));
memcpy(data->cmd_result, data->cmd, strlen(data->cmd));
strncat(data->cmd_result, &delim, 1);
return;
}
static void set_cmd_result(struct factory_data *data, char *buf, int length)
{
strncat(data->cmd_result, buf, length);
return;
}
static ssize_t cmd_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned char param_cnt = 0;
char *start;
char *end;
char *pos;
char delim = ',';
char buffer[CMD_STR_LEN];
bool cmd_found = false;
int *param;
int length;
struct ft_cmd *ft_cmd_ptr;
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
if (data->cmd_is_running == true) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Still servicing previous command. Skip cmd :%s\n",
__func__, buf);
return count;
}
mutex_lock(&data->cmd_lock);
data->cmd_is_running = true;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_RUNNING;
length = (int)count;
if (*(buf + length - 1) == '\n')
length--;
memset(data->cmd, 0x00, sizeof(data->cmd));
memcpy(data->cmd, buf, length);
memset(data->cmd_param, 0, sizeof(data->cmd_param));
memset(buffer, 0x00, sizeof(buffer));
pos = strchr(buf, (int)delim);
if (pos)
memcpy(buffer, buf, pos - buf);
else
memcpy(buffer, buf, length);
/* find command */
list_for_each_entry(ft_cmd_ptr, &data->cmd_list_head, list) {
if (!strcmp(buffer, ft_cmd_ptr->cmd_name)) {
cmd_found = true;
break;
}
}
/* set not_support_cmd */
if (!cmd_found) {
list_for_each_entry(ft_cmd_ptr,
&data->cmd_list_head, list) {
if (!strcmp("not_support_cmd", ft_cmd_ptr->cmd_name))
break;
}
}
/* parsing parameters */
if (cmd_found && pos) {
pos++;
start = pos;
do {
if ((*pos == delim) || (pos - buf == length)) {
end = pos;
memset(buffer, 0x00, sizeof(buffer));
memcpy(buffer, start, end - start);
*(buffer + strlen(buffer)) = '\0';
param = data->cmd_param + param_cnt;
if (kstrtoint(buffer, 10, param) < 0)
break;
param_cnt++;
start = pos + 1;
}
pos++;
} while (pos - buf <= length);
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Command = %s\n",
__func__, buf);
ft_cmd_ptr->cmd_func();
return count;
}
static ssize_t cmd_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
char buffer[CMD_RESULT_STR_LEN];
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Command status = %d\n",
__func__, data->cmd_state);
switch (data->cmd_state) {
case CMD_STATUS_WAITING:
snprintf(buffer, CMD_RESULT_STR_LEN, "%s", tostring(WAITING));
break;
case CMD_STATUS_RUNNING:
snprintf(buffer, CMD_RESULT_STR_LEN, "%s", tostring(RUNNING));
break;
case CMD_STATUS_OK:
snprintf(buffer, CMD_RESULT_STR_LEN, "%s", tostring(OK));
break;
case CMD_STATUS_FAIL:
snprintf(buffer, CMD_RESULT_STR_LEN, "%s", tostring(FAIL));
break;
case CMD_STATUS_NOT_APPLICABLE:
snprintf(buffer, CMD_RESULT_STR_LEN, "%s", tostring(NOT_APPLICABLE));
break;
default:
snprintf(buffer, CMD_RESULT_STR_LEN, "%s", tostring(NOT_APPLICABLE));
break;
}
return snprintf(buf, PAGE_SIZE, "%s\n", buffer);
}
static ssize_t cmd_result_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Command result = %s\n",
__func__, data->cmd_result);
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
return snprintf(buf, PAGE_SIZE, "%s\n", data->cmd_result);
}
static char debug_buffer[DEBUG_RESULT_STR_LEN];
static ssize_t cmd_list_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ii = 0;
char buffer_name[CMD_STR_LEN] = {0,};
memset(debug_buffer, 0, DEBUG_RESULT_STR_LEN);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_name, CMD_STR_LEN, "++factory command list++\n");
while (strncmp(ft_cmds[ii].cmd_name, "not_support_cmd", 16) != 0) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_name, CMD_STR_LEN, "%s\n", ft_cmds[ii].cmd_name);
ii++;
}
return snprintf(buf, PAGE_SIZE, "%s\n", debug_buffer);
}
static ssize_t debug_address_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
struct synaptics_rmi4_f51_handle *f51 = rmi4_data->f51;
char buffer_temp[DEBUG_STR_LEN] = {0,};
memset(debug_buffer, 0, DEBUG_RESULT_STR_LEN);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### F12 User control Registers ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F12_2D_CTRL11(jitter)\t 0x%04x, 0x%02x\n",
rmi4_data->f12.ctrl11_addr, 0xFF);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F12_2D_CTRL15(threshold)\t 0x%04x, 0x%02x\n",
rmi4_data->f12.ctrl15_addr, 0xFF);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F12_2D_CTRL26(glove)\t 0x%04x, 0x%02x\n",
rmi4_data->f12.ctrl26_addr, rmi4_data->f12.feature_enable);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F12_2D_CTRL28(report)\t 0x%04x, 0x%02x\n",
rmi4_data->f12.ctrl28_addr, rmi4_data->f12.report_enable);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### F51 User control Registers ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_CTRL00(proximity)\t 0x%04x, 0x%02x\n",
f51->proximity_enables_addr, f51->proximity_enables);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_CTRL01(general)\t 0x%04x, 0x%02x\n",
f51->general_control_addr, f51->general_control);
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_CTRL02(general2)\t 0x%04x, 0x%02x\n",
f51->general_control_2_addr, f51->general_control_2);
#ifdef SIDE_TOUCH
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_DATA (Side button)\t 0x%04x, 0x%02x\n",
f51->side_button_data_addr, 0xFF);
#endif
#ifdef USE_DETECTION_FLAG_2
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_DATA (Detection flag2)\t 0x%04x, 0x%02x\n",
f51->detection_flag_2_addr, 0xFF);
#endif
#ifdef EDGE_SWIPE
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_DATA (Edge swipe)\t 0x%04x, 0x%02x\n",
f51->edge_swipe_data_addr, 0xFF);
#endif
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### Manual defined offset ###\n");
#ifdef PROXIMITY_MODE
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_CTRL24(Grip edge exclusion RX)\t 0x%04x\n",
f51->grip_edge_exclusion_rx_addr);
#endif
#ifdef SIDE_TOUCH
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_CTRL78(Side button tap threshold)\t 0x%04x\n",
f51->sidebutton_tapthreshold_addr);
#endif
#ifdef USE_STYLUS
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "#F51_CUSTOM_CTRL87(ForceFingeronEdge)\t 0x%04x\n",
f51->forcefinger_onedge_addr);
#endif
return snprintf(buf, PAGE_SIZE, "%s\n", debug_buffer);
}
static ssize_t debug_register_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", debug_buffer);
}
static ssize_t debug_register_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned int mode, page, addr, offset, param;
unsigned char i;
unsigned short register_addr;
unsigned char *register_val;
char buffer_temp[DEBUG_STR_LEN] = {0,};
int retval = 0;
memset(debug_buffer, 0, DEBUG_RESULT_STR_LEN);
if (sscanf(buf, "%x%x%x%x%x", &mode, &page, &addr, &offset, &param) != 5) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### keep below format !!!! ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### mode page_num address offset data ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### (EX: 1 4 15 1 10 > debug_address) ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### Write 0x10 value at 0x415[1] address ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### if packet register, offset mean [register/offset] ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### (EX: 0 4 15 0 a > debug_address) ###\n");
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### Read 10byte from 0x415 address ###\n");
goto out;
}
if (rmi4_data->touch_stopped) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### ERROR : Sensor stopped\n");
goto out;
}
register_addr = (page << 8) | addr;
if (mode) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### Write [0x%02x]value at [0x%04x/0x%02x]address.\n",
param, register_addr, offset);
if (offset) {
if (offset > MAX_VAL_OFFSET_AND_LENGTH) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### offset is too large. [ < %d]\n", MAX_VAL_OFFSET_AND_LENGTH);
goto out;
}
register_val = kzalloc(offset + 1, GFP_KERNEL);
retval = synaptics_rmi4_access_register(rmi4_data, SYNAPTICS_ACCESS_READ, register_addr, offset, register_val);
if (retval < 0) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### Failed to read\n");
goto free_mem;
}
register_val[offset] = param;
for (i = 0; i < offset; i++)
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### offset[%d] --> 0x%02x ###\n", i, register_val[i]);
retval = synaptics_rmi4_access_register(rmi4_data, SYNAPTICS_ACCESS_WRITE, register_addr, offset, register_val);
if (retval < 0) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### Failed to write\n");
goto free_mem;
}
} else {
register_val = kzalloc(1, GFP_KERNEL);
*register_val = param;
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### 0x%04x --> 0x%02x ###\n", register_addr, *register_val);
retval = synaptics_rmi4_access_register(rmi4_data, SYNAPTICS_ACCESS_WRITE, register_addr, 1, register_val);
if (retval < 0) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### Failed to write\n");
goto free_mem;
}
}
} else {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### Read [%u]byte from [0x%04x]address.\n",
param, register_addr);
if (param > MAX_VAL_OFFSET_AND_LENGTH) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### length is too large. [ < %d]\n", MAX_VAL_OFFSET_AND_LENGTH);
goto out;
}
register_val = kzalloc(param, GFP_KERNEL);
retval = synaptics_rmi4_access_register(rmi4_data, SYNAPTICS_ACCESS_READ, register_addr, param, register_val);
if (retval < 0) {
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "\n### Failed to read\n");
goto free_mem;
}
for (i = 0; i < param; i++)
DEBUG_PRNT_SCREEN(debug_buffer, buffer_temp, DEBUG_STR_LEN, "### offset[%d] --> 0x%02x ###\n", i, register_val[i]);
}
free_mem:
kfree(register_val);
out:
return count;
}
#ifdef USE_GUEST_THREAD
static ssize_t guest_pkt_dbg_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
return sprintf(buf, "%d\n", rmi4_data->guest_pkt_dbg_level);
}
static ssize_t guest_pkt_dbg_level_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned long val;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
rmi4_data->guest_pkt_dbg_level = (unsigned char)val;
return count;
}
#endif
/* TODO: Below functions are added to check that firmware update is needed or not.
* During development period, we need to support test firmware and various H/W
* type such as A0/A1/B0.... So Below conditions are very compex, maybe we need to
* simplify this function..
*
* synaptics_get_firmware_name : get firmware name according to board enviroment.
* synaptics_check_pr_number : to check that configuration block is correct or not.
* synaptics_skip_firmware_update : check condition(according to requiremnt by CS).
*/
/* Define for board specific firmware name....*/
#define FW_IMAGE_NAME_NONE NULL
/* Defines firmware name for K project
*
* A1: A1 panel -> 140108 : removed
* [0x07 is final version.]
* A2: A2 panel(Old b/l) 5.2 inch
* [0x11 is final version.]
* A2 FHD/WQHD: A2 panel(New b/l) 5.2 inch
* [WQHD is started from 0x12 ~ , FHD is started from 0x21 ~ ]
* A3 FHD/WQHD: 5.1 inch A2 panel
*/
/* TODO : Remove A1_K, A2_K firmware when is not used anymore. */
#define FW_IMAGE_NAME_S5100_A2_K "tsp_synaptics/synaptics_s5100_a2_k.fw"
#define FW_IMAGE_NAME_S5100_A2_K_FHD "tsp_synaptics/synaptics_s5100_a2_k_FHD.fw"
#define FW_IMAGE_NAME_S5100_A2_K_WQHD FW_IMAGE_NAME_NONE/*"tsp_synaptics/synaptics_s5100_a2_k_WQHD.fw"*/
#define FW_IMAGE_NAME_S5100_A3_K_FHD "tsp_synaptics/synaptics_s5100_a3_k_FHD.fw"
#define FW_IMAGE_NAME_S5100_A3_K_WQHD FW_IMAGE_NAME_NONE
#define FW_IMAGE_NAME_S5100_A3_KQ_WQHD "tsp_synaptics/synaptics_s5100_a3_kq_WQHD.fw"
static void synaptics_get_firmware_name(struct synaptics_rmi4_data *rmi4_data)
{
const struct synaptics_rmi4_platform_data *pdata = rmi4_data->board;
if (pdata->firmware_name) {
rmi4_data->firmware_name = pdata->firmware_name;
goto out;
}
/*
* Get the firmware name.. for your board.
* I recommend to get the firmware name from platform data(board or dt data)
* instead of using below code.
* If firmware is FW_IMAGE_NAME_NONE, firmware update will be skipped..
