lineage_kernel_xcoverpro/arch/ia64/sn/pci/pcibr/pcibr_dma.c

414 lines
12 KiB
C
Raw Permalink Normal View History

2023-06-18 22:53:49 +00:00
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/export.h>
#include <asm/sn/addrs.h>
#include <asm/sn/geo.h>
#include <asm/sn/pcibr_provider.h>
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/pic.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/tiocp.h>
#include "tio.h"
#include "xtalk/xwidgetdev.h"
#include "xtalk/hubdev.h"
extern int sn_ioif_inited;
/* =====================================================================
* DMA MANAGEMENT
*
* The Bridge ASIC provides three methods of doing DMA: via a "direct map"
* register available in 32-bit PCI space (which selects a contiguous 2G
* address space on some other widget), via "direct" addressing via 64-bit
* PCI space (all destination information comes from the PCI address,
* including transfer attributes), and via a "mapped" region that allows
* a bunch of different small mappings to be established with the PMU.
*
* For efficiency, we most prefer to use the 32bit direct mapping facility,
* since it requires no resource allocations. The advantage of using the
* PMU over the 64-bit direct is that single-cycle PCI addressing can be
* used; the advantage of using 64-bit direct over PMU addressing is that
* we do not have to allocate entries in the PMU.
*/
static dma_addr_t
pcibr_dmamap_ate32(struct pcidev_info *info,
u64 paddr, size_t req_size, u64 flags, int dma_flags)
{
struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
pdi_pcibus_info;
u8 internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info->
pdi_linux_pcidev->devfn)) - 1;
int ate_count;
int ate_index;
u64 ate_flags = flags | PCI32_ATE_V;
u64 ate;
u64 pci_addr;
u64 xio_addr;
u64 offset;
/* PIC in PCI-X mode does not supports 32bit PageMap mode */
if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) {
return 0;
}
/* Calculate the number of ATEs needed. */
if (!(MINIMAL_ATE_FLAG(paddr, req_size))) {
ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */
+req_size /* max mapping bytes */
- 1) + 1; /* round UP */
} else { /* assume requested target is page aligned */
ate_count = IOPG(req_size /* max mapping bytes */
- 1) + 1; /* round UP */
}
/* Get the number of ATEs required. */
ate_index = pcibr_ate_alloc(pcibus_info, ate_count);
if (ate_index < 0)
return 0;
/* In PCI-X mode, Prefetch not supported */
if (IS_PCIX(pcibus_info))
ate_flags &= ~(PCI32_ATE_PREF);
if (SN_DMA_ADDRTYPE(dma_flags == SN_DMA_ADDR_PHYS))
xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
PHYS_TO_TIODMA(paddr);
else
xio_addr = paddr;
offset = IOPGOFF(xio_addr);
ate = ate_flags | (xio_addr - offset);
/* If PIC, put the targetid in the ATE */
if (IS_PIC_SOFT(pcibus_info)) {
ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT);
}
/*
* If we're mapping for MSI, set the MSI bit in the ATE. If it's a
* TIOCP based pci bus, we also need to set the PIO bit in the ATE.
*/
if (dma_flags & SN_DMA_MSI) {
ate |= PCI32_ATE_MSI;
if (IS_TIOCP_SOFT(pcibus_info))
ate |= PCI32_ATE_PIO;
}
ate_write(pcibus_info, ate_index, ate_count, ate);
/*
* Set up the DMA mapped Address.
*/
pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index;
/*
* If swap was set in device in pcibr_endian_set()
* we need to turn swapping on.
*/
if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR)
ATE_SWAP_ON(pci_addr);
return pci_addr;
}
static dma_addr_t
pcibr_dmatrans_direct64(struct pcidev_info * info, u64 paddr,
u64 dma_attributes, int dma_flags)
{
struct pcibus_info *pcibus_info = (struct pcibus_info *)
((info->pdi_host_pcidev_info)->pdi_pcibus_info);
u64 pci_addr;
/* Translate to Crosstalk View of Physical Address */
if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
pci_addr = IS_PIC_SOFT(pcibus_info) ?
