120 lines
3.0 KiB
C
120 lines
3.0 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
#ifndef _ASM_X86_PKEYS_H
|
||
|
#define _ASM_X86_PKEYS_H
|
||
|
|
||
|
#define ARCH_DEFAULT_PKEY 0
|
||
|
|
||
|
#define arch_max_pkey() (boot_cpu_has(X86_FEATURE_OSPKE) ? 16 : 1)
|
||
|
|
||
|
extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
||
|
unsigned long init_val);
|
||
|
|
||
|
/*
|
||
|
* Try to dedicate one of the protection keys to be used as an
|
||
|
* execute-only protection key.
|
||
|
*/
|
||
|
extern int __execute_only_pkey(struct mm_struct *mm);
|
||
|
static inline int execute_only_pkey(struct mm_struct *mm)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_OSPKE))
|
||
|
return ARCH_DEFAULT_PKEY;
|
||
|
|
||
|
return __execute_only_pkey(mm);
|
||
|
}
|
||
|
|
||
|
extern int __arch_override_mprotect_pkey(struct vm_area_struct *vma,
|
||
|
int prot, int pkey);
|
||
|
static inline int arch_override_mprotect_pkey(struct vm_area_struct *vma,
|
||
|
int prot, int pkey)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_OSPKE))
|
||
|
return 0;
|
||
|
|
||
|
return __arch_override_mprotect_pkey(vma, prot, pkey);
|
||
|
}
|
||
|
|
||
|
extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
||
|
unsigned long init_val);
|
||
|
|
||
|
#define ARCH_VM_PKEY_FLAGS (VM_PKEY_BIT0 | VM_PKEY_BIT1 | VM_PKEY_BIT2 | VM_PKEY_BIT3)
|
||
|
|
||
|
#define mm_pkey_allocation_map(mm) (mm->context.pkey_allocation_map)
|
||
|
#define mm_set_pkey_allocated(mm, pkey) do { \
|
||
|
mm_pkey_allocation_map(mm) |= (1U << pkey); \
|
||
|
} while (0)
|
||
|
#define mm_set_pkey_free(mm, pkey) do { \
|
||
|
mm_pkey_allocation_map(mm) &= ~(1U << pkey); \
|
||
|
} while (0)
|
||
|
|
||
|
static inline
|
||
|
bool mm_pkey_is_allocated(struct mm_struct *mm, int pkey)
|
||
|
{
|
||
|
/*
|
||
|
* "Allocated" pkeys are those that have been returned
|
||
|
* from pkey_alloc() or pkey 0 which is allocated
|
||
|
* implicitly when the mm is created.
|
||
|
*/
|
||
|
if (pkey < 0)
|
||
|
return false;
|
||
|
if (pkey >= arch_max_pkey())
|
||
|
return false;
|
||
|
/*
|
||
|
* The exec-only pkey is set in the allocation map, but
|
||
|
* is not available to any of the user interfaces like
|
||
|
* mprotect_pkey().
|
||
|
*/
|
||
|
if (pkey == mm->context.execute_only_pkey)
|
||
|
return false;
|
||
|
|
||
|
return mm_pkey_allocation_map(mm) & (1U << pkey);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns a positive, 4-bit key on success, or -1 on failure.
|
||
|
*/
|
||
|
static inline
|
||
|
int mm_pkey_alloc(struct mm_struct *mm)
|
||
|
{
|
||
|
/*
|
||
|
* Note: this is the one and only place we make sure
|
||
|
* that the pkey is valid as far as the hardware is
|
||
|
* concerned. The rest of the kernel trusts that
|
||
|
* only good, valid pkeys come out of here.
|
||
|
*/
|
||
|
u16 all_pkeys_mask = ((1U << arch_max_pkey()) - 1);
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* Are we out of pkeys? We must handle this specially
|
||
|
* because ffz() behavior is undefined if there are no
|
||
|
* zeros.
|
||
|
*/
|
||
|
if (mm_pkey_allocation_map(mm) == all_pkeys_mask)
|
||
|
return -1;
|
||
|
|
||
|
ret = ffz(mm_pkey_allocation_map(mm));
|
||
|
|
||
|
mm_set_pkey_allocated(mm, ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static inline
|
||
|
int mm_pkey_free(struct mm_struct *mm, int pkey)
|
||
|
{
|
||
|
if (!mm_pkey_is_allocated(mm, pkey))
|
||
|
return -EINVAL;
|
||
|
|
||
|
mm_set_pkey_free(mm, pkey);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
||
|
unsigned long init_val);
|
||
|
extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
||
|
unsigned long init_val);
|
||
|
extern void copy_init_pkru_to_fpregs(void);
|
||
|
|
||
|
#endif /*_ASM_X86_PKEYS_H */
|