*/
rmi4_data->firmware_name = FW_IMAGE_NAME_NONE;
/* For K project */
if (strncmp(pdata->project_name, "K", 1) == 0) {
if (rmi4_data->product_id == SYNAPTICS_PRODUCT_ID_S5100) {
switch (rmi4_data->ic_revision_of_ic) {
case SYNAPTICS_IC_REVISION_A2:
if (rmi4_data->bootloader_id[SYNAPTICS_BL_MAJOR_REV_OFFSET] >= BL_MAJOR_VER_OF_GUEST_THREAD
&& rmi4_data->bootloader_id[SYNAPTICS_BL_MINOR_REV_OFFSET] >= BL_MINOR_VER_OF_GUEST_THREAD) {
if (strncmp(pdata->project_name, "KQ", 2) == 0)
rmi4_data->firmware_name = FW_IMAGE_NAME_S5100_A2_K_WQHD;
else
rmi4_data->firmware_name = FW_IMAGE_NAME_S5100_A2_K_FHD;
} else {
rmi4_data->firmware_name = FW_IMAGE_NAME_S5100_A2_K;
}
break;
case SYNAPTICS_IC_REVISION_A3:
if (strncmp(pdata->project_name, "KQ", 2) == 0)
rmi4_data->firmware_name = FW_IMAGE_NAME_S5100_A3_KQ_WQHD;
else
rmi4_data->firmware_name = FW_IMAGE_NAME_S5100_A3_K_FHD;
break;
default:
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to get firmware name for %s project's ic revision[0x%02X]\n",
__func__, pdata->project_name, rmi4_data->ic_revision_of_ic);
break;
}
}
}
out:
return;
}
#ifdef CHECK_PR_NUMBER
static bool synaptics_check_pr_number(struct synaptics_rmi4_data *rmi4_data,
const struct firmware *fw_entry)
{
unsigned int fw_pr_number = 0;
int image_ver = (int)fw_entry->data[FIRMWARE_IMG_HEADER_MAJOR_VERSION_OFFSET];
/* Check base fw version. base fw version is PR number. ex)PR1566790_...img */
if (image_ver >= NEW_IMG_MAJOR_VERSION) {
fw_pr_number = ((int)(fw_entry->data[PR_NUMBER_0TH_BYTE_BIN_OFFSET + 3] & 0xFF) << 24) |
((int)(fw_entry->data[PR_NUMBER_0TH_BYTE_BIN_OFFSET + 2] & 0xFF) << 16) |
((int)(fw_entry->data[PR_NUMBER_0TH_BYTE_BIN_OFFSET + 1] & 0xFF) << 8) |
(int)(fw_entry->data[PR_NUMBER_0TH_BYTE_BIN_OFFSET] & 0xFF);
} else {
if ((int)fw_entry->data[OLD_IMG_CHECK_PR_BIT_BIN_OFFSET]) {
fw_pr_number = ((int)(fw_entry->data[OLD_IMG_PR_NUMBER_0TH_BYTE_BIN_OFFSET + 3] & 0xFF) << 24) |
((int)(fw_entry->data[OLD_IMG_PR_NUMBER_0TH_BYTE_BIN_OFFSET + 2] & 0xFF) << 16) |
((int)(fw_entry->data[OLD_IMG_PR_NUMBER_0TH_BYTE_BIN_OFFSET + 1] & 0xFF) << 8) |
(int)(fw_entry->data[OLD_IMG_PR_NUMBER_0TH_BYTE_BIN_OFFSET] & 0xFF);
} else {
tsp_debug_info(true, &rmi4_data->i2c_client->dev,
"%s: Firmware do not have PR number\n", __func__);
goto out;
}
}
if (fw_pr_number != rmi4_data->rmi4_mod_info.pr_number) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: pr_number mismatched[IC/BIN] : %d / %d, excute update!!\n",
__func__, rmi4_data->rmi4_mod_info.pr_number, fw_pr_number);
return false;
}
out:
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev, "%s: pr_number[IC/BIN] : %d / %d\n",
__func__, rmi4_data->rmi4_mod_info.pr_number, fw_pr_number);
return true;
}
#endif
static bool synaptics_skip_firmware_update(struct synaptics_rmi4_data *rmi4_data,
const struct firmware *fw_entry)
{
int image_ver = (int)fw_entry->data[FIRMWARE_IMG_HEADER_MAJOR_VERSION_OFFSET];
if (image_ver >= NEW_IMG_MAJOR_VERSION) {
rmi4_data->ic_revision_of_bin = (int)fw_entry->data[IC_REVISION_BIN_OFFSET];
rmi4_data->fw_version_of_bin = (int)fw_entry->data[FW_VERSION_BIN_OFFSET];
} else {
rmi4_data->ic_revision_of_bin = (int)fw_entry->data[OLD_IMG_IC_REVISION_BIN_OFFSET];
rmi4_data->fw_version_of_bin = (int)fw_entry->data[OLD_IMG_FW_VERSION_BIN_OFFSET];
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: FW size. revision, version [%ld, 0x%02X/0x%02X(BIN/IC), 0x%02X/0x%02X(BIN/IC)]\n",
__func__, fw_entry->size,
rmi4_data->ic_revision_of_bin, rmi4_data->ic_revision_of_ic,
rmi4_data->fw_version_of_bin, rmi4_data->fw_version_of_ic);
if (rmi4_data->flash_prog_mode) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Force firmware update : Flash prog bit is setted fw\n",
__func__);
goto out;
}
if (rmi4_data->ic_revision_of_bin != rmi4_data->ic_revision_of_ic) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Skip update because revision is mismatched.\n",
__func__);
return true;
}
if (rmi4_data->fw_version_of_bin < rmi4_data->fw_version_of_ic) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Do not need to update\n",
__func__);
return true;
}
if (rmi4_data->fw_version_of_bin == rmi4_data->fw_version_of_ic) {
#ifdef CHECK_PR_NUMBER
if (!synaptics_check_pr_number(rmi4_data, fw_entry))
goto out;
#endif
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Do not need to update\n",
__func__);
return true;
}
out:
return false;
}
int synaptics_rmi4_fw_update_on_probe(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
const struct firmware *fw_entry = NULL;
unsigned char *fw_data = NULL;
synaptics_get_firmware_name(rmi4_data);
if (rmi4_data->firmware_name == NULL) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: firmware name is NULL!, Skip update firmware.\n",
__func__);
return 0;
} else {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Load firmware : %s\n",
__func__, rmi4_data->firmware_name);
}
#ifdef SKIP_UPDATE_FW_ON_PROBE
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Intentionally skip update firmware.\n",
__func__);
goto done;
#endif
retval = request_firmware(&fw_entry, rmi4_data->firmware_name, &rmi4_data->i2c_client->dev);
if (retval) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Firmware image %s not available\n",
__func__, rmi4_data->firmware_name);
goto done;
}
if (synaptics_skip_firmware_update(rmi4_data, fw_entry))
goto done;
fw_data = (unsigned char *) fw_entry->data;
retval = synaptics_fw_updater(fw_data);
if (retval)
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed update firmware\n",
__func__);
done:
if (fw_entry)
release_firmware(fw_entry);
return retval;
}
EXPORT_SYMBOL(synaptics_rmi4_fw_update_on_probe);
static int synaptics_load_fw_from_kernel(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
int image_ver = 0;
const struct firmware *fw_entry = NULL;
unsigned char *fw_data = NULL;
synaptics_get_firmware_name(rmi4_data);
if (rmi4_data->firmware_name == NULL) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: firmware name is NULL!, Skip update firmware.\n",
__func__);
return 0;
} else {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: Load firmware : %s\n",
__func__, rmi4_data->firmware_name);
}
retval = request_firmware(&fw_entry, rmi4_data->firmware_name,
&rmi4_data->i2c_client->dev);
if (retval) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Firmware image %s not available\n",
__func__, rmi4_data->firmware_name);
goto done;
}
image_ver = (int)fw_entry->data[FIRMWARE_IMG_HEADER_MAJOR_VERSION_OFFSET];
if (image_ver >= NEW_IMG_MAJOR_VERSION) {
rmi4_data->ic_revision_of_bin = (int)fw_entry->data[IC_REVISION_BIN_OFFSET];
rmi4_data->fw_version_of_bin = (int)fw_entry->data[FW_VERSION_BIN_OFFSET];
} else {
rmi4_data->ic_revision_of_bin = (int)fw_entry->data[OLD_IMG_IC_REVISION_BIN_OFFSET];
rmi4_data->fw_version_of_bin = (int)fw_entry->data[OLD_IMG_FW_VERSION_BIN_OFFSET];
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: FW size. revision, version [%ld, 0x%02X/0x%02X(BIN/IC), 0x%02X/0x%02X(BIN/IC)]\n",
__func__, fw_entry->size,
rmi4_data->ic_revision_of_bin, rmi4_data->ic_revision_of_ic,
rmi4_data->fw_version_of_bin, rmi4_data->fw_version_of_ic);
fw_data = (unsigned char *) fw_entry->data;
retval = synaptics_fw_updater(fw_data);
if (retval)
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed update firmware\n",
__func__);
done:
if (fw_entry)
release_firmware(fw_entry);
return retval;
}
static int synaptics_load_fw_from_ums(struct synaptics_rmi4_data *rmi4_data)
{
struct file *fp;
mm_segment_t old_fs;
int fw_size, nread;
int error = 0;
old_fs = get_fs();
set_fs(KERNEL_DS);
fp = filp_open(SYNAPTICS_DEFAULT_UMS_FW, O_RDONLY, S_IRUSR);
if (IS_ERR(fp)) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed to open %s.\n",
__func__, SYNAPTICS_DEFAULT_UMS_FW);
error = -ENOENT;
goto open_err;
}
fw_size = fp->f_path.dentry->d_inode->i_size;
if (0 < fw_size) {
unsigned char *fw_data;
fw_data = kzalloc(fw_size, GFP_KERNEL);
nread = vfs_read(fp, (char __user *)fw_data,
fw_size, &fp->f_pos);
tsp_debug_info(true, &rmi4_data->i2c_client->dev,
"%s: start, file path %s, size %u Bytes\n", __func__,
SYNAPTICS_DEFAULT_UMS_FW, fw_size);
if (nread != fw_size) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed to read firmware file, nread %u Bytes\n",
__func__, nread);
error = -EIO;
} else {
/* UMS case */
error = synaptics_fw_updater(fw_data);
}
if (error < 0)
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed update firmware\n",
__func__);
kfree(fw_data);
}
filp_close(fp, current->files);
open_err:
set_fs(old_fs);
return error;
}
static int synaptics_rmi4_fw_update_on_hidden_menu(struct synaptics_rmi4_data *rmi4_data,
int update_type)
{
int retval = 0;
/* Factory cmd for firmware update
* argument represent what is source of firmware like below.
*
* 0, 2 : Getting firmware which is for user.
* 1 : Getting firmware from sd card.