PHYS_TO_DMA(paddr) :
PHYS_TO_TIODMA(paddr);
else
pci_addr = paddr;
pci_addr |= dma_attributes;
/* Handle Bus mode */
if (IS_PCIX(pcibus_info))
pci_addr &= ~PCI64_ATTR_PREF;
/* Handle Bridge Chipset differences */
if (IS_PIC_SOFT(pcibus_info)) {
pci_addr |=
((u64) pcibus_info->
pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT);
} else
pci_addr |= (dma_flags & SN_DMA_MSI) ?
TIOCP_PCI64_CMDTYPE_MSI :
TIOCP_PCI64_CMDTYPE_MEM;
/* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */
if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn))
pci_addr |= PCI64_ATTR_VIRTUAL;
return pci_addr;
}
static dma_addr_t
pcibr_dmatrans_direct32(struct pcidev_info * info,
u64 paddr, size_t req_size, u64 flags, int dma_flags)
{
struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
pdi_pcibus_info;
u64 xio_addr;
u64 xio_base;
u64 offset;
u64 endoff;
if (IS_PCIX(pcibus_info)) {
return 0;
}
if (dma_flags & SN_DMA_MSI)
return 0;
if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
PHYS_TO_TIODMA(paddr);
else
xio_addr = paddr;
xio_base = pcibus_info->pbi_dir_xbase;
offset = xio_addr - xio_base;
endoff = req_size + offset;
if ((req_size > (1ULL << 31)) || /* Too Big */
(xio_addr < xio_base) || /* Out of range for mappings */
(endoff > (1ULL << 31))) { /* Too Big */
return 0;
}
return PCI32_DIRECT_BASE | offset;
}
/*
* Wrapper routine for freeing DMA maps
* DMA mappings for Direct 64 and 32 do not have any DMA maps.
*/
void
pcibr_dma_unmap(struct pci_dev *hwdev, dma_addr_t dma_handle, int direction)
{
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
struct pcibus_info *pcibus_info =
(struct pcibus_info *)pcidev_info->pdi_pcibus_info;
if (IS_PCI32_MAPPED(dma_handle)) {
int ate_index;
ate_index =
IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE));
pcibr_ate_free(pcibus_info, ate_index);
}
}
/*
* On SN systems there is a race condition between a PIO read response and
* DMA's. In rare cases, the read response may beat the DMA, causing the
* driver to think that data in memory is complete and meaningful. This code
* eliminates that race. This routine is called by the PIO read routines
* after doing the read. For PIC this routine then forces a fake interrupt
* on another line, which is logically associated with the slot that the PIO
* is addressed to. It then spins while watching the memory location that
* the interrupt is targeted to. When the interrupt response arrives, we
* are sure that the DMA has landed in memory and it is safe for the driver
* to proceed. For TIOCP use the Device(x) Write Request Buffer Flush
* Bridge register since it ensures the data has entered the coherence domain,
* unlike the PIC Device(x) Write Request Buffer Flush register.
