lineage_kernel_xcoverpro/arch/powerpc/include/asm/xive.h

170 lines
5.3 KiB
C
Raw Permalink Normal View History

2023-06-18 22:53:49 +00:00
/*
* Copyright 2016,2017 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ASM_POWERPC_XIVE_H
#define _ASM_POWERPC_XIVE_H
#define XIVE_INVALID_VP 0xffffffff
#ifdef CONFIG_PPC_XIVE
/*
* Thread Interrupt Management Area (TIMA)
*
* This is a global MMIO region divided in 4 pages of varying access
* permissions, providing access to per-cpu interrupt management
* functions. It always identifies the CPU doing the access based
* on the PowerBus initiator ID, thus we always access via the
* same offset regardless of where the code is executing
*/
extern void __iomem *xive_tima;
/*
* Offset in the TM area of our current execution level (provided by
* the backend)
*/
extern u32 xive_tima_offset;
/*
* Per-irq data (irq_get_handler_data for normal IRQs), IPIs
* have it stored in the xive_cpu structure. We also cache
* for normal interrupts the current target CPU.
*
* This structure is setup by the backend for each interrupt.
*/
struct xive_irq_data {
u64 flags;
u64 eoi_page;
void __iomem *eoi_mmio;
u64 trig_page;
void __iomem *trig_mmio;
u32 esb_shift;
int src_chip;
u32 hw_irq;
/* Setup/used by frontend */
int target;
bool saved_p;
};
#define XIVE_IRQ_FLAG_STORE_EOI 0x01
#define XIVE_IRQ_FLAG_LSI 0x02
#define XIVE_IRQ_FLAG_SHIFT_BUG 0x04
#define XIVE_IRQ_FLAG_MASK_FW 0x08
#define XIVE_IRQ_FLAG_EOI_FW 0x10
#define XIVE_IRQ_FLAG_H_INT_ESB 0x20
#define XIVE_INVALID_CHIP_ID -1
/* A queue tracking structure in a CPU */
struct xive_q {
__be32 *qpage;
u32 msk;
u32 idx;
u32 toggle;
u64 eoi_phys;
u32 esc_irq;
atomic_t count;
atomic_t pending_count;
};
/*
* "magic" Event State Buffer (ESB) MMIO offsets.
*
* Each interrupt source has a 2-bit state machine called ESB
* which can be controlled by MMIO. It's made of 2 bits, P and
* Q. P indicates that an interrupt is pending (has been sent
* to a queue and is waiting for an EOI). Q indicates that the
* interrupt has been triggered while pending.
*
* This acts as a coalescing mechanism in order to guarantee
* that a given interrupt only occurs at most once in a queue.
*
* When doing an EOI, the Q bit will indicate if the interrupt
* needs to be re-triggered.
*
* The following offsets into the ESB MMIO allow to read or
* manipulate the PQ bits. They must be used with an 8-bytes
* load instruction. They all return the previous state of the
* interrupt (atomically).
*
* Additionally, some ESB pages support doing an EOI via a
* store at 0 and some ESBs support doing a trigger via a
* separate trigger page.
*/
#define XIVE_ESB_STORE_EOI 0x400 /* Store */
#define XIVE_ESB_LOAD_EOI 0x000 /* Load */
#define XIVE_ESB_GET 0x800 /* Load */
#define XIVE_ESB_SET_PQ_00 0xc00 /* Load */
#define XIVE_ESB_SET_PQ_01 0xd00 /* Load */
#define XIVE_ESB_SET_PQ_10 0xe00 /* Load */
#define XIVE_ESB_SET_PQ_11 0xf00 /* Load */
#define XIVE_ESB_VAL_P 0x2
#define XIVE_ESB_VAL_Q 0x1
/* Global enable flags for the XIVE support */
extern bool __xive_enabled;
static inline bool xive_enabled(void) { return __xive_enabled; }
extern bool xive_spapr_init(void);
extern bool xive_native_init(void);
extern void xive_smp_probe(void);
extern int xive_smp_prepare_cpu(unsigned int cpu);
extern void xive_smp_setup_cpu(void);
extern void xive_smp_disable_cpu(void);
extern void xive_teardown_cpu(void);
extern void xive_kexec_teardown_cpu(int secondary);
extern void xive_shutdown(void);
extern void xive_flush_interrupt(void);
/* xmon hook */
extern void xmon_xive_do_dump(int cpu);
/* APIs used by KVM */
extern u32 xive_native_default_eq_shift(void);
extern u32 xive_native_alloc_vp_block(u32 max_vcpus);
extern void xive_native_free_vp_block(u32 vp_base);
extern int xive_native_populate_irq_data(u32 hw_irq,
struct xive_irq_data *data);
extern void xive_cleanup_irq_data(struct xive_irq_data *xd);
extern u32 xive_native_alloc_irq(void);
extern void xive_native_free_irq(u32 irq);
extern int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq);
extern int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
__be32 *qpage, u32 order, bool can_escalate);
extern void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio);
extern void xive_native_sync_source(u32 hw_irq);
extern bool is_xive_irq(struct irq_chip *chip);
extern int xive_native_enable_vp(u32 vp_id);
extern int xive_native_disable_vp(u32 vp_id);
extern int xive_native_get_vp_info(u32 vp_id, u32 *out_cam_id, u32 *out_chip_id);
#else
static inline bool xive_enabled(void) { return false; }
static inline bool xive_spapr_init(void) { return false; }
static inline bool xive_native_init(void) { return false; }
static inline void xive_smp_probe(void) { }
extern inline int xive_smp_prepare_cpu(unsigned int cpu) { return -EINVAL; }
static inline void xive_smp_setup_cpu(void) { }
static inline void xive_smp_disable_cpu(void) { }
static inline void xive_kexec_teardown_cpu(int secondary) { }
static inline void xive_shutdown(void) { }
static inline void xive_flush_interrupt(void) { }
static inline u32 xive_native_alloc_vp_block(u32 max_vcpus) { return XIVE_INVALID_VP; }
static inline void xive_native_free_vp_block(u32 vp_base) { }
#endif
#endif /* _ASM_POWERPC_XIVE_H */