*/
switch (update_type) {
case 2:
case 0:
retval = synaptics_load_fw_from_kernel(rmi4_data);
break;
case 1:
retval = synaptics_load_fw_from_ums(rmi4_data);
break;
default:
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Not support command[%d]\n",
__func__, update_type);
break;
}
return retval;
}
static void fw_update(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0;
set_default_result(data);
retval = synaptics_rmi4_fw_update_on_hidden_menu(rmi4_data,
data->cmd_param[0]);
msleep(1000);
if (retval < 0) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NA));
data->cmd_state = CMD_STATUS_FAIL;
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed [%d]\n",
__func__, retval);
goto out;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(OK));
data->cmd_state = CMD_STATUS_OK;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: success [%d]\n",
__func__, retval);
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_fw_ver_bin(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
set_default_result(data);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "SY%02X%02X%02X",
rmi4_data->ic_revision_of_bin,
rmi4_data->panel_revision,
rmi4_data->fw_version_of_bin);
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_fw_ver_ic(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
set_default_result(data);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "SY%02X%02X%02X",
rmi4_data->ic_revision_of_ic,
rmi4_data->panel_revision,
rmi4_data->fw_version_of_ic);
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_config_ver(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
const struct synaptics_rmi4_platform_data *pdata = rmi4_data->board;
set_default_result(data);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s_SY_%02d%02d",
pdata->model_name ?: pdata->project_name ?:SYNAPTICS_DEVICE_NAME, (rmi4_data->fw_release_date_of_ic >> 8) & 0x0F,
rmi4_data->fw_release_date_of_ic & 0x00FF);
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_threshold(void)
{
unsigned char saturationcap_lsb;
unsigned char saturationcap_msb;
unsigned char amplitudethreshold;
unsigned int saturationcap;
unsigned int threshold_integer;
unsigned int threshold_fraction;
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
f54->fn_ptr->read(rmi4_data,
rmi4_data->f12.ctrl15_addr,
&amplitudethreshold,
sizeof(amplitudethreshold));
f54->fn_ptr->read(rmi4_data,
f54->control.reg_2->address,
&saturationcap_lsb,
sizeof(saturationcap_lsb));
f54->fn_ptr->read(rmi4_data,
f54->control.reg_2->address + 1,
&saturationcap_msb,
sizeof(saturationcap_msb));
saturationcap = (saturationcap_lsb & 0xFF) | ((saturationcap_msb & 0xFF) << 8);
threshold_integer = (amplitudethreshold * saturationcap)/256;
threshold_fraction = ((amplitudethreshold * saturationcap * 1000)/256)%1000;
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: FingerAmp : %d, Satruration cap : %d\n",
__func__, amplitudethreshold, saturationcap);
set_default_result(data);
sprintf(data->cmd_buff, "%u.%u",
threshold_integer, threshold_fraction);
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void module_off_master(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
set_default_result(data);
mutex_lock(&rmi4_data->input_dev->mutex);
rmi4_data->stop_device(rmi4_data);
mutex_unlock(&rmi4_data->input_dev->mutex);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(OK));
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void module_on_master(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval;
set_default_result(data);
mutex_lock(&rmi4_data->input_dev->mutex);
retval = rmi4_data->start_device(rmi4_data);
if (retval < 0)
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to start device\n", __func__);
mutex_unlock(&rmi4_data->input_dev->mutex);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(OK));
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_chip_vendor(void)
{
struct factory_data *data = f54->factory_data;
set_default_result(data);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(SYNAPTICS));
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_chip_name(void)
{
struct factory_data *data = f54->factory_data;
set_default_result(data);
switch (f54->rmi4_data->product_id) {
case SYNAPTICS_PRODUCT_ID_S5000:
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(S5000));
break;
case SYNAPTICS_PRODUCT_ID_S5050:
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(S5050));
break;
case SYNAPTICS_PRODUCT_ID_S5100:
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(S5100));
break;
case SYNAPTICS_PRODUCT_ID_S5700:
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(S5700));
break;
default:
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NA));
}
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_x_num(void)
{
struct factory_data *data = f54->factory_data;
set_default_result(data);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%d", f54->tx_assigned);
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_y_num(void)
{
struct factory_data *data = f54->factory_data;
set_default_result(data);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%d", f54->rx_assigned);
data->cmd_state = CMD_STATUS_OK;
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static int check_rx_tx_num(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int node;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: param[0] = %d, param[1] = %d\n",
__func__, data->cmd_param[0], data->cmd_param[1]);
if (data->cmd_param[0] < 0 ||
data->cmd_param[0] >= f54->tx_assigned ||
data->cmd_param[1] < 0 ||
data->cmd_param[1] >= f54->rx_assigned) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: parameter error: %u,%u\n",
__func__, data->cmd_param[0], data->cmd_param[1]);
node = -1;
} else {
node = data->cmd_param[0] * f54->rx_assigned +
data->cmd_param[1];
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: node = %d\n",
__func__, node);
}
return node;
}
static void get_rawcap(void)
{
int node;
short report_data;
struct factory_data *data = f54->factory_data;
set_default_result(data);
node = check_rx_tx_num();
if (node < 0) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NA));
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
report_data = f54->factory_data->rawcap_data[node];
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%d", report_data);
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void run_rawcap_read(void)
{
int retval;
int kk = 0;
unsigned char ii;
unsigned char jj;
unsigned char num_of_tx;
unsigned char num_of_rx;
short *report_data;
short max_value;
short min_value;
short cur_value;
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned char command = 0x01;
set_default_result(data);
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
retval = do_preparation();
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to do preparation\n",
__func__);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error preparation");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
if (!synaptics_rmi4_f54_get_report_type(F54_FULL_RAW_CAP_RX_COUPLING_COMP)) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error get report type");
data->cmd_state = CMD_STATUS_FAIL;
goto sw_reset;
}
report_data = f54->factory_data->rawcap_data;
memcpy(report_data, f54->report_data, f54->report_size);
num_of_tx = f54->tx_assigned;
num_of_rx = f54->rx_assigned;
max_value = min_value = report_data[0];
for (ii = 0; ii < num_of_tx; ii++) {
for (jj = 0; jj < num_of_rx; jj++) {
cur_value = *report_data;
max_value = max(max_value, cur_value);
min_value = min(min_value, cur_value);
report_data++;
if (cur_value > TSP_RAWCAP_MAX || cur_value < TSP_RAWCAP_MIN)
tsp_debug_info(true, &rmi4_data->i2c_client->dev,
"tx = %02d, rx = %02d, data[%d] = %d\n",
ii, jj, kk, cur_value);
kk++;
}
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%d,%d", min_value, max_value);
data->cmd_state = CMD_STATUS_OK;
sw_reset:
/* soft reset */
retval = f54->fn_ptr->write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to issue reset command, error = %d\n",
__func__, retval);
}
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_delta(void)
{
int node;
short report_data;
struct factory_data *data = f54->factory_data;
set_default_result(data);
node = check_rx_tx_num();
if (node < 0) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NA));
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
report_data = f54->factory_data->delta_data[node];
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%d", report_data);
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void run_delta_read(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
short *report_data;
short cur_value;
unsigned char ii;
unsigned char jj;
unsigned char num_of_tx;
unsigned char num_of_rx;
int kk = 0;
set_default_result(data);
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
if (!synaptics_rmi4_f54_get_report_type(F54_16BIT_IMAGE)) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error get report type");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
report_data = f54->factory_data->delta_data;
memcpy(report_data, f54->report_data, f54->report_size);
num_of_tx = f54->tx_assigned;
num_of_rx = f54->rx_assigned;
for (ii = 0; ii < num_of_tx; ii++) {
for (jj = 0; jj < num_of_rx; jj++) {
cur_value = *report_data;
report_data++;
if (cur_value > TSP_DELTA_MAX || cur_value < TSP_DELTA_MIN)
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "tx = %02d, rx = %02d, data[%d] = %d\n",
ii, jj, kk, cur_value);
kk++;
}
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void run_abscap_read(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned int *report_data;
char temp[CMD_STR_LEN];
char temp2[CMD_RESULT_STR_LEN];
unsigned char ii;
unsigned short num_of_tx;
unsigned short num_of_rx;
int retval;
unsigned char command = 0x01;
set_default_result(data);
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
if (!synaptics_rmi4_f54_get_report_type(F54_ABS_CAP)) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error get report type");
data->cmd_state = CMD_STATUS_FAIL;
goto sw_reset;
}
report_data = f54->factory_data->abscap_data;
memcpy(report_data, f54->report_data, f54->report_size);
memset(temp, 0, CMD_STR_LEN);
memset(temp2, 0, CMD_RESULT_STR_LEN);
num_of_tx = f54->tx_assigned;
num_of_rx = f54->rx_assigned;
for (ii = 0; ii < num_of_rx + num_of_tx; ii++) {
if (rmi4_data->product_id < SYNAPTICS_PRODUCT_ID_S5100)
*report_data &= 0x0FFFF;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: %s [%d] = %d\n",
__func__, ii >= num_of_rx ? "Tx" : "Rx",
ii < num_of_rx ? ii : ii - num_of_rx,
*report_data);
snprintf(temp, CMD_STR_LEN, "%d,", *report_data);
strncat(temp2, temp, RPT_DATA_STRNCAT_LENGTH);
report_data++;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", temp2);
data->cmd_state = CMD_STATUS_OK;
sw_reset:
/* soft reset */
retval = f54->fn_ptr->write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to issue reset command, error = %d\n",
__func__, retval);
}
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void run_absdelta_read(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
struct synaptics_rmi4_f51_handle *f51 = rmi4_data->f51;
int *report_data;
char temp[CMD_STR_LEN];
char temp2[CMD_RESULT_STR_LEN];
unsigned char ii;
unsigned short num_of_tx;
unsigned short num_of_rx;
unsigned char proximity_enables = FINGER_HOVER_EN;
int retval;
unsigned char command = 0x01;
set_default_result(data);
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
/* Enable hover before read abs delta */
retval = f54->fn_ptr->write(rmi4_data, f51->proximity_enables_addr,
&proximity_enables, sizeof(proximity_enables));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write proximity_enables\n",
__func__);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
/* at least 5 frame time are needed after enable hover
* to get creadible abs delta data( 16.6 * 5 = 88 msec )
*/
msleep(150);
if (!synaptics_rmi4_f54_get_report_type(F54_ABS_DELTA)) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error get report type");
data->cmd_state = CMD_STATUS_FAIL;
goto sw_reset;
}
report_data = f54->factory_data->absdelta_data;
memcpy(report_data, f54->report_data, f54->report_size);
memset(temp, 0, CMD_STR_LEN);
memset(temp2, 0, CMD_RESULT_STR_LEN);
num_of_tx = f54->tx_assigned;
num_of_rx = f54->rx_assigned;
for (ii = 0; ii < num_of_rx + num_of_tx; ii++) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: %s [%d] = %d\n",
__func__, ii >= num_of_rx ? "Tx" : "Rx",
ii < num_of_rx ? ii : ii - num_of_rx,
*report_data);
snprintf(temp, CMD_STR_LEN, "%d,", *report_data);
strncat(temp2, temp, RPT_DATA_STRNCAT_LENGTH);
report_data++;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", temp2);
data->cmd_state = CMD_STATUS_OK;
sw_reset:
/* soft reset */
retval = f54->fn_ptr->write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to issue reset command, error = %d\n",
__func__, retval);
}
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
/* trx_short_test register mapping
* 0 : not used ( using 5.2 inch)
* 1 ~ 28 : Rx
* 29 ~ 31 : Side Button 0, 1, 2
* 32 ~ 33 : Guard
* 34 : Charge Substraction
* 35 ~ 50 : Tx
* 51 ~ 53 : Side Button 3, 4, 5
*/
static void run_trx_short_test(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
char *report_data;
unsigned char ii, jj;
int retval = 0;
unsigned char command = 0x01;
char temp[CMD_STR_LEN];
char temp2[CMD_RESULT_STR_LEN];
set_default_result(data);
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
disable_irq(rmi4_data->i2c_client->irq);
if (!synaptics_rmi4_f54_get_report_type(F54_TREX_SHORTS)) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error get report type");