*/
void sn_dma_flush(u64 addr)
{
nasid_t nasid;
int is_tio;
int wid_num;
int i, j;
unsigned long flags;
u64 itte;
struct hubdev_info *hubinfo;
struct sn_flush_device_kernel *p;
struct sn_flush_device_common *common;
struct sn_flush_nasid_entry *flush_nasid_list;
if (!sn_ioif_inited)
return;
nasid = NASID_GET(addr);
if (-1 == nasid_to_cnodeid(nasid))
return;
hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo;
BUG_ON(!hubinfo);
flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
if (flush_nasid_list->widget_p == NULL)
return;
is_tio = (nasid & 1);
if (is_tio) {
int itte_index;
if (TIO_HWIN(addr))
itte_index = 0;
else if (TIO_BWIN_WINDOWNUM(addr))
itte_index = TIO_BWIN_WINDOWNUM(addr);
else
itte_index = -1;
if (itte_index >= 0) {
itte = flush_nasid_list->iio_itte[itte_index];
if (! TIO_ITTE_VALID(itte))
return;
wid_num = TIO_ITTE_WIDGET(itte);
} else
wid_num = TIO_SWIN_WIDGETNUM(addr);
} else {
if (BWIN_WINDOWNUM(addr)) {
itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)];
wid_num = IIO_ITTE_WIDGET(itte);
} else
wid_num = SWIN_WIDGETNUM(addr);
}
if (flush_nasid_list->widget_p[wid_num] == NULL)
return;
p = &flush_nasid_list->widget_p[wid_num][0];
/* find a matching BAR */
for (i = 0; i < DEV_PER_WIDGET; i++,p++) {
common = p->common;
for (j = 0; j < PCI_ROM_RESOURCE; j++) {
if (common->sfdl_bar_list[j].start == 0)
break;
if (addr >= common->sfdl_bar_list[j].start
&& addr <= common->sfdl_bar_list[j].end)
break;
}
if (j < PCI_ROM_RESOURCE && common->sfdl_bar_list[j].start != 0)
break;
}
/* if no matching BAR, return without doing anything. */
if (i == DEV_PER_WIDGET)
return;
/*
* For TIOCP use the Device(x) Write Request Buffer Flush Bridge
* register since it ensures the data has entered the coherence
* domain, unlike PIC.
*/
if (is_tio) {
/*
* Note: devices behind TIOCE should never be matched in the
* above code, and so the following code is PIC/CP centric.
* If CE ever needs the sn_dma_flush mechanism, we will have
* to account for that here and in tioce_bus_fixup().
*/
u32 tio_id = HUB_L(TIO_IOSPACE_ADDR(nasid, TIO_NODE_ID));
u32 revnum = XWIDGET_PART_REV_NUM(tio_id);
/* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) {
return;
} else {
pcireg_wrb_flush_get(common->sfdl_pcibus_info,
(common->sfdl_slot - 1));
}
} else {
spin_lock_irqsave(&p->sfdl_flush_lock, flags);
*common->sfdl_flush_addr = 0;
/* force an interrupt. */
*(volatile u32 *)(common->sfdl_force_int_addr) = 1;
/* wait for the interrupt to come back. */
while (*(common->sfdl_flush_addr) != 0x10f)
cpu_relax();
/* okay, everything is synched up. */
spin_unlock_irqrestore(&p->sfdl_flush_lock, flags);
}
return;
}
/*
* DMA interfaces. Called from pci_dma.c routines.
*/
dma_addr_t
pcibr_dma_map(struct pci_dev * hwdev, unsigned long phys_addr, size_t size, int dma_flags)
{
dma_addr_t dma_handle;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
/* SN cannot support DMA addresses smaller than 32 bits. */
if (hwdev->dma_mask < 0x7fffffff) {
return 0;
}
if (hwdev->dma_mask == ~0UL) {
/*
* Handle the most common case: 64 bit cards. This
* call should always succeed.
*/
dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
PCI64_ATTR_PREF, dma_flags);
} else {
/* Handle 32-63 bit cards via direct mapping */
dma_handle = pcibr_dmatrans_direct32(pcidev_info, phys_addr,
size, 0, dma_flags);
if (!dma_handle) {
/*
* It is a 32 bit card and we cannot do direct mapping,
* so we use an ATE.
*/
dma_handle = pcibr_dmamap_ate32(pcidev_info, phys_addr,
size, PCI32_ATE_PREF,
dma_flags);
}
}
return dma_handle;
}
dma_addr_t
pcibr_dma_map_consistent(struct pci_dev * hwdev, unsigned long phys_addr,
size_t size, int dma_flags)
{
dma_addr_t dma_handle;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
if (hwdev->dev.coherent_dma_mask == ~0UL) {
dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
PCI64_ATTR_BAR, dma_flags);
} else {
dma_handle = (dma_addr_t) pcibr_dmamap_ate32(pcidev_info,
phys_addr, size,
PCI32_ATE_BAR, dma_flags);
}
return dma_handle;
}
EXPORT_SYMBOL(sn_dma_flush);