data->cmd_state = CMD_STATUS_FAIL;
goto sw_reset;
}
report_data = f54->factory_data->trx_short;
memcpy(report_data, f54->report_data, f54->report_size);
memset(temp, 0, CMD_STR_LEN);
memset(temp2, 0, CMD_RESULT_STR_LEN);
for (ii = 0; ii < f54->report_size; ii++) {
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: [%d]: [%x][%x][%x][%x][%x][%x][%x][%x]\n",
__func__, ii, *report_data & 0x1, (*report_data & 0x2) >> 1,
(*report_data & 0x4) >> 2, (*report_data & 0x8) >> 3,
(*report_data & 0x10) >> 4, (*report_data & 0x20) >> 5,
(*report_data & 0x40) >> 6, (*report_data & 0x80) >> 7);
for (jj = 0; jj < 8; jj++) {
snprintf(temp, CMD_STR_LEN, "%d,", (*report_data >> jj) & 0x01);
strncat(temp2, temp, RPT_DATA_STRNCAT_LENGTH);
}
report_data++;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", temp2);
data->cmd_state = CMD_STATUS_OK;
sw_reset:
enable_irq(rmi4_data->i2c_client->irq);
/* soft reset */
retval = f54->fn_ptr->write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
}
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
#ifdef PROXIMITY_MODE
static void hover_enable(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0, enables = 0;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 1) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
enables = data->cmd_param[0];
retval = synaptics_rmi4_proximity_enables(rmi4_data, enables);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s failed, retval = %d\n",
__func__, retval);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
static void hover_no_sleep_enable(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned char no_sleep = 0;
int retval = 0;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 1) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
retval = f54->fn_ptr->read(rmi4_data,
rmi4_data->f01_ctrl_base_addr, &no_sleep, sizeof(no_sleep));
if (retval <= 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: fail to read no_sleep[ret:%d]\n",
__func__, retval);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (data->cmd_param[0])
no_sleep |= NO_SLEEP_ON;
else
no_sleep &= ~(NO_SLEEP_ON);
retval = f54->fn_ptr->write(rmi4_data,
rmi4_data->f01_ctrl_base_addr, &no_sleep, sizeof(no_sleep));
if (retval <= 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: fail to read no_sleep[ret:%d]\n",
__func__, retval);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void hover_set_edge_rx(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned char edge_exculsion_rx = 0x10;
int retval = 0;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 1) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (data->cmd_param[0])
edge_exculsion_rx = 0x0;
else
edge_exculsion_rx = 0x10;
retval = synaptics_rmi4_access_register(rmi4_data, SYNAPTICS_ACCESS_WRITE,
rmi4_data->f51->grip_edge_exclusion_rx_addr, sizeof(edge_exculsion_rx), &edge_exculsion_rx);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write grip edge exclustion rx with [0x%02X].\n",
__func__, edge_exculsion_rx);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
#endif
static void set_jitter_level(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0, level = 0;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 255) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s failed, the range of jitter level is 0~255\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
level = data->cmd_param[0];
retval = synaptics_rmi4_f12_ctrl11_set(rmi4_data, level);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s failed, retval = %d\n",
__func__, retval);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
#ifdef GLOVE_MODE
static void glove_mode(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0;
set_default_result(data);
if (rmi4_data->f12.feature_enable & CLOSED_COVER_EN) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s Skip glove mode set (cover bit enabled)\n",
__func__);
goto out;
}
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 1) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (data->cmd_param[0])
rmi4_data->f12.feature_enable |= GLOVE_DETECTION_EN;
else
rmi4_data->f12.feature_enable &= ~(GLOVE_DETECTION_EN);
retval = synaptics_rmi4_glove_mode_enables(rmi4_data);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s failed, retval = %d\n",
__func__, retval);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
static void fast_glove_mode(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 1) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (data->cmd_param[0]) {
rmi4_data->f12.feature_enable |= FAST_GLOVE_DECTION_EN | GLOVE_DETECTION_EN;
rmi4_data->fast_glove_state = true;
} else {
rmi4_data->f12.feature_enable &= ~(FAST_GLOVE_DECTION_EN);
rmi4_data->fast_glove_state = false;
}
retval = synaptics_rmi4_glove_mode_enables(rmi4_data);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s failed, retval = %d\n",
__func__, retval);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
static void clear_cover_mode(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 3) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
rmi4_data->f12.feature_enable = data->cmd_param[0];
if (data->cmd_param[0] && rmi4_data->fast_glove_state)
rmi4_data->f12.feature_enable |= FAST_GLOVE_DECTION_EN;
retval = synaptics_rmi4_glove_mode_enables(rmi4_data);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s failed, retval = %d\n",
__func__, retval);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
/* Sync user setting value when wakeup with flip cover opened */
if (rmi4_data->f12.feature_enable == CLOSED_COVER_EN
|| rmi4_data->f12.feature_enable == (CLOSED_COVER_EN | FAST_GLOVE_DECTION_EN)) {
rmi4_data->f12.feature_enable &= ~(CLOSED_COVER_EN);
if (rmi4_data->fast_glove_state)
rmi4_data->f12.feature_enable |= GLOVE_DETECTION_EN;
}
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
#endif
#ifdef TSP_BOOSTER
static void boost_level(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] >= BOOSTER_LEVEL_MAX) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
change_booster_level_for_tsp(data->cmd_param[0]);
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev, "%s %d\n",
__func__, data->cmd_param[0]);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
#endif
#ifdef SIDE_TOUCH
static void sidekey_enable(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0;
unsigned char general_control_2;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 1) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
retval = f54->fn_ptr->read(rmi4_data, rmi4_data->f51->general_control_2_addr,
&general_control_2, sizeof(general_control_2));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to read general control 2.\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (data->cmd_param[0])
general_control_2 |= SIDE_BUTTONS_EN;
else
general_control_2 &= ~(SIDE_BUTTONS_EN);
retval = f54->fn_ptr->write(rmi4_data, rmi4_data->f51->general_control_2_addr,
&general_control_2, sizeof(general_control_2));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write general control 2 register with [0x%02X].\n",
__func__, general_control_2);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
rmi4_data->f51->general_control_2 = general_control_2;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: General Control2 [0x%02X]\n",
__func__, rmi4_data->f51->general_control_2);
if (!data->cmd_param[0])
synpatics_rmi4_release_all_event(rmi4_data, RELEASE_TYPE_SIDEKEY);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
static void set_sidekey_only_enable(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0;
unsigned char device_control = 0;
bool sidekey_only_enable;
set_default_result(data);
mutex_lock(&rmi4_data->rmi4_device_mutex);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 1) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
sidekey_only_enable = data->cmd_param[0] ? true : false;
/* Control device_control value */
retval = f54->fn_ptr->read(rmi4_data,
rmi4_data->f01_ctrl_base_addr, &device_control, sizeof(device_control));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to read Device Control register.\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (sidekey_only_enable)
device_control &= ~(SENSOR_SLEEP);
else
device_control |= SENSOR_SLEEP;
retval = f54->fn_ptr->write(rmi4_data,
rmi4_data->f01_ctrl_base_addr, &device_control, sizeof(device_control));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write Device Control register [0x%02X].\n",
__func__, device_control);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (sidekey_only_enable)
rmi4_data->sensor_sleep = false;
else
rmi4_data->sensor_sleep = true;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s : [F01_CTRL] 0x%02X, [F51_CTRL] 0x%02X/0x%02X/0x%02X]\n",
__func__, device_control, rmi4_data->f51->proximity_enables, rmi4_data->f51->general_control, rmi4_data->f51->general_control_2);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
mutex_unlock(&rmi4_data->rmi4_device_mutex);
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_sidekey_threshold(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned char sidekey_threshold[NUM_OF_ACTIVE_SIDE_BUTTONS];
char temp[CMD_STR_LEN];
char temp2[CMD_RESULT_STR_LEN];
int retval = 0, ii = 0;
set_default_result(data);
if (rmi4_data->touch_stopped) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is stopped\n",
__func__);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "TSP turned off");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
memset(temp, 0, CMD_STR_LEN);
memset(temp2, 0, CMD_RESULT_STR_LEN);
retval = synaptics_rmi4_access_register(rmi4_data, SYNAPTICS_ACCESS_READ,
rmi4_data->f51->sidebutton_tapthreshold_addr,
NUM_OF_ACTIVE_SIDE_BUTTONS, sidekey_threshold);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write general control 2 register with [0x%02X].\n",
__func__, rmi4_data->f51->general_control_2);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
while (ii < NUM_OF_ACTIVE_SIDE_BUTTONS) {
snprintf(temp, CMD_STR_LEN, "%u ", sidekey_threshold[ii]);
strcat(temp2, temp);
ii++;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", temp2);
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void run_sidekey_delta_read(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int *report_data;
char temp[CMD_STR_LEN];
char temp2[CMD_RESULT_STR_LEN];
unsigned char ii;
unsigned short num_of_tx;
unsigned short num_of_rx;
unsigned char sidekey_production_test;
int retval;
set_default_result(data);
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
/* Set sidekey production test */
retval = f54->fn_ptr->read(rmi4_data, rmi4_data->f51->general_control_2_addr,
&sidekey_production_test, sizeof(sidekey_production_test));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to read general control 2.\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
sidekey_production_test |= SIDE_BUTTONS_PRODUCTION_TEST;
retval = f54->fn_ptr->write(rmi4_data, rmi4_data->f51->general_control_2_addr,
&sidekey_production_test,
sizeof(sidekey_production_test));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write general control 2 register with [0x%02X].\n",
__func__, sidekey_production_test);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
msleep(100);
if (!synaptics_rmi4_f54_get_report_type(F54_ABS_DELTA)) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error get report type");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
report_data = f54->factory_data->absdelta_data;
memcpy(report_data, f54->report_data, f54->report_size);
memset(temp, 0, CMD_STR_LEN);
memset(temp2, 0, CMD_RESULT_STR_LEN);
num_of_tx = f54->tx_assigned;
num_of_rx = f54->rx_assigned;
for (ii = 0; ii < (num_of_rx + num_of_tx + NUM_OF_ACTIVE_SIDE_BUTTONS); ii++) {
if (rmi4_data->product_id < SYNAPTICS_PRODUCT_ID_S5100)
*report_data &= 0x0FFFF;
if (ii < (num_of_rx + num_of_tx)) {
report_data++;
continue;
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev,
"%s: %s [%d] = %d\n", __func__, "SIDE",
ii - (num_of_rx + num_of_tx), *report_data);
snprintf(temp, CMD_STR_LEN, "%d,", *report_data);
strncat(temp2, temp, RPT_DATA_STRNCAT_LENGTH);
report_data++;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", temp2);
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void run_sidekey_abscap_read(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned int *report_data;
char temp[CMD_STR_LEN];
char temp2[CMD_RESULT_STR_LEN];
unsigned char ii;
unsigned short num_of_tx;
unsigned short num_of_rx;
unsigned char command = 0x01;
unsigned char sidekey_production_test;
int retval;
set_default_result(data);
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
/* Set sidekey production test */
retval = f54->fn_ptr->read(rmi4_data, rmi4_data->f51->general_control_2_addr,
&sidekey_production_test, sizeof(sidekey_production_test));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to read general control 2.\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
sidekey_production_test |= SIDE_BUTTONS_PRODUCTION_TEST;
retval = f54->fn_ptr->write(rmi4_data, rmi4_data->f51->general_control_2_addr,
&sidekey_production_test,
sizeof(sidekey_production_test));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write general control 2 register with [0x%02X].\n",
__func__, sidekey_production_test);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
msleep(100);
if (!synaptics_rmi4_f54_get_report_type(F54_ABS_CAP)) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "Error get report type");
data->cmd_state = CMD_STATUS_FAIL;
goto sw_reset;
}
report_data = f54->factory_data->abscap_data;
memcpy(report_data, f54->report_data, f54->report_size);
memset(temp, 0, CMD_STR_LEN);
memset(temp2, 0, CMD_RESULT_STR_LEN);
num_of_tx = f54->tx_assigned;
num_of_rx = f54->rx_assigned;
for (ii = 0; ii < num_of_rx + num_of_tx + NUM_OF_ACTIVE_SIDE_BUTTONS; ii++) {
if (rmi4_data->product_id < SYNAPTICS_PRODUCT_ID_S5100)
*report_data &= 0x0FFFF;
if (ii < (num_of_rx + num_of_tx)) {
report_data++;
continue;
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev,
"%s: %s [%d] = %d\n", __func__, "SIDE",
ii - (num_of_rx + num_of_tx), *report_data);
snprintf(temp, CMD_STR_LEN, "%d,", *report_data);
strncat(temp2, temp, RPT_DATA_STRNCAT_LENGTH);
report_data++;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", temp2);
data->cmd_state = CMD_STATUS_OK;
sw_reset:
/* soft reset */
retval = f54->fn_ptr->write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to issue reset command, error = %d\n",
__func__, retval);
}
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void set_deepsleep_mode(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
set_default_result(data);
if (rmi4_data->touch_stopped) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
rmi4_data->use_deepsleep = data->cmd_param[0] ? true : false;
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void lozemode_enable(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned char general_control_2 = 0;
int retval;
set_default_result(data);
retval = f54->fn_ptr->read(rmi4_data, rmi4_data->f51->general_control_2_addr,
&general_control_2, sizeof(general_control_2));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to read general control 2.\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (data->cmd_param[0])
general_control_2 |= ENTER_SLEEP_MODE;
else
general_control_2 &= ~ENTER_SLEEP_MODE;
retval = f54->fn_ptr->write(rmi4_data, rmi4_data->f51->general_control_2_addr,
&general_control_2, sizeof(general_control_2));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write general control 2 register with [0x%02X].\n",
__func__, general_control_2);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NA");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
rmi4_data->f51->general_control_2 = general_control_2;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: General Control2 [0x%02X]\n",
__func__, rmi4_data->f51->general_control_2);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
#endif
static void set_tsp_test_result(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval = 0;
unsigned char device_status = 0;
set_default_result(data);
if (data->cmd_param[0] < TSP_FACTEST_RESULT_NONE
|| data->cmd_param[0] > TSP_FACTEST_RESULT_PASS) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
return;
}
if (rmi4_data->touch_stopped || rmi4_data->sensor_sleep) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is %s\n",
__func__, rmi4_data->touch_stopped ? "stopped" : "Sleep state");
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "TSP is %s",
rmi4_data->touch_stopped ? "off" : "sleep");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
retval = rmi4_data->i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
&device_status,
sizeof(device_status));
if (device_status != 0) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NR));
data->cmd_state = CMD_STATUS_FAIL;
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: IC not ready[%d]\n",
__func__, device_status);
goto out;
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: check status register[%d]\n",
__func__, device_status);
retval = synaptics_rmi4_set_tsp_test_result_in_config(data->cmd_param[0]);
msleep(200);
if (retval < 0) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NA));
data->cmd_state = CMD_STATUS_FAIL;
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed [%d]\n",
__func__, retval);
goto out;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(OK));
data->cmd_state = CMD_STATUS_OK;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: success to save test result\n",
__func__);
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
static void get_tsp_test_result(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int result = 0;
set_default_result(data);
if (rmi4_data->touch_stopped) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is stopped\n",
__func__);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "TSP turned off");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
result = synaptics_rmi4_read_tsp_test_result(rmi4_data);
if (result < TSP_FACTEST_RESULT_NONE || result > TSP_FACTEST_RESULT_PASS) {
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NG));
data->cmd_state = CMD_STATUS_FAIL;
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: failed [%d]\n",
__func__, result);
goto out;
}
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s",
result == TSP_FACTEST_RESULT_PASS ? tostring(PASS) :
result == TSP_FACTEST_RESULT_FAIL ? tostring(FAIL) :
tostring(NONE));
data->cmd_state = CMD_STATUS_OK;
tsp_debug_info(true, &rmi4_data->i2c_client->dev, "%s: success [%s][%d]", __func__,
result == TSP_FACTEST_RESULT_PASS ? "PASS" :
result == TSP_FACTEST_RESULT_FAIL ? "FAIL" :
"NONE", result);
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
#ifdef USE_ACTIVE_REPORT_RATE
static void report_rate(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
int retval;
unsigned char command = COMMAND_FORCE_UPDATE;
unsigned char rpt_rate = 0;
set_default_result(data);
if (data->cmd_param[0] < SYNAPTICS_RPT_RATE_START
|| data->cmd_param[0] >= SYNAPTICS_RPT_RATE_END) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (rmi4_data->touch_stopped) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: [ERROR] Touch is stopped\n",
__func__);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", "TSP turned off");
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
goto out;
}
retval = f54->fn_ptr->read(rmi4_data, f54->control.reg_94->address,
f54->control.reg_94->data, sizeof(f54->control.reg_94->data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to read control_94 register.\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
switch (data->cmd_param[0]) {
case SYNAPTICS_RPT_RATE_90HZ:
rpt_rate = SYNAPTICS_RPT_RATE_90HZ_VAL;
break;
case SYNAPTICS_RPT_RATE_60HZ:
rpt_rate = SYNAPTICS_RPT_RATE_60HZ_VAL;
break;
case SYNAPTICS_RPT_RATE_30HZ:
rpt_rate = SYNAPTICS_RPT_RATE_30HZ_VAL;
break;
}
if (f54->control.reg_94->noise_bursts_per_cluster == rpt_rate) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
goto out;
}
tsp_debug_info(true, &rmi4_data->i2c_client->dev,
"%s: Set report rate %sHz [0x%02X->0x%02X]\n", __func__,
data->cmd_param[0] == SYNAPTICS_RPT_RATE_90HZ ? "90" :
data->cmd_param[0] == SYNAPTICS_RPT_RATE_60HZ ? "60" : "30",
f54->control.reg_94->noise_bursts_per_cluster, rpt_rate);
f54->control.reg_94->noise_bursts_per_cluster = rpt_rate;
retval = f54->fn_ptr->write(rmi4_data, f54->control.reg_94->address,
f54->control.reg_94->data, sizeof(f54->control.reg_94->data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write control_94 register.\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
retval = f54->fn_ptr->write(rmi4_data,
f54->command_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write force update command\n",
__func__);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
data->cmd_state = CMD_STATUS_WAITING;
}
#endif
#ifdef USE_STYLUS
static void stylus_enable(void)
{
struct factory_data *data = f54->factory_data;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
unsigned char value;
int retval = 0;
set_default_result(data);
if (data->cmd_param[0] < 0 || data->cmd_param[0] > 2) {
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
if (rmi4_data->use_stylus != (data->cmd_param[0] ? true : false)) {
rmi4_data->use_stylus = data->cmd_param[0] ? true : false;
synpatics_rmi4_release_all_event(rmi4_data, RELEASE_TYPE_FINGER);
}
value = data->cmd_param[0] ? 0x01 : 0x00;
retval = synaptics_rmi4_access_register(rmi4_data, SYNAPTICS_ACCESS_WRITE,
rmi4_data->f51->forcefinger_onedge_addr, sizeof(value), &value);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to write force finger on edge with [0x%02X].\n",
__func__, value);
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "NG");
data->cmd_state = CMD_STATUS_FAIL;
goto out;
}
snprintf(data->cmd_buff, sizeof(data->cmd_buff), "OK");
data->cmd_state = CMD_STATUS_OK;
out:
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
}
#endif
static void not_support_cmd(void)
{
struct factory_data *data = f54->factory_data;
set_default_result(data);
snprintf(data->cmd_buff, CMD_RESULT_STR_LEN, "%s", tostring(NA));
set_cmd_result(data, data->cmd_buff, strlen(data->cmd_buff));
data->cmd_state = CMD_STATUS_NOT_APPLICABLE;
/* Some cmds are supported in specific IC and they are clear the cmd_is running flag
* itself(without show_cmd_result_) in their function such as hover_enable, glove_mode.
* So we need to clear cmd_is runnint flag if that command is replaced with
* not_support_cmd */
mutex_lock(&data->cmd_lock);
data->cmd_is_running = false;
mutex_unlock(&data->cmd_lock);
}
#endif
static ssize_t synaptics_rmi4_f54_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", f54->status);
}
static ssize_t synaptics_rmi4_f54_report_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", f54->report_size);
}
static ssize_t synaptics_rmi4_f54_no_auto_cal_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", f54->no_auto_cal);
}
static ssize_t synaptics_rmi4_f54_no_auto_cal_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned char data;
unsigned long setting;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = kstrtoul(buf, 10, &setting);
if (retval)
return retval;
if (setting > 1)
return -EINVAL;
retval = f54->fn_ptr->read(rmi4_data,
f54->control_base_addr,
&data,
sizeof(data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to read control register\n",
__func__);
return retval;
}
if ((data & NO_AUTO_CAL_MASK) == setting)
return count;
data = (data & ~NO_AUTO_CAL_MASK) | (data & NO_AUTO_CAL_MASK);
retval = f54->fn_ptr->write(rmi4_data,
f54->control_base_addr,
&data,
sizeof(data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write control register\n",
__func__);
return retval;
}
f54->no_auto_cal = (setting == 1);
return count;
}
static ssize_t synaptics_rmi4_f54_report_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", f54->report_type);
}
static ssize_t synaptics_rmi4_f54_report_type_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned char data;
unsigned long setting;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = kstrtoul(buf, 10, &setting);
if (retval)
return retval;
if (!is_report_type_valid((enum f54_report_types)setting)) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Report type not supported by driver\n",
__func__);
return -EINVAL;
}
mutex_lock(&f54->status_mutex);
if (f54->status != STATUS_BUSY) {
f54->report_type = (enum f54_report_types)setting;
data = (unsigned char)setting;
retval = f54->fn_ptr->write(rmi4_data,
f54->data_base_addr,
&data,
sizeof(data));
mutex_unlock(&f54->status_mutex);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write data register\n",
__func__);
return retval;
}
return count;
} else {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Previous get report still ongoing\n",
__func__);
mutex_unlock(&f54->status_mutex);
return -EINVAL;
}
}
static ssize_t synaptics_rmi4_f54_fifoindex_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int retval;
unsigned char data[2];
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = f54->fn_ptr->read(rmi4_data,
f54->data_base_addr + DATA_REPORT_INDEX_OFFSET,
data,
sizeof(data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to read data registers\n",
__func__);
return retval;
}
batohs(&f54->fifoindex, data);
return snprintf(buf, PAGE_SIZE, "%u\n", f54->fifoindex);
}
static ssize_t synaptics_rmi4_f54_fifoindex_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned char data[2];
unsigned long setting;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = kstrtoul(buf, 10, &setting);
if (retval)
return retval;
f54->fifoindex = setting;
hstoba(data, (unsigned short)setting);
retval = f54->fn_ptr->write(rmi4_data,
f54->data_base_addr + DATA_REPORT_INDEX_OFFSET,
data,
sizeof(data));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write data registers\n",
__func__);
return retval;
}
return count;
}
static ssize_t synaptics_rmi4_f54_do_preparation_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned long setting;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = kstrtoul(buf, 10, &setting);
if (retval)
return retval;
if (setting != 1)
return -EINVAL;
mutex_lock(&f54->status_mutex);
if (f54->status != STATUS_IDLE) {
if (f54->status != STATUS_BUSY) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Invalid status (%d)\n",
__func__, f54->status);
} else {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Previous get report still ongoing\n",
__func__);
}
mutex_unlock(&f54->status_mutex);
return -EBUSY;
}
mutex_unlock(&f54->status_mutex);
retval = do_preparation();
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to do preparation\n",
__func__);
return retval;
}
return count;
}
static ssize_t synaptics_rmi4_f54_get_report_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned char command;
unsigned long setting;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = kstrtoul(buf, 10, &setting);
if (retval)
return retval;
if (setting != 1)
return -EINVAL;
command = (unsigned char)COMMAND_GET_REPORT;
if (!is_report_type_valid(f54->report_type)) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Invalid report type\n",
__func__);
return -EINVAL;
}
mutex_lock(&f54->status_mutex);
if (f54->status != STATUS_IDLE) {
if (f54->status != STATUS_BUSY) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Invalid status (%d)\n",
__func__, f54->status);
} else {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Previous get report still ongoing\n",
__func__);
}
mutex_unlock(&f54->status_mutex);
return -EBUSY;
}
set_interrupt(true);
f54->status = STATUS_BUSY;
retval = f54->fn_ptr->write(rmi4_data,
f54->command_base_addr,
&command,
sizeof(command));
mutex_unlock(&f54->status_mutex);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write get report command\n",
__func__);
return retval;
}
#ifdef WATCHDOG_HRTIMER
hrtimer_start(&f54->watchdog,
ktime_set(WATCHDOG_TIMEOUT_S, 0),
HRTIMER_MODE_REL);
#endif
return count;
}
static ssize_t synaptics_rmi4_f54_force_cal_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned char command;
unsigned long setting;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = kstrtoul(buf, 10, &setting);
if (retval)
return retval;
if (setting != 1)
return count;
command = (unsigned char)COMMAND_FORCE_CAL;
if (f54->status == STATUS_BUSY)
return -EBUSY;
retval = f54->fn_ptr->write(rmi4_data,
f54->command_base_addr,
&command,
sizeof(command));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write force cal command\n",
__func__);
return retval;
}
return count;
}
static ssize_t synaptics_rmi4_f54_num_of_mapped_rx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", f54->rx_assigned);
}
static ssize_t synaptics_rmi4_f54_num_of_mapped_tx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", f54->tx_assigned);
}
simple_show_func_unsigned(query, num_of_rx_electrodes)
simple_show_func_unsigned(query, num_of_tx_electrodes)
simple_show_func_unsigned(query, has_image16)
simple_show_func_unsigned(query, has_image8)
simple_show_func_unsigned(query, has_baseline)
simple_show_func_unsigned(query, clock_rate)
simple_show_func_unsigned(query, touch_controller_family)
simple_show_func_unsigned(query, has_pixel_touch_threshold_adjustment)
simple_show_func_unsigned(query, has_sensor_assignment)
simple_show_func_unsigned(query, has_interference_metric)
simple_show_func_unsigned(query, has_sense_frequency_control)
simple_show_func_unsigned(query, has_firmware_noise_mitigation)
simple_show_func_unsigned(query, has_two_byte_report_rate)
simple_show_func_unsigned(query, has_one_byte_report_rate)
simple_show_func_unsigned(query, has_relaxation_control)
simple_show_func_unsigned(query, curve_compensation_mode)
simple_show_func_unsigned(query, has_iir_filter)
simple_show_func_unsigned(query, has_cmn_removal)
simple_show_func_unsigned(query, has_cmn_maximum)
simple_show_func_unsigned(query, has_touch_hysteresis)
simple_show_func_unsigned(query, has_edge_compensation)
simple_show_func_unsigned(query, has_per_frequency_noise_control)
simple_show_func_unsigned(query, has_signal_clarity)
simple_show_func_unsigned(query, number_of_sensing_frequencies)
show_store_func_unsigned(control, reg_0, no_relax)
show_store_func_unsigned(control, reg_0, no_scan)
show_store_func_unsigned(control, reg_1, bursts_per_cluster)
show_store_func_unsigned(control, reg_2, saturation_cap)
show_store_func_unsigned(control, reg_3, pixel_touch_threshold)
show_store_func_unsigned(control, reg_4__6, rx_feedback_cap)
show_store_func_unsigned(control, reg_4__6, low_ref_cap)
show_store_func_unsigned(control, reg_4__6, low_ref_feedback_cap)
show_store_func_unsigned(control, reg_4__6, low_ref_polarity)
show_store_func_unsigned(control, reg_4__6, high_ref_cap)
show_store_func_unsigned(control, reg_4__6, high_ref_feedback_cap)
show_store_func_unsigned(control, reg_4__6, high_ref_polarity)
show_store_func_unsigned(control, reg_7, cbc_cap)
show_store_func_unsigned(control, reg_7, cbc_polarity)
show_store_func_unsigned(control, reg_7, cbc_tx_carrier_selection)
show_store_func_unsigned(control, reg_8__9, integration_duration)
show_store_func_unsigned(control, reg_8__9, reset_duration)
show_store_func_unsigned(control, reg_10, noise_sensing_bursts_per_image)
show_store_func_unsigned(control, reg_12__13, slow_relaxation_rate)
show_store_func_unsigned(control, reg_12__13, fast_relaxation_rate)
show_store_func_unsigned(control, reg_14, rxs_on_xaxis)
show_store_func_unsigned(control, reg_14, curve_comp_on_txs)
show_store_func_unsigned(control, reg_20, disable_noise_mitigation)
show_store_func_unsigned(control, reg_21, freq_shift_noise_threshold)
show_store_func_unsigned(control, reg_22__26, medium_noise_threshold)
show_store_func_unsigned(control, reg_22__26, high_noise_threshold)
show_store_func_unsigned(control, reg_22__26, noise_density)
show_store_func_unsigned(control, reg_22__26, frame_count)
show_store_func_unsigned(control, reg_27, iir_filter_coef)
show_store_func_unsigned(control, reg_28, quiet_threshold)
show_store_func_unsigned(control, reg_29, cmn_filter_disable)
show_store_func_unsigned(control, reg_30, cmn_filter_max)
show_store_func_unsigned(control, reg_31, touch_hysteresis)
show_store_func_unsigned(control, reg_32__35, rx_low_edge_comp)
show_store_func_unsigned(control, reg_32__35, rx_high_edge_comp)
show_store_func_unsigned(control, reg_32__35, tx_low_edge_comp)
show_store_func_unsigned(control, reg_32__35, tx_high_edge_comp)
show_store_func_unsigned(control, reg_41, no_signal_clarity)
show_store_func_unsigned(control, reg_57, cbc_cap_0d)
show_store_func_unsigned(control, reg_57, cbc_polarity_0d)
show_store_func_unsigned(control, reg_57, cbc_tx_carrier_selection_0d)
show_replicated_func_unsigned(control, reg_15, sensor_rx_assignment)
show_replicated_func_unsigned(control, reg_16, sensor_tx_assignment)
show_replicated_func_unsigned(control, reg_17, disable)
show_replicated_func_unsigned(control, reg_17, filter_bandwidth)
show_replicated_func_unsigned(control, reg_19, stretch_duration)
show_replicated_func_unsigned(control, reg_38, noise_control_1)
show_replicated_func_unsigned(control, reg_39, noise_control_2)
show_replicated_func_unsigned(control, reg_40, noise_control_3)
show_store_replicated_func_unsigned(control, reg_36, axis1_comp)
show_store_replicated_func_unsigned(control, reg_37, axis2_comp)
static ssize_t synaptics_rmi4_f54_burst_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int retval;
int size = 0;
unsigned char ii;
unsigned char *temp;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
mutex_lock(&f54->control_mutex);
retval = f54->fn_ptr->read(rmi4_data,
f54->control.reg_17->address,
(unsigned char *)f54->control.reg_17->data,
f54->control.reg_17->length);
if (retval < 0) {
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev,
"%s: Failed to read control reg_17\n",
__func__);
}
retval = f54->fn_ptr->read(rmi4_data,
f54->control.reg_18->address,
(unsigned char *)f54->control.reg_18->data,
f54->control.reg_18->length);
if (retval < 0) {
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev,
"%s: Failed to read control reg_18\n",
__func__);
}
mutex_unlock(&f54->control_mutex);
temp = buf;
for (ii = 0; ii < f54->control.reg_17->length; ii++) {
retval = snprintf(temp, PAGE_SIZE - size, "%u ", (1 << 8) *
f54->control.reg_17->data[ii].burst_count_b8__10 +
f54->control.reg_18->data[ii].burst_count_b0__7);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Faild to write output\n",
__func__);
return retval;
}
size += retval;
temp += retval;
}
retval = snprintf(temp, PAGE_SIZE - size, "\n");
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Faild to write null terminator\n",
__func__);
return retval;
}
return size + retval;
}
static ssize_t synaptics_rmi4_f54_data_read(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count)
{
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
mutex_lock(&f54->data_mutex);
if (count < f54->report_size) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Report type %d data size (%d) too large\n",
__func__, f54->report_type, f54->report_size);
mutex_unlock(&f54->data_mutex);
return -EINVAL;
}
if (f54->report_data) {
memcpy(buf, f54->report_data, f54->report_size);
mutex_unlock(&f54->data_mutex);
return f54->report_size;
} else {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Report type %d data not available\n",
__func__, f54->report_type);
mutex_unlock(&f54->data_mutex);
return -EINVAL;
}
}
static int synaptics_rmi4_f54_set_sysfs(void)
{
int retval;
int reg_num;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
f54->attr_dir = kobject_create_and_add("f54",
&rmi4_data->input_dev->dev.kobj);
if (!f54->attr_dir) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs directory\n",
__func__);
goto exit_1;
}
retval = sysfs_create_bin_file(f54->attr_dir, &dev_report_data);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs bin file\n",
__func__);
goto exit_2;
}
retval = sysfs_create_group(f54->attr_dir, &attr_group);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
goto exit_3;
}
for (reg_num = 0; reg_num < ARRAY_SIZE(attrs_ctrl_regs); reg_num++) {
if (attrs_ctrl_regs_exist[reg_num]) {
retval = sysfs_create_group(f54->attr_dir,
&attrs_ctrl_regs[reg_num]);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
goto exit_4;
}
}
}
return 0;
exit_4:
sysfs_remove_group(f54->attr_dir, &attr_group);
for (reg_num--; reg_num >= 0; reg_num--)
sysfs_remove_group(f54->attr_dir, &attrs_ctrl_regs[reg_num]);
exit_3:
sysfs_remove_bin_file(f54->attr_dir, &dev_report_data);
exit_2:
kobject_put(f54->attr_dir);
exit_1:
return -ENODEV;
}
static int synaptics_rmi4_f54_set_ctrl(void)
{
unsigned char length;
unsigned char reg_num = 0;
unsigned char num_of_sensing_freqs;
unsigned short reg_addr = f54->control_base_addr;
struct f54_control *control = &f54->control;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
num_of_sensing_freqs = f54->query.number_of_sensing_frequencies;
/* control 0 */
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_0 = kzalloc(sizeof(*(control->reg_0)),
GFP_KERNEL);
if (!control->reg_0)
goto exit_no_mem;
control->reg_0->address = reg_addr;
reg_addr += sizeof(control->reg_0->data);
reg_num++;
/* control 1 */
if ((f54->query.touch_controller_family == 0) ||
(f54->query.touch_controller_family == 1)) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_1 = kzalloc(sizeof(*(control->reg_1)),
GFP_KERNEL);
if (!control->reg_1)
goto exit_no_mem;
control->reg_1->address = reg_addr;
reg_addr += sizeof(control->reg_1->data);
}
reg_num++;
/* control 2 */
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_2 = kzalloc(sizeof(*(control->reg_2)),
GFP_KERNEL);
if (!control->reg_2)
goto exit_no_mem;
control->reg_2->address = reg_addr;
reg_addr += sizeof(control->reg_2->data);
reg_num++;
/* control 3 */
if (f54->query.has_pixel_touch_threshold_adjustment == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_3 = kzalloc(sizeof(*(control->reg_3)),
GFP_KERNEL);
if (!control->reg_3)
goto exit_no_mem;
control->reg_3->address = reg_addr;
reg_addr += sizeof(control->reg_3->data);
}
reg_num++;
/* controls 4 5 6 */
if ((f54->query.touch_controller_family == 0) ||
(f54->query.touch_controller_family == 1)) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_4__6 = kzalloc(sizeof(*(control->reg_4__6)),
GFP_KERNEL);
if (!control->reg_4__6)
goto exit_no_mem;
control->reg_4__6->address = reg_addr;
reg_addr += sizeof(control->reg_4__6->data);
}
reg_num++;
/* control 7 */
if (f54->query.touch_controller_family == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_7 = kzalloc(sizeof(*(control->reg_7)),
GFP_KERNEL);
if (!control->reg_7)
goto exit_no_mem;
control->reg_7->address = reg_addr;
reg_addr += sizeof(control->reg_7->data);
}
reg_num++;
/* controls 8 9 */
if ((f54->query.touch_controller_family == 0) ||
(f54->query.touch_controller_family == 1)) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_8__9 = kzalloc(sizeof(*(control->reg_8__9)),
GFP_KERNEL);
if (!control->reg_8__9)
goto exit_no_mem;
control->reg_8__9->address = reg_addr;
reg_addr += sizeof(control->reg_8__9->data);
}
reg_num++;
/* control 10 */
if (f54->query.has_interference_metric == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_10 = kzalloc(sizeof(*(control->reg_10)),
GFP_KERNEL);
if (!control->reg_10)
goto exit_no_mem;
control->reg_10->address = reg_addr;
reg_addr += sizeof(control->reg_10->data);
}
reg_num++;
/* control 11 */
if (f54->query.has_ctrl11 == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_11 = kzalloc(sizeof(*(control->reg_11)),
GFP_KERNEL);
if (!control->reg_11)
goto exit_no_mem;
control->reg_11->address = reg_addr;
reg_addr += sizeof(control->reg_11->data);
}
reg_num++;
/* controls 12 13 */
if (f54->query.has_relaxation_control == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_12__13 = kzalloc(sizeof(*(control->reg_12__13)),
GFP_KERNEL);
if (!control->reg_12__13)
goto exit_no_mem;
control->reg_12__13->address = reg_addr;
reg_addr += sizeof(control->reg_12__13->data);
}
reg_num++;
/* controls 14 15 16 */
if (f54->query.has_sensor_assignment == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_14 = kzalloc(sizeof(*(control->reg_14)),
GFP_KERNEL);
if (!control->reg_14)
goto exit_no_mem;
control->reg_14->address = reg_addr;
reg_addr += sizeof(control->reg_14->data);
control->reg_15 = kzalloc(sizeof(*(control->reg_15)),
GFP_KERNEL);
if (!control->reg_15)
goto exit_no_mem;
control->reg_15->length = f54->query.num_of_rx_electrodes;
control->reg_15->data = kzalloc(control->reg_15->length *
sizeof(*(control->reg_15->data)), GFP_KERNEL);
if (!control->reg_15->data)
goto exit_no_mem;
control->reg_15->address = reg_addr;
reg_addr += control->reg_15->length;
control->reg_16 = kzalloc(sizeof(*(control->reg_16)),
GFP_KERNEL);
if (!control->reg_16)
goto exit_no_mem;
control->reg_16->length = f54->query.num_of_tx_electrodes;
control->reg_16->data = kzalloc(control->reg_16->length *
sizeof(*(control->reg_16->data)), GFP_KERNEL);
if (!control->reg_16->data)
goto exit_no_mem;
control->reg_16->address = reg_addr;
reg_addr += control->reg_16->length;
}
reg_num++;
/* controls 17 18 19 */
if (f54->query.has_sense_frequency_control == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
length = num_of_sensing_freqs;
control->reg_17 = kzalloc(sizeof(*(control->reg_17)),
GFP_KERNEL);
if (!control->reg_17)
goto exit_no_mem;
control->reg_17->length = length;
control->reg_17->data = kzalloc(length *
sizeof(*(control->reg_17->data)), GFP_KERNEL);
if (!control->reg_17->data)
goto exit_no_mem;
control->reg_17->address = reg_addr;
reg_addr += length;
control->reg_18 = kzalloc(sizeof(*(control->reg_18)),
GFP_KERNEL);
if (!control->reg_18)
goto exit_no_mem;
control->reg_18->length = length;
control->reg_18->data = kzalloc(length *
sizeof(*(control->reg_18->data)), GFP_KERNEL);
if (!control->reg_18->data)
goto exit_no_mem;
control->reg_18->address = reg_addr;
reg_addr += length;
control->reg_19 = kzalloc(sizeof(*(control->reg_19)),
GFP_KERNEL);
if (!control->reg_19)
goto exit_no_mem;
control->reg_19->length = length;
control->reg_19->data = kzalloc(length *
sizeof(*(control->reg_19->data)), GFP_KERNEL);
if (!control->reg_19->data)
goto exit_no_mem;
control->reg_19->address = reg_addr;
reg_addr += length;
}
reg_num++;
/* control 20 */
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_20 = kzalloc(sizeof(*(control->reg_20)),
GFP_KERNEL);
if (!control->reg_20)
goto exit_no_mem;
control->reg_20->address = reg_addr;
reg_addr += sizeof(control->reg_20->data);
reg_num++;
/* control 21 */
if (f54->query.has_sense_frequency_control == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_21 = kzalloc(sizeof(*(control->reg_21)),
GFP_KERNEL);
if (!control->reg_21)
goto exit_no_mem;
control->reg_21->address = reg_addr;
reg_addr += sizeof(control->reg_21->data);
}
reg_num++;
/* controls 22 23 24 25 26 */
if (f54->query.has_firmware_noise_mitigation == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_22__26 = kzalloc(sizeof(*(control->reg_22__26)),
GFP_KERNEL);
if (!control->reg_22__26)
goto exit_no_mem;
control->reg_22__26->address = reg_addr;
reg_addr += sizeof(control->reg_22__26->data);
}
reg_num++;
/* control 27 */
if (f54->query.has_iir_filter == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_27 = kzalloc(sizeof(*(control->reg_27)),
GFP_KERNEL);
if (!control->reg_27)
goto exit_no_mem;
control->reg_27->address = reg_addr;
reg_addr += sizeof(control->reg_27->data);
}
reg_num++;
/* control 28 */
if (f54->query.has_firmware_noise_mitigation == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_28 = kzalloc(sizeof(*(control->reg_28)),
GFP_KERNEL);
if (!control->reg_28)
goto exit_no_mem;
control->reg_28->address = reg_addr;
reg_addr += sizeof(control->reg_28->data);
}
reg_num++;
/* control 29 */
if (f54->query.has_cmn_removal == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_29 = kzalloc(sizeof(*(control->reg_29)),
GFP_KERNEL);
if (!control->reg_29)
goto exit_no_mem;
control->reg_29->address = reg_addr;
reg_addr += sizeof(control->reg_29->data);
}
reg_num++;
/* control 30 */
if (f54->query.has_cmn_maximum == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_30 = kzalloc(sizeof(*(control->reg_30)),
GFP_KERNEL);
if (!control->reg_30)
goto exit_no_mem;
control->reg_30->address = reg_addr;
reg_addr += sizeof(control->reg_30->data);
}
reg_num++;
/* control 31 */
if (f54->query.has_touch_hysteresis == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_31 = kzalloc(sizeof(*(control->reg_31)),
GFP_KERNEL);
if (!control->reg_31)
goto exit_no_mem;
control->reg_31->address = reg_addr;
reg_addr += sizeof(control->reg_31->data);
}
reg_num++;
/* controls 32 33 34 35 */
if (f54->query.has_edge_compensation == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_32__35 = kzalloc(sizeof(*(control->reg_32__35)),
GFP_KERNEL);
if (!control->reg_32__35)
goto exit_no_mem;
control->reg_32__35->address = reg_addr;
reg_addr += sizeof(control->reg_32__35->data);
}
reg_num++;
/* control 36 */
if ((f54->query.curve_compensation_mode == 1) ||
(f54->query.curve_compensation_mode == 2)) {
attrs_ctrl_regs_exist[reg_num] = true;
if (f54->query.curve_compensation_mode == 1) {
length = max(f54->query.num_of_rx_electrodes,
f54->query.num_of_tx_electrodes);
} else if (f54->query.curve_compensation_mode == 2) {
length = f54->query.num_of_rx_electrodes;
}
control->reg_36 = kzalloc(sizeof(*(control->reg_36)),
GFP_KERNEL);
if (!control->reg_36)
goto exit_no_mem;
control->reg_36->length = length;
control->reg_36->data = kzalloc(length *
sizeof(*(control->reg_36->data)), GFP_KERNEL);
if (!control->reg_36->data)
goto exit_no_mem;
control->reg_36->address = reg_addr;
reg_addr += length;
}
reg_num++;
/* control 37 */
if (f54->query.curve_compensation_mode == 2) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_37 = kzalloc(sizeof(*(control->reg_37)),
GFP_KERNEL);
if (!control->reg_37)
goto exit_no_mem;
control->reg_37->length = f54->query.num_of_tx_electrodes;
control->reg_37->data = kzalloc(control->reg_37->length *
sizeof(*(control->reg_37->data)), GFP_KERNEL);
if (!control->reg_37->data)
goto exit_no_mem;
control->reg_37->address = reg_addr;
reg_addr += control->reg_37->length;
}
reg_num++;
/* controls 38 39 40 */
if (f54->query.has_per_frequency_noise_control == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_38 = kzalloc(sizeof(*(control->reg_38)),
GFP_KERNEL);
if (!control->reg_38)
goto exit_no_mem;
control->reg_38->length = num_of_sensing_freqs;
control->reg_38->data = kzalloc(control->reg_38->length *
sizeof(*(control->reg_38->data)), GFP_KERNEL);
if (!control->reg_38->data)
goto exit_no_mem;
control->reg_38->address = reg_addr;
reg_addr += control->reg_38->length;
control->reg_39 = kzalloc(sizeof(*(control->reg_39)),
GFP_KERNEL);
if (!control->reg_39)
goto exit_no_mem;
control->reg_39->length = num_of_sensing_freqs;
control->reg_39->data = kzalloc(control->reg_39->length *
sizeof(*(control->reg_39->data)), GFP_KERNEL);
if (!control->reg_39->data)
goto exit_no_mem;
control->reg_39->address = reg_addr;
reg_addr += control->reg_39->length;
control->reg_40 = kzalloc(sizeof(*(control->reg_40)),
GFP_KERNEL);
if (!control->reg_40)
goto exit_no_mem;
control->reg_40->length = num_of_sensing_freqs;
control->reg_40->data = kzalloc(control->reg_40->length *
sizeof(*(control->reg_40->data)), GFP_KERNEL);
if (!control->reg_40->data)
goto exit_no_mem;
control->reg_40->address = reg_addr;
reg_addr += control->reg_40->length;
}
reg_num++;
/* control 41 */
if (f54->query.has_signal_clarity == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_41 = kzalloc(sizeof(*(control->reg_41)),
GFP_KERNEL);
if (!control->reg_41)
goto exit_no_mem;
control->reg_41->address = reg_addr;
reg_addr += sizeof(control->reg_41->data);
}
reg_num++;
/* control 42 */
if (f54->query.has_variance_metric == 1)
reg_addr += CONTROL_42_SIZE;
/* controls 43 44 45 46 47 48 49 50 51 52 53 54 */
if (f54->query.has_multi_metric_state_machine == 1)
reg_addr += CONTROL_43_54_SIZE;
/* controls 55 56 */
if (f54->query.has_0d_relaxation_control == 1)
reg_addr += CONTROL_55_56_SIZE;
/* control 57 */
if (f54->query.has_0d_acquisition_control == 1) {
attrs_ctrl_regs_exist[reg_num] = true;
control->reg_57 = kzalloc(sizeof(*(control->reg_57)),
GFP_KERNEL);
if (!control->reg_57)
goto exit_no_mem;
control->reg_57->address = reg_addr;
reg_addr += sizeof(control->reg_57->data);
}
reg_num++;
/* control 58 */
if (f54->query.has_0d_acquisition_control == 1)
reg_addr += CONTROL_58_SIZE;
/* control 59 */
if (f54->query.has_h_blank == 1)
reg_addr += CONTROL_59_SIZE;
/* controls 60 61 62 */
if ((f54->query.has_h_blank == 1) ||
(f54->query.has_v_blank == 1) ||
(f54->query.has_long_h_blank == 1))
reg_addr += CONTROL_60_62_SIZE;
/* control 63 */
if ((f54->query.has_h_blank == 1) ||
(f54->query.has_v_blank == 1) ||
(f54->query.has_long_h_blank == 1) ||
(f54->query.has_slew_metric == 1) ||
(f54->query.has_slew_option == 1) ||
(f54->query.has_noise_mitigation2 == 1))
reg_addr += CONTROL_63_SIZE;
/* controls 64 65 66 67 */
if (f54->query.has_h_blank == 1)
reg_addr += CONTROL_64_67_SIZE * 7;
else if ((f54->query.has_v_blank == 1) ||
(f54->query.has_long_h_blank == 1))
reg_addr += CONTROL_64_67_SIZE;
/* controls 68 69 70 71 72 73 */
if ((f54->query.has_h_blank == 1) ||
(f54->query.has_v_blank == 1) ||
(f54->query.has_long_h_blank == 1))
reg_addr += CONTROL_68_73_SIZE;
/* control 74 */
if (f54->query.has_slew_metric == 1)
reg_addr += CONTROL_74_SIZE;
/* control 75 */
if (f54->query.has_enhanced_stretch == 1)
reg_addr += num_of_sensing_freqs;
/* control 76 */
if (f54->query.has_startup_fast_relaxation == 1)
reg_addr += CONTROL_76_SIZE;
/* controls 77 78 */
if (f54->query.has_esd_control == 1)
reg_addr += CONTROL_77_78_SIZE;
/* controls 79 80 81 82 83 */
if (f54->query.has_noise_mitigation2 == 1)
reg_addr += CONTROL_79_83_SIZE;
/* controls 84 85 */
if (f54->query.has_energy_ratio_relaxation == 1)
reg_addr += CONTROL_84_85_SIZE;
/* control 86 */
if ((f54->query.has_query13 == 1) && (f54->query_13.has_ctrl86 == 1))
reg_addr += CONTROL_86_SIZE;
/* control 87 */
if ((f54->query.has_query13 == 1) && (f54->query_13.has_ctrl87 == 1))
reg_addr += CONTROL_87_SIZE;
/* control 88 */
if (f54->query.has_ctrl88 == 1) {
control->reg_88 = kzalloc(sizeof(*(control->reg_88)),
GFP_KERNEL);
if (!control->reg_88)
goto exit_no_mem;
control->reg_88->address = reg_addr;
reg_addr += sizeof(control->reg_88->data);
}
/* control 89 */
if ((f54->query.has_query13 == 1) &&
((f54->query_13.has_cidim == 1) ||
(f54->query_13.has_noise_mitigation_enhancement == 1) ||
(f54->query_13.has_rail_im)))
reg_addr += CONTROL_89_SIZE;
/* control 90 */
if ((f54->query.has_query15) && (f54->query_15.has_ctrl90))
reg_addr += CONTROL_90_SIZE;
/* control 91 */
if (f54->query_21.has_ctrl91)
reg_addr += CONTROL_91_SIZE;
/* control 92 */
if (f54->query_16.has_ctrl92)
reg_addr += CONTROL_92_SIZE;
/* control 93 */
if (f54->query_16.has_ctrl93)
reg_addr += CONTROL_93_SIZE;
/* control 94 */
if (f54->query_16.has_ctrl94_query18) {
control->reg_94 = kzalloc(sizeof(*(control->reg_94)),
GFP_KERNEL);
if (!control->reg_94)
goto exit_no_mem;
control->reg_94->address = reg_addr;
}
return 0;
exit_no_mem:
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for control registers\n",
__func__);
return -ENOMEM;
}
static int synaptics_rmi4_f54_set_query(void)
{
int retval;
unsigned char offset;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = f54->fn_ptr->read(rmi4_data,
f54->query_base_addr,
f54->query.data,
sizeof(f54->query.data));
if (retval < 0)
return retval;
offset = sizeof(f54->query.data);
/* query 12 */
if (f54->query.has_sense_frequency_control == 0)
offset -= 1;
/* query 13 */
if (f54->query.has_query13) {
retval = f54->fn_ptr->read(rmi4_data,
f54->query_base_addr + offset,
f54->query_13.data,
sizeof(f54->query_13.data));
if (retval < 0)
return retval;
offset += 1;
}
/* query 14 */
if ((f54->query.has_query13) && (f54->query_13.has_ctrl87))
offset += 1;
/* query 15 */
if (f54->query.has_query15) {
retval = f54->fn_ptr->read(rmi4_data,
f54->query_base_addr + offset,
f54->query_15.data,
sizeof(f54->query_15.data));
if (retval < 0)
return retval;
offset += 1;
}
/* query 16 */
retval = f54->fn_ptr->read(rmi4_data,
f54->query_base_addr + offset,
f54->query_16.data,
sizeof(f54->query_16.data));
if (retval < 0)
return retval;
offset += 1;
/* query 17 */
if (f54->query_16.has_query17)
offset += 1;
/* query 18 */
if (f54->query_16.has_ctrl94_query18)
offset += 1;
/* query 19 */
if (f54->query_16.has_ctrl95_query19)
offset += 1;
/* query 20 */
if ((f54->query.has_query15) && (f54->query_15.has_query20))
offset += 1;
/* query 21 */
retval = f54->fn_ptr->read(rmi4_data,
f54->query_base_addr + offset,
f54->query_21.data,
sizeof(f54->query_21.data));
if (retval < 0)
return retval;
return 0;
}
static int synaptics_rmi4_f54_reinit(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned short ii;
unsigned char page;
unsigned char intr_count = 0;
unsigned char intr_offset;
struct synaptics_rmi4_fn_desc rmi_fd;
for (page = 0; page < PAGES_TO_SERVICE; page++) {
for (ii = PDT_START; ii > PDT_END; ii -= PDT_ENTRY_SIZE) {
ii |= (page << 8);
retval = f54->fn_ptr->read(rmi4_data,
ii,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev, "%s: Failed to read page description table\n",
__func__);
goto err_out;
}
if (rmi_fd.fn_number == SYNAPTICS_RMI4_F54)
goto f54_found;
if (!rmi_fd.fn_number)
break;
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
}
}
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev, "%s: Can not find F54 in descripttion table\n", __func__);
goto pdt_done;
f54_found:
f54->query_base_addr = rmi_fd.query_base_addr | (page << 8);
f54->control_base_addr = rmi_fd.ctrl_base_addr | (page << 8);
f54->data_base_addr = rmi_fd.data_base_addr | (page << 8);
f54->command_base_addr = rmi_fd.cmd_base_addr | (page << 8);
f54->intr_reg_num = (intr_count + 7) / 8;
if (f54->intr_reg_num != 0)
f54->intr_reg_num -= 1;
f54->intr_mask = 0;
intr_offset = intr_count % 8;
for (ii = intr_offset;
ii < ((rmi_fd.intr_src_count & MASK_3BIT) +
intr_offset);
ii++) {
f54->intr_mask |= 1 << ii;
}
tsp_debug_dbg(false, &rmi4_data->i2c_client->dev,
"%s: F54 found : NUM_INT_REG[%02X] INT_MASK[%02x] BASE_ADDRS[%04x,%04x,%04x,%04x]\n",
__func__, f54->intr_reg_num, f54->intr_mask,
f54->query_base_addr, f54->control_base_addr, f54->data_base_addr, f54->command_base_addr);
retval = synaptics_rmi4_f54_set_query();
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to read query registers\n",
__func__);
goto err_out;
}
/* FIX it from board data...
f54->rx_assigned = f54->query.num_of_rx_electrodes;
f54->tx_assigned = f54->query.num_of_tx_electrodes;
*/
free_control_mem();
retval = synaptics_rmi4_f54_set_ctrl();
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to set up control registers\n",
__func__);
goto err_set_ctrl;
}
return 0;
err_set_ctrl:
free_control_mem();
err_out:
pdt_done:
return retval;
}
#ifdef FACTORY_MODE
static int synaptics_rmi4_f54_get_report_type(int type)
{
int retval;
char buf[3];
unsigned int patience = 250;
memset(buf, 0x00, sizeof(buf));
snprintf(buf, 3, "%u\n", type);
retval = synaptics_rmi4_f54_report_type_store(NULL, NULL, buf, 2);
if (retval != 2)
return 0;
memset(buf, 0x00, sizeof(buf));
snprintf(buf, 3, "%u\n", CMD_GET_REPORT);
retval = synaptics_rmi4_f54_get_report_store(NULL, NULL, buf, 2);
if (retval != 2)
return 0;
do {
msleep(20);
if (f54->status == STATUS_IDLE)
break;
} while (--patience > 0);
if ((f54->report_size == 0) || (f54->status != STATUS_IDLE))
return 0;
else
return 1;
}
#endif
static void synaptics_rmi4_f54_status_work(struct work_struct *work)
{
int retval;
unsigned char report_index[2];
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
if (f54->status != STATUS_BUSY)
return;
set_report_size();
if (f54->report_size == 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Report data size = 0\n",
__func__);
retval = -EINVAL;
goto error_exit;
}
if (f54->data_buffer_size < f54->report_size) {
mutex_lock(&f54->data_mutex);
if (f54->data_buffer_size)
kfree(f54->report_data);
f54->report_data = kzalloc(f54->report_size, GFP_KERNEL);
if (!f54->report_data) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for data buffer\n",
__func__);
f54->data_buffer_size = 0;
mutex_unlock(&f54->data_mutex);
retval = -ENOMEM;
goto error_exit;
}
f54->data_buffer_size = f54->report_size;
mutex_unlock(&f54->data_mutex);
}
report_index[0] = 0;
report_index[1] = 0;
retval = f54->fn_ptr->write(rmi4_data,
f54->data_base_addr + DATA_REPORT_INDEX_OFFSET,
report_index,
sizeof(report_index));
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to write report data index\n",
__func__);
retval = -EINVAL;
goto error_exit;
}
retval = f54->fn_ptr->read(rmi4_data,
f54->data_base_addr + DATA_REPORT_DATA_OFFSET,
f54->report_data,
f54->report_size);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to read report data\n",
__func__);
retval = -EINVAL;
goto error_exit;
}
retval = STATUS_IDLE;
#ifdef RAW_HEX
print_raw_hex_report();
#endif
#ifdef HUMAN_READABLE
print_image_report();
#endif
error_exit:
mutex_lock(&f54->status_mutex);
set_interrupt(false);
f54->status = retval;
mutex_unlock(&f54->status_mutex);
return;
}
static void synaptics_rmi4_f54_attn(struct synaptics_rmi4_data *rmi4_data,
unsigned char intr_mask)
{
if (!f54)
return;
if (f54->intr_mask & intr_mask) {
queue_delayed_work(f54->status_workqueue,
&f54->status_work,
msecs_to_jiffies(STATUS_WORK_INTERVAL));
}
return;
}
#ifdef FACTORY_MODE
static void synaptics_rmi4_remove_factory_mode(struct synaptics_rmi4_data *rmi4_data)
{
if (!f54)
return;
sysfs_remove_group(f54->attr_dir, &cmd_attr_group);
kfree(f54->factory_data->trx_short);
kfree(f54->factory_data->abscap_data);
kfree(f54->factory_data->absdelta_data);
kfree(f54->factory_data->rawcap_data);
kfree(f54->factory_data->delta_data);
kfree(f54->factory_data);
}
static int synaptics_rmi4_init_factory_mode(struct synaptics_rmi4_data *rmi4_data)
{
unsigned char rx;
unsigned char tx;
int retval = 0, ii;
struct factory_data *factory_data;
if (!f54) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: F54 data is null\n", __func__);
return -ENOMEM;
}
rx = f54->rx_assigned;
tx = f54->tx_assigned;
factory_data = kzalloc(sizeof(*factory_data), GFP_KERNEL);
if (!factory_data) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for factory_data\n",
__func__);
retval = -ENOMEM;
goto exit_factory_data;
}
factory_data->rawcap_data = kzalloc(2 * rx * tx, GFP_KERNEL);
if (!factory_data->rawcap_data) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for rawcap_data\n",
__func__);
retval = -ENOMEM;
goto exit_rawcap_data;
}
factory_data->delta_data = kzalloc(2 * rx * tx, GFP_KERNEL);
if (!factory_data->delta_data) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for delta_data\n",
__func__);
retval = -ENOMEM;
goto exit_delta_data;
}
factory_data->abscap_data = kzalloc(4 * rx * tx, GFP_KERNEL);
if (!factory_data->abscap_data) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for abscap_data\n",
__func__);
retval = -ENOMEM;
goto exit_abscap_data;
}
factory_data->absdelta_data = kzalloc(4 * rx * tx, GFP_KERNEL);
if (!factory_data->abscap_data) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for abscap_data\n",
__func__);
retval = -ENOMEM;
goto exit_absdelta_data;
}
factory_data->trx_short = kzalloc(TREX_DATA_SIZE, GFP_KERNEL);
if (!factory_data->trx_short) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for trx_short\n",
__func__);
retval = -ENOMEM;
goto exit_trx_short;
}
INIT_LIST_HEAD(&factory_data->cmd_list_head);
for (ii = 0; ii < ARRAY_SIZE(ft_cmds); ii++)
list_add_tail(&ft_cmds[ii].list, &factory_data->cmd_list_head);
mutex_init(&factory_data->cmd_lock);
factory_data->cmd_is_running = false;
f54->factory_data = factory_data;
return 0;
exit_trx_short:
kfree(factory_data->absdelta_data);
exit_absdelta_data:
kfree(factory_data->abscap_data);
exit_abscap_data:
kfree(factory_data->delta_data);
exit_delta_data:
kfree(factory_data->rawcap_data);
exit_rawcap_data:
kfree(factory_data);
factory_data = NULL;
exit_factory_data:
return retval;
}
#endif
static int synaptics_rmi4_f54_init(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
f54 = kzalloc(sizeof(*f54), GFP_KERNEL);
if (!f54) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for f54\n",
__func__);
retval = -ENOMEM;
return retval;
}
f54->fn_ptr = kzalloc(sizeof(*(f54->fn_ptr)), GFP_KERNEL);
if (!f54->fn_ptr) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for fn_ptr\n",
__func__);
retval = -ENOMEM;
goto err_mem;
}
f54->rmi4_data = rmi4_data;
f54->fn_ptr->read = rmi4_data->i2c_read;
f54->fn_ptr->write = rmi4_data->i2c_write;
f54->fn_ptr->enable = rmi4_data->irq_enable;
f54->rx_assigned = rmi4_data->num_of_rx;
f54->tx_assigned = rmi4_data->num_of_tx;
retval = synaptics_rmi4_f54_reinit(rmi4_data);
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to reinit f54.\n",
__func__);
goto err_reinit;
}
mutex_init(&f54->status_mutex);
mutex_init(&f54->data_mutex);
mutex_init(&f54->control_mutex);
retval = synaptics_rmi4_f54_set_sysfs();
if (retval < 0) {
tsp_debug_err(true, &rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs entries\n",
__func__);
goto err_set_sysfs;
}
f54->status_workqueue =
create_singlethread_workqueue("f54_status_workqueue");
INIT_DELAYED_WORK(&f54->status_work,
synaptics_rmi4_f54_status_work);
#ifdef WATCHDOG_HRTIMER
/* Watchdog timer to catch unanswered get report commands */
hrtimer_init(&f54->watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
f54->watchdog.function = get_report_timeout;
/* Work function to do actual cleaning up */
INIT_WORK(&f54->timeout_work, timeout_set_status);
#endif
f54->status = STATUS_IDLE;
#ifdef FACTORY_MODE
synaptics_rmi4_init_factory_mode(rmi4_data);
#endif
return 0;
err_set_sysfs:
remove_sysfs();
err_reinit:
free_control_mem();
err_mem:
kfree(f54->fn_ptr);
kfree(f54);
f54 = NULL;
return retval;
}
static void synaptics_rmi4_f54_remove(struct synaptics_rmi4_data *rmi4_data)
{
if (!f54)
goto exit;
#ifdef WATCHDOG_HRTIMER
hrtimer_cancel(&f54->watchdog);
#endif
cancel_delayed_work_sync(&f54->status_work);
flush_workqueue(f54->status_workqueue);
destroy_workqueue(f54->status_workqueue);
#ifdef FACTORY_MODE
synaptics_rmi4_remove_factory_mode(rmi4_data);
#endif
remove_sysfs();
free_control_mem();
if (f54->data_buffer_size)
kfree(f54->report_data);
kfree(f54->fn_ptr);
kfree(f54);
f54 = NULL;
exit:
return;
}
int rmi4_f54_module_register(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
retval = synaptics_rmi4_new_function(RMI_F54,
rmi4_data,
synaptics_rmi4_f54_init,
synaptics_rmi4_f54_reinit,
synaptics_rmi4_f54_remove,
synaptics_rmi4_f54_attn);
return retval